utestRotationThread.cpp 8.54 KB
Newer Older
1
// See LICENCE file at project root
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

#include "Utils/FGlobal.hpp"

#include "Containers/FOctree.hpp"
#include "Containers/FVector.hpp"

#include "Kernels/Rotation/FRotationCell.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"

#include "Components/FSimpleLeaf.hpp"
#include "Kernels/Rotation/FRotationKernel.hpp"

#include "Files/FFmaGenericLoader.hpp"

#include "Core/FFmmAlgorithmThread.hpp"

#include "FUTester.hpp"


/** the test class
  *
  */
class TestRotationDirect : public FUTester<TestRotationDirect> {
    /** The test method to factorize all the test based on different kernels */
26
    template <class FReal, class CellClass, class ContainerClass, class KernelClass, class LeafClass,
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
              class OctreeClass, class FmmClass>
    void RunTest(){
		//
		// Load particles
		//
		if(sizeof(FReal) == sizeof(float) ) {
			std::cerr << "No input data available for Float "<< std::endl;
			exit(EXIT_FAILURE);
		}
		const std::string parFile( (sizeof(FReal) == sizeof(float))?
				"Test/DirectFloat.bfma":
				"UTest/DirectDouble.bfma");
		//
		std::string filename(SCALFMMDataPath+parFile);
		//
42
		FFmaGenericLoader<FReal> loader(filename);
43 44 45 46 47 48 49 50 51 52 53 54
        if(!loader.isOpen()){
            Print("Cannot open particles file.");
            uassert(false);
            return;
        }
		Print("Number of particles:");
        Print(loader.getNumberOfParticles());

        const int NbLevels      = 4;
        const int SizeSubLevels = 2;
//
		FSize nbParticles = loader.getNumberOfParticles() ;
55
		FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
56 57 58 59 60 61 62

		loader.fillParticle(particles,nbParticles);
         //
		// Create octree
		OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
		//   Insert particle in the tree
		//
63
		for(FSize idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
64
		    tree.insert(particles[idxPart].getPosition() , idxPart, particles[idxPart].getPhysicalValue() );
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
		}


        // Run FMM
        Print("Fmm...");
        //KernelClass kernels(NbLevels,loader.getBoxWidth());
        KernelClass kernels(NbLevels,loader.getBoxWidth(), loader.getCenterOfBox());
        FmmClass algo(&tree,&kernels);
        algo.execute();

		//
		FReal energy= 0.0 , energyD = 0.0 ;
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compute direct energy
		/////////////////////////////////////////////////////////////////////////////////////////////////

81
		for(FSize idx = 0 ; idx < loader.getNumberOfParticles()  ; ++idx){
82
		    energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
83 84 85 86 87
		}
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compare
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Compute Diff...");
88 89
		FMath::FAccurater<FReal> potentialDiff;
		FMath::FAccurater<FReal> fx, fy, fz;
90 91 92 93 94 95 96 97
		{ // Check that each particle has been summed with all other

			tree.forEachLeaf([&](LeafClass* leaf){
				const FReal*const potentials        = leaf->getTargets()->getPotentials();
				const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
				const FReal*const forcesX            = leaf->getTargets()->getForcesX();
				const FReal*const forcesY            = leaf->getTargets()->getForcesY();
				const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
98 99
				const FSize nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
				const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
100

101 102
				for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
					const FSize indexPartOrig = indexes[idxPart];
103 104 105 106
					potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
					fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
					fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
					fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
					energy   += potentials[idxPart]*physicalValues[idxPart];
				}
			});
		}

		delete[] particles;

		// Print for information

		Print("Potential diff is = ");
		printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
		printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
		printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
		Print("Fx diff is = ");
		printf("         Fx L2Norm     %e\n",fx.getL2Norm());
		printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
		printf("         Fx RMSError   %e\n",fx.getRMSError());
		Print("Fy diff is = ");
		printf("        Fy L2Norm     %e\n",fy.getL2Norm());
		printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
		printf("        Fy RMSError   %e\n",fy.getRMSError());
		Print("Fz diff is = ");
		printf("        Fz L2Norm     %e\n",fz.getL2Norm());
		printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
		printf("        Fz RMSError   %e\n",fz.getRMSError());
		FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
		printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
		printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
		printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
		printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

		// Assert
		const FReal MaximumDiffPotential = FReal(9e-3);
		const FReal MaximumDiffForces     = FReal(9e-2);

		Print("Test1 - Error Relative L2 norm Potential ");
		uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
		Print("Test2 - Error RMS L2 norm Potential ");
		uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
		Print("Test3 - Error Relative L2 norm FX ");
		uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
		Print("Test4 - Error RMS L2 norm FX ");
		uassert(fx.getRMSError() < MaximumDiffForces);                      //4
		Print("Test5 - Error Relative L2 norm FY ");
		uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
		Print("Test6 - Error RMS L2 norm FY ");
		uassert(fy.getRMSError() < MaximumDiffForces);                      //6
		Print("Test7 - Error Relative L2 norm FZ ");
		uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
		Print("Test8 - Error RMS L2 norm FZ ");
		uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
		Print("Test9 - Error Relative L2 norm F ");
		uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
		Print("Test10 - Relative error Energy ");
		uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy

    }

    /** If memstas is running print the memory used */
    void PostTest() {
        if( FMemStats::controler.isUsed() ){
            std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated() << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
            std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated() << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
            std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated() << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
        }
    }

    ///////////////////////////////////////////////////////////
    // The tests!
    ///////////////////////////////////////////////////////////

    static const int P = 9;

    /** Rotation */
    void TestRotation(){
182
        typedef double FReal;
183
        typedef FRotationCell<FReal,P>              CellClass;
184
        typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
185

186
        typedef FRotationKernel<FReal, CellClass, ContainerClass, P >          KernelClass;
187

188 189
        typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
        typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
190 191 192

        typedef FFmmAlgorithmThread<OctreeClass, CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

193
        RunTest<FReal,CellClass, ContainerClass, KernelClass, LeafClass, OctreeClass, FmmClass>();
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    }

    ///////////////////////////////////////////////////////////
    // Set the tests!
    ///////////////////////////////////////////////////////////

    /** set test */
    void SetTests(){
        AddTest(&TestRotationDirect::TestRotation,"Test Rotation Kernel");
    }
};


// You must do this
TestClass(TestRotationDirect)