utestSphericalBlasAlgorithm.cpp 11.1 KB
Newer Older
1
// ===================================================================================
2 3 4 5
// Copyright ScalFmm 2016 INRIA, Olivier Coulaud, Bérenger Bramas,
// Matthias Messner olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the
// FMM.
6
//
7
// This software is governed by the CeCILL-C and LGPL licenses and
8
// abiding by the rules of distribution of free software.
9 10 11
// An extension to the license is given to allow static linking of scalfmm
// inside a proprietary application (no matter its license).
// See the main license file for more details.
12 13 14 15
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 17 18
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
19 20
// ===================================================================================

BRAMAS Berenger's avatar
BRAMAS Berenger committed
21
#include "Utils/FGlobal.hpp"
22

BRAMAS Berenger's avatar
BRAMAS Berenger committed
23 24
#include "Containers/FOctree.hpp"
#include "Containers/FVector.hpp"
25

BRAMAS Berenger's avatar
BRAMAS Berenger committed
26 27
#include "Kernels/Spherical/FSphericalCell.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
28

BRAMAS Berenger's avatar
BRAMAS Berenger committed
29 30 31 32 33
#include "Components/FSimpleLeaf.hpp"
#include "Kernels/Spherical/FSphericalKernel.hpp"
#include "Kernels/Spherical/FSphericalRotationKernel.hpp"
#include "Kernels/Spherical/FSphericalBlasKernel.hpp"
#include "Kernels/Spherical/FSphericalBlockBlasKernel.hpp"
34

BRAMAS Berenger's avatar
BRAMAS Berenger committed
35
#include "Files/FFmaGenericLoader.hpp"
36

BRAMAS Berenger's avatar
BRAMAS Berenger committed
37
#include "Core/FFmmAlgorithm.hpp"
38 39 40 41 42 43 44 45 46 47 48 49

#include "FUTester.hpp"

/*
  In this test we compare the spherical fmm results and the direct results.
 */

/** the test class
 *
 */
class TestSphericalDirect : public FUTester<TestSphericalDirect> {
	/** The test method to factorize all the test based on different kernels */
50
    template < class FReal, class CellClass, class ContainerClass, class KernelClass, class LeafClass,
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
	class OctreeClass, class FmmClass>
	void RunTest( const bool isBlasKernel){
		//
		const int DevP = 9;
		//
		// Load particles
		//
		if(sizeof(FReal) == sizeof(float) ) {
			std::cerr << "No input data available for Float "<< std::endl;
			exit(EXIT_FAILURE);
		}
		const std::string parFile( (sizeof(FReal) == sizeof(float))?
				"Test/DirectFloat.bfma":
				"UTest/DirectDouble.bfma");
		//
		std::string filename(SCALFMMDataPath+parFile);
		//
68
		FFmaGenericLoader<FReal> loader(filename);
69 70 71 72 73 74 75 76 77 78 79 80
		if(!loader.isOpen()){
			Print("Cannot open particles file.");
			uassert(false);
			return;
		}
		Print("Number of particles:");
		Print(loader.getNumberOfParticles());

		const int NbLevels      = 4;
		const int SizeSubLevels = 2;
		//
		FSize nbParticles = loader.getNumberOfParticles() ;
81
		FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
82 83 84 85 86

		loader.fillParticle(particles,nbParticles);
		//
		// Create octree
		//
87
		FSphericalCell<FReal>::Init(DevP);
88 89 90
		OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
		//   Insert particle in the tree
		//
91
		for(FSize idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
		    tree.insert(particles[idxPart].getPosition() , idxPart, particles[idxPart].getPhysicalValue() );
		}



		// Run FMM
		Print("Fmm...");
		//KernelClass kernels(NbLevels,loader.getBoxWidth());
		KernelClass kernels(DevP,NbLevels,loader.getBoxWidth(), loader.getCenterOfBox());
		FmmClass algo(&tree,&kernels);
		algo.execute();
		//
		FReal energy= 0.0 , energyD = 0.0 ;
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compute direct energy
		/////////////////////////////////////////////////////////////////////////////////////////////////

109
		for(FSize idx = 0 ; idx < loader.getNumberOfParticles()  ; ++idx){
110 111 112 113 114 115
		    energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
		}
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compare
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Compute Diff...");
116 117
		FMath::FAccurater<FReal> potentialDiff;
		FMath::FAccurater<FReal> fx, fy, fz;
118 119 120 121 122 123 124 125
		{ // Check that each particle has been summed with all other

			tree.forEachLeaf([&](LeafClass* leaf){
				const FReal*const potentials        = leaf->getTargets()->getPotentials();
				const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
				const FReal*const forcesX            = leaf->getTargets()->getForcesX();
				const FReal*const forcesY            = leaf->getTargets()->getForcesY();
				const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
126 127
				const FSize nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
				const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
128

129 130
				for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
					const FSize indexPartOrig = indexes[idxPart];
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
					potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
					fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
					fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
					fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
					energy   += potentials[idxPart]*physicalValues[idxPart];
				}
			});
		}

		delete[] particles;

		// Print for information

		Print("Potential diff is = ");
		printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
		printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
		printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
		Print("Fx diff is = ");
		printf("         Fx L2Norm     %e\n",fx.getL2Norm());
		printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
		printf("         Fx RMSError   %e\n",fx.getRMSError());
		Print("Fy diff is = ");
		printf("        Fy L2Norm     %e\n",fy.getL2Norm());
		printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
		printf("        Fy RMSError   %e\n",fy.getRMSError());
		Print("Fz diff is = ");
		printf("        Fz L2Norm     %e\n",fz.getL2Norm());
		printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
		printf("        Fz RMSError   %e\n",fz.getRMSError());
		FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
		printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
		printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
		printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
		printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

		// Assert
		const FReal MaximumDiffPotential = FReal(9e-3);
		const FReal MaximumDiffForces     = FReal(9e-2);

		Print("Test1 - Error Relative L2 norm Potential ");
		uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
		Print("Test2 - Error RMS L2 norm Potential ");
		uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
		Print("Test3 - Error Relative L2 norm FX ");
		uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
		Print("Test4 - Error RMS L2 norm FX ");
		uassert(fx.getRMSError() < MaximumDiffForces);                      //4
		Print("Test5 - Error Relative L2 norm FY ");
		uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
		Print("Test6 - Error RMS L2 norm FY ");
		uassert(fy.getRMSError() < MaximumDiffForces);                      //6
		Print("Test7 - Error Relative L2 norm FZ ");
		uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
		Print("Test8 - Error RMS L2 norm FZ ");
		uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
		Print("Test9 - Error Relative L2 norm F ");
		uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
		Print("Test10 - Relative error Energy ");
		uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy

	}

	/** If memstas is running print the memory used */
	void PostTest() {
		if( FMemStats::controler.isUsed() ){
			std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated() << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
			std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated() << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
			std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated() << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
		}
	}

	///////////////////////////////////////////////////////////
	// The tests!
	///////////////////////////////////////////////////////////

	/** Classic */
	void TestSpherical(){
208
        typedef double FReal;
209
		typedef FSphericalCell<FReal>            CellClass;
210
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
211

212
		typedef FSphericalKernel< FReal, CellClass, ContainerClass >          KernelClass;
213

214 215
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
216 217 218

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

219
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
220 221 222 223 224
		OctreeClass, FmmClass>(false);
	}



225
#ifdef SCALFMM_USE_BLAS
226 227
	/** Blas */
	void TestSphericalBlas(){
228
        typedef double FReal;
229
		typedef FSphericalCell<FReal>            CellClass;
230
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
231

232
		typedef FSphericalBlasKernel<FReal, CellClass, ContainerClass >          KernelClass;
233

234 235
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
236 237 238

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

239
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
240 241 242 243 244
		OctreeClass, FmmClass>(true);
	}

	/** Block blas */
	void TestSphericalBlockBlas(){
245
        typedef double FReal;
246
		typedef FSphericalCell<FReal>            CellClass;
247
		typedef FP2PParticleContainerIndexed<FReal> ContainerClass;
248

249
		typedef FSphericalBlockBlasKernel< FReal, CellClass, ContainerClass >          KernelClass;
250

251 252
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
253 254 255

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

256
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
257 258 259 260 261 262 263 264 265 266 267
		OctreeClass, FmmClass>(true);
	}
#endif

	///////////////////////////////////////////////////////////
	// Set the tests!
	///////////////////////////////////////////////////////////

	/** set test */
	void SetTests(){
		AddTest(&TestSphericalDirect::TestSpherical,"Test Spherical Kernel");
268
#ifdef SCALFMM_USE_BLAS
269 270 271 272 273 274 275 276 277
		AddTest(&TestSphericalDirect::TestSphericalBlas,"Test Spherical Blas Kernel");
		AddTest(&TestSphericalDirect::TestSphericalBlockBlas,"Test Spherical Block Blas Kernel");
#endif
	}
};


// You must do this
TestClass(TestSphericalDirect)