utestChebyshevDirectTsm.cpp 13.2 KB
Newer Older
1
// ===================================================================================
2 3 4 5
// Copyright ScalFmm 2016 INRIA, Olivier Coulaud, Bérenger Bramas,
// Matthias Messner olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the
// FMM.
6
//
7
// This software is governed by the CeCILL-C and LGPL licenses and
8
// abiding by the rules of distribution of free software.
9 10 11
// An extension to the license is given to allow static linking of scalfmm
// inside a proprietary application (no matter its license).
// See the main license file for more details.
12 13 14 15
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 17 18
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
// ===================================================================================

#include "Utils/FGlobal.hpp"

#include "Containers/FOctree.hpp"
#include "Containers/FVector.hpp"

#include "Kernels/Chebyshev/FChebCell.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"

#include "Components/FTypedLeaf.hpp"
#include "Extensions/FExtendCellType.hpp"
#include "Kernels/Chebyshev/FChebSymKernel.hpp"

#include "Files/FRandomLoader.hpp"
#include "Files/FFmaGenericLoader.hpp"

#include "Core/FFmmAlgorithmThreadTsm.hpp"
#include "Core/FFmmAlgorithmTsm.hpp"

#include "FUTester.hpp"


/** the test class the rotation and target source model.
 *
 */
class TestChebyshevDirectTsm : public FUTester<TestChebyshevDirectTsm> {
    /** The test method to factorize all the test based on different kernels */
    template <class FReal, class CellClass, class ContainerClass, class KernelClass, class LeafClass,
    class OctreeClass, class FmmClass, class MatrixKernelClass>
    void RunTest(){
        const MatrixKernelClass MatrixKernel;
        // Warning in make test the exec dir it Build/UTests
        // Load particles
        const int nbSources = 5000;
        const int nbTargets = 5000;

        FRandomLoader<FReal> loader(nbSources + nbTargets);

        Print("Number of particles:");
        Print(loader.getNumberOfParticles());

        const int NbLevels      = 4;
        const int SizeSubLevels = 3;

        // Create octree
        OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());

        const FReal physicalValue = 0.10;
        //
        FmaRWParticle<FReal, 8,8>* const particlesTargets = new FmaRWParticle<FReal, 8,8>[nbTargets];
        for(FSize idxPart = 0 ; idxPart < nbTargets ; ++idxPart){
            FPoint<FReal> position;
            loader.fillParticle(&position);
            // put in tree
75
            tree.insert(position, FParticleType::FParticleTypeTarget, idxPart, physicalValue);
76 77 78 79 80 81 82 83 84 85 86 87 88 89
            // get copy
            particlesTargets[idxPart].setPosition(position);
            *(particlesTargets[idxPart].setPhysicalValue()) = physicalValue;
            *(particlesTargets[idxPart].setPotential())        = 0.0;
            particlesTargets[idxPart].setForces()[0]        = 0.0;
            particlesTargets[idxPart].setForces()[1]        = 0.0;
            particlesTargets[idxPart].setForces()[2]        = 0.0;
        }

        FmaRWParticle<FReal, 8,8>* const particlesSources = new FmaRWParticle<FReal, 8,8>[nbSources];
        for(FSize idxPart = 0 ; idxPart < nbSources ; ++idxPart){
            FPoint<FReal> position;
            loader.fillParticle(&position);
            // put in tree
90
            tree.insert(position, FParticleType::FParticleTypeSource, idxPart, physicalValue);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            // get copy
            particlesSources[idxPart].setPosition(position);
            *(particlesSources[idxPart].setPhysicalValue()) = physicalValue;
        }


        // Run FMM
        Print("Fmm...");
        //KernelClass kernels(NbLevels,loader.getBoxWidth());
        KernelClass kernels(NbLevels,loader.getBoxWidth(), loader.getCenterOfBox(), &MatrixKernel);
        FmmClass algo(&tree,&kernels);
        algo.execute();
        //
        //

        // Run direct computation
        Print("Direct...");
        for(int idxTarget = 0 ; idxTarget < nbTargets ; ++idxTarget){
            for(int idxOther = 0 ; idxOther < nbSources ; ++idxOther){
                FP2P::NonMutualParticles(
                        particlesTargets[idxTarget].getPosition().getX(), particlesTargets[idxTarget].getPosition().getY(),
                        particlesTargets[idxTarget].getPosition().getZ(),particlesTargets[idxTarget].getPhysicalValue(),
                        &particlesTargets[idxTarget].setForces()[0],&particlesTargets[idxTarget].setForces()[1],
                        &particlesTargets[idxTarget].setForces()[2],particlesTargets[idxTarget].setPotential(),
115 116
                        particlesSources[idxOther].getPosition().getX(), particlesSources[idxOther].getPosition().getY(),
                        particlesSources[idxOther].getPosition().getZ(),particlesSources[idxOther].getPhysicalValue(),
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
                        &MatrixKernel);
            }
        }

        //
        // Assert
        /////////////////////////////////////////////////////////////////////////////////////////////////
        // Compute direct energy
        /////////////////////////////////////////////////////////////////////////////////////////////////
        FReal energy= 0.0 , energyD = 0.0 ;
        for(int idx = 0 ; idx <  nbTargets  ; ++idx){
            energyD +=  particlesTargets[idx].getPotential()*particlesTargets[idx].getPhysicalValue() ;
        }
        /////////////////////////////////////////////////////////////////////////////////////////////////
        // Compare
        /////////////////////////////////////////////////////////////////////////////////////////////////
        Print("Compute Diff...");
        FMath::FAccurater<FReal> potentialDiff;
        FMath::FAccurater<FReal> fx, fy, fz;
        { // Check that each particle has been summed with all other

            tree.forEachLeaf([&](LeafClass* leaf){
                if( leaf->getTargets()->getNbParticles() ){
                    const FReal*const potentials = leaf->getTargets()->getPotentials();
                    const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
                    const FReal*const forcesX = leaf->getTargets()->getForcesX();
                    const FReal*const forcesY = leaf->getTargets()->getForcesY();
                    const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
                    const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
                    const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();

                    for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
                        const FSize indexPartOrig = indexes[idxPart];
                        potentialDiff.add(particlesTargets[indexPartOrig].getPotential(),potentials[idxPart]);
                        fx.add(particlesTargets[indexPartOrig].getForces()[0],forcesX[idxPart]);
                        fy.add(particlesTargets[indexPartOrig].getForces()[1],forcesY[idxPart]);
                        fz.add(particlesTargets[indexPartOrig].getForces()[2],forcesZ[idxPart]);
                        energy   += potentials[idxPart]*physicalValues[idxPart];
                    }
                }
            });
        }

        delete[] particlesTargets;
        delete[] particlesSources;
        //
        // Print for information

        Print("Potential diff is = ");
        printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
        printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
        printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
        Print("Fx diff is = ");
        printf("         Fx L2Norm     %e\n",fx.getL2Norm());
        printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
        printf("         Fx RMSError   %e\n",fx.getRMSError());
        Print("Fy diff is = ");
        printf("        Fy L2Norm     %e\n",fy.getL2Norm());
        printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
        printf("        Fy RMSError   %e\n",fy.getRMSError());
        Print("Fz diff is = ");
        printf("        Fz L2Norm     %e\n",fz.getL2Norm());
        printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
        printf("        Fz RMSError   %e\n",fz.getRMSError());
        FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
        printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
        printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
        printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
        printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

        // Assert
        const FReal MaximumDiffPotential = FReal(9e-3);
        const FReal MaximumDiffForces     = FReal(9e-2);
        //
        Print("Test1 - Error Relative L2 norm Potential ");
        uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
        Print("Test2 - Error RMS L2 norm Potential ");
        uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
        Print("Test3 - Error Relative L2 norm FX ");
        uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
        Print("Test4 - Error RMS L2 norm FX ");
        uassert(fx.getRMSError() < MaximumDiffForces);                      //4
        Print("Test5 - Error Relative L2 norm FY ");
        uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
        Print("Test6 - Error RMS L2 norm FY ");
        uassert(fy.getRMSError() < MaximumDiffForces);                      //6
        Print("Test7 - Error Relative L2 norm FZ ");
        uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
        Print("Test8 - Error RMS L2 norm FZ ");
        uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
        Print("Test9 - Error Relative L2 norm F ");
        uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
        Print("Test10 - Relative error Energy ");
        uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy
    }

    /** If memstas is running print the memory used */
    void PostTest() {
        if( FMemStats::controler.isUsed() ){
            std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated() << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
            std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated() << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
            std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated() << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
        }
    }

    ///////////////////////////////////////////////////////////
    // The tests!
    ///////////////////////////////////////////////////////////

226
    static const int P = 9;
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    /** Chebyshev */
    void TestChebyshev(){
        typedef double FReal;
        typedef FInterpMatrixKernelR<FReal> MatrixKernelClass;
        typedef FTypedChebCell<FReal,P>    CellClass;
        typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;

        typedef FChebSymKernel<FReal, CellClass, ContainerClass, MatrixKernelClass, P >          KernelClass;

        typedef FTypedLeaf<FReal,ContainerClass >                     LeafClass;
        typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;

        typedef FFmmAlgorithmTsm<OctreeClass, CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass, OctreeClass, FmmClass, MatrixKernelClass>();
    }

    void TestChebyshevThread(){
        typedef double FReal;
        typedef FInterpMatrixKernelR<FReal> MatrixKernelClass;
        typedef FTypedChebCell<FReal,P>    CellClass;
        typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;

        typedef FChebSymKernel<FReal, CellClass, ContainerClass, MatrixKernelClass, P >          KernelClass;

        typedef FTypedLeaf<FReal,ContainerClass >                     LeafClass;
        typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;

        typedef FFmmAlgorithmThreadTsm<OctreeClass, CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass, OctreeClass, FmmClass, MatrixKernelClass>();
    }

    ///////////////////////////////////////////////////////////
    // Set the tests!
    ///////////////////////////////////////////////////////////

    /** set test */
    void SetTests(){
        AddTest(&TestChebyshevDirectTsm::TestChebyshev,"Test Chebyshev Kernel TSM");
        AddTest(&TestChebyshevDirectTsm::TestChebyshevThread,"Test Chebyshev Kernel TSM thread");
    }
};


// You must do this
TestClass(TestChebyshevDirectTsm)