FUserKernelEngine.hpp 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// ===================================================================================
// Copyright ScalFmm 2014 I
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================


/**
 * @file This file contains a class that inherits from FScalFMMEngine,
 * and will implement the API functions for a user defined kernel.
 */
#ifndef FUSERKERNELENGINE_HPP
#define FUSERKERNELENGINE_HPP

#include "FScalFMMEngine.hpp"


/**
 * @brief CoreCell : Cell used to store User datas
 */
class CoreCell : public FBasicCell {
    // Mutable in order to work with the API
    mutable void* userData;

34 35 36
    //Static members to be initialised before octree creation
    static Scalfmm_Cell_Descriptor user_cell_descriptor;

37
public:
38 39 40 41 42 43 44 45 46 47 48 49
    static void Init(Scalfmm_Cell_Descriptor cell_descriptor){
        user_cell_descriptor=cell_descriptor;
    }

    static Callback_init_cell GetInit(){
        return user_cell_descriptor.user_init_cell;
    }

    static Callback_free_cell GetFree(){
        return user_cell_descriptor.user_free_cell;
    }

50 51 52
    CoreCell() : userData(nullptr) {
    }

53
    //We free the cells here
54
    ~CoreCell(){
55 56 57
        if(userData){
            this->user_cell_descriptor.user_free_cell(userData);
        }
58
    }
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    /**
     * @brief setContainer store the ptr to the user data inside our
     * struct
     */
    void setContainer(void* inContainer) const {
        userData = inContainer;
    }

    /**
     * @brief getContainer : return the user datas (in order to give
     * it back to the user defined kernel function)
     */
    void* getContainer() const {
        return userData;
    }
};

77 78 79 80
/**
 * Define here static member
 */
Scalfmm_Cell_Descriptor CoreCell::user_cell_descriptor;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

/**
 * This class simply call the function pointers from Scalfmm_Kernel_Descriptor.
 * If not pointer is set the calls are skipped.
 * The userData is given at any calls.
 */
template< class CellClass, class ContainerClass>
class CoreKernel : public FAbstractKernels<CellClass,ContainerClass> {
    Scalfmm_Kernel_Descriptor kernel;
    void* userData;

public:
    CoreKernel(Scalfmm_Kernel_Descriptor inKernel, void* inUserData) : kernel(inKernel) , userData(inUserData){
    }

    /** Default destructor */
    virtual ~CoreKernel(){
    }

    /** Do nothing */
    virtual void P2M(CellClass* const cell, const ContainerClass* const container) {
        if(kernel.p2m) kernel.p2m(cell->getContainer(), container->getNbParticles(), container->getIndexes().data(), userData);
    }

    /** Do nothing */
    virtual void M2M(CellClass* const FRestrict cell, const CellClass*const FRestrict *const FRestrict children, const int level) {
        if(kernel.m2m){
            for(int idx = 0 ; idx < 8 ; ++idx){
                if( children[idx] ){
                    kernel.m2m(level, cell->getContainer(), idx, children[idx]->getContainer(), userData);
                }
            }
        }
    }

    /** Do nothing */
    virtual void M2L(CellClass* const FRestrict cell, const CellClass* interactions[], const int , const int level) {
        if(kernel.m2l){
            for(int idx = 0 ; idx < 343 ; ++idx){
                if( interactions[idx] ){
                    kernel.m2l(level, cell->getContainer(), idx, interactions[idx]->getContainer(), userData);
                }
            }
        }
    }

    /** Do nothing */
    virtual void L2L(const CellClass* const FRestrict cell, CellClass* FRestrict *const FRestrict children, const int level) {
        if(kernel.l2l){
            for(int idx = 0 ; idx < 8 ; ++idx){
                if( children[idx] ){
                    kernel.l2l(level, cell->getContainer(), idx, children[idx]->getContainer(), userData);
                }
            }
        }
    }

    /** Do nothing */
    virtual void L2P(const CellClass* const cell, ContainerClass* const container){
        if(kernel.l2p) kernel.l2p(cell->getContainer(), container->getNbParticles(), container->getIndexes().data(), userData);
    }


    /** Do nothing */
    virtual void P2P(const FTreeCoordinate& ,
                     ContainerClass* const FRestrict targets, const ContainerClass* const FRestrict /*sources*/,
                     ContainerClass* const neighbors[27], const int ){
        if(kernel.p2pinner) kernel.p2pinner(targets->getNbParticles(), targets->getIndexes().data(), userData);

        if(kernel.p2p){
            for(int idx = 0 ; idx < 27 ; ++idx){
                if( neighbors[idx] ){
                    kernel.p2p(targets->getNbParticles(), targets->getIndexes().data(),
                                    neighbors[idx]->getNbParticles(), neighbors[idx]->getIndexes().data(), userData);
                }
            }
        }
    }

    /** Do nothing */
    virtual void P2PRemote(const FTreeCoordinate& ,
                     ContainerClass* const FRestrict , const ContainerClass* const FRestrict ,
                     ContainerClass* const [27], const int ){
    }

};


class FUserKernelEngine : public FScalFMMEngine{

private:

    //Typedefs :
    typedef FP2PParticleContainerIndexed<>           ContainerClass;
    typedef FSimpleLeaf<ContainerClass>                   LeafClass;
    typedef FOctree<CoreCell,ContainerClass,LeafClass>  OctreeClass;
    typedef CoreKernel<CoreCell,ContainerClass>     CoreKernelClass;
178

179
    //For arranger classes
180 181 182
    typedef FBasicParticleContainerIndexedMover<OctreeClass, ContainerClass> MoverClass;
    typedef FOctreeArranger<OctreeClass, ContainerClass, MoverClass> ArrangerClass;
    typedef FArrangerPeriodic<OctreeClass, ContainerClass, MoverClass> ArrangerClassPeriodic;
183 184 185 186 187 188 189


    //Attributes
    OctreeClass * octree;
    CoreKernelClass * kernel;
    ArrangerClass * arranger;

190

191
public:
192
    FUserKernelEngine(/*int TreeHeight, double BoxWidth , double * BoxCenter, */scalfmm_kernel_type KernelType) :
193
        octree(nullptr), kernel(nullptr), arranger(nullptr){
194
        //        octree = new OctreeClass(TreeHeight,FMath::Min(3,TreeHeight-1),BoxWidth,FPoint(BoxCenter));
195 196 197 198 199
        kernelType = KernelType;
        //Kernel is not set now because the user must provide a
        //Scalfmm_Kernel_descriptor
    }

200

201 202 203 204 205 206 207 208 209 210
    ~FUserKernelEngine(){
        delete octree;

        if(arranger){
            delete arranger;
        }
        if(kernel){
            delete kernel;
        }
    }
211 212

    void user_kernel_config( Scalfmm_Kernel_Descriptor userKernel, void * userDatas){
213 214 215
        if(!kernel){
            kernel = new CoreKernelClass(userKernel,userDatas);
        }
216 217
    }

218 219 220 221
    void build_tree(int TreeHeight,double BoxWidth,double* BoxCenter,Scalfmm_Cell_Descriptor user_cell_descriptor){
        CoreCell::Init(user_cell_descriptor);
        this->octree = new OctreeClass(TreeHeight,FMath::Min(3,TreeHeight-1),BoxWidth,FPoint(BoxCenter));
    }
222 223 224 225 226 227

    void tree_insert_particles( int NbPositions, double * arrayX, double * arrayY, double * arrayZ){
        for(int idPart = 0; idPart<NbPositions ; ++idPart){
            octree->insert(FPoint(arrayX[idPart],arrayY[idPart],arrayZ[idPart]),idPart);
        }
        nbPart += NbPositions;
228
        this->init_cell();
229 230 231 232 233 234 235 236 237
    }

    void tree_insert_particles_xyz( int NbPositions, double * XYZ){
        for(int idPart = 0; idPart<NbPositions ; ++idPart){
            octree->insert(FPoint(&XYZ[3*idPart]),idPart);
        }
        nbPart += NbPositions;
    }

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    /**
     * To retrieve the positions, in order to move the parts
     */
    void get_positions_xyz(int NbPositions, double * positionsToFill){
        octree->forEachLeaf([&](LeafClass* leaf){
                ContainerClass * sources = leaf->getSrc();
                const FVector<int>& indexes = sources->getIndexes();
                int nbPartThere = sources->getNbParticles();
                for(int idxPart = 0 ; idxPart<nbPartThere ; ++idxPart){
                    positionsToFill[indexes[idxPart]*3+0] = sources->getPositions()[0][idxPart];
                    positionsToFill[indexes[idxPart]*3+1] = sources->getPositions()[1][idxPart];
                    positionsToFill[indexes[idxPart]*3+2] = sources->getPositions()[2][idxPart];
                }
            });
    }

    void get_positions_xyz_npart(int NbPositions, int * idxOfParticles, double * positionsToFill){
        octree->forEachLeaf([&](LeafClass* leaf){
                ContainerClass * sources = leaf->getSrc();
                const FVector<int>& indexes = sources->getIndexes();
                int nbPartThere = sources->getNbParticles();
                for(int idxPart = 0 ; idxPart<nbPartThere ; ++idxPart){
                    int iterPart = 0;
                    bool notFoundYet = true;
                    while(iterPart < NbPositions && notFoundYet){
                        if(indexes[idxPart] == idxOfParticles[iterPart]){
                            positionsToFill[indexes[idxPart]*3+0] =  sources->getPositions()[0][idxPart];
                            positionsToFill[indexes[idxPart]*3+1] =  sources->getPositions()[1][idxPart];
                            positionsToFill[indexes[idxPart]*3+2] =  sources->getPositions()[2][idxPart];
                            notFoundYet = false;
                        }
                        else{
                            ++iterPart;
                        }
                    }
                }
            });
    }

    void get_positions( int NbPositions, double * X, double * Y , double * Z){
        octree->forEachLeaf([&](LeafClass* leaf){
                ContainerClass * sources = leaf->getSrc();
                const FVector<int>& indexes = sources->getIndexes();
                int nbPartThere = sources->getNbParticles();
                for(int idxPart = 0 ; idxPart<nbPartThere ; ++idxPart){
                    X[indexes[idxPart]] = sources->getPositions()[0][idxPart];
                    Y[indexes[idxPart]] = sources->getPositions()[1][idxPart];
                    Z[indexes[idxPart]] = sources->getPositions()[2][idxPart];
                }
            });
    }

    void get_positions_npart(int NbPositions, int * idxOfParticles,double * X, double * Y , double * Z){
        octree->forEachLeaf([&](LeafClass* leaf){
                ContainerClass * sources = leaf->getSrc();
                const FVector<int>& indexes = sources->getIndexes();
                int nbPartThere = sources->getNbParticles();
                for(int idxPart = 0 ; idxPart<nbPartThere ; ++idxPart){
                    int iterPart = 0;
                    bool notFoundYet = true;
                    while(iterPart < NbPositions && notFoundYet){
                        if(indexes[idxPart] == idxOfParticles[iterPart]){
                            X[indexes[idxPart]] =  sources->getPositions()[0][idxPart];
                            Y[indexes[idxPart]] =  sources->getPositions()[1][idxPart];
                            Z[indexes[idxPart]] =  sources->getPositions()[2][idxPart];
                            notFoundYet = false;
                        }
                        else{
                            ++iterPart;
                        }
                    }
                }
            });
    }



    //Arranger parts : following function provide a way to move parts
    //inside the tree
    void add_to_positions_xyz(int NbPositions,double * updatedXYZ){
        octree->forEachLeaf([&](LeafClass* leaf){
                ContainerClass * sources = leaf->getSrc();
                const FVector<int>& indexes = sources->getIndexes();
                int nbPartThere = sources->getNbParticles();
                for(int idxPart = 0 ; idxPart<nbPartThere ; ++idxPart){
                    sources->getWPositions()[0][idxPart] += updatedXYZ[indexes[idxPart]*3+0];
                    sources->getWPositions()[1][idxPart] += updatedXYZ[indexes[idxPart]*3+1];
                    sources->getWPositions()[2][idxPart] += updatedXYZ[indexes[idxPart]*3+2];
                }
            });
    }

    void add_to_positions(int NbPositions,double * X, double * Y , double * Z){
        octree->forEachLeaf([&](LeafClass* leaf){
                ContainerClass * sources = leaf->getSrc();
                const FVector<int>& indexes = sources->getIndexes();
                int nbPartThere = sources->getNbParticles();
                for(int idxPart = 0 ; idxPart<nbPartThere ; ++idxPart){
                    sources->getWPositions()[0][idxPart] += X[indexes[idxPart]];
                    sources->getWPositions()[1][idxPart] += Y[indexes[idxPart]];
                    sources->getWPositions()[2][idxPart] += Z[indexes[idxPart]];
                }
            });
    }


    void set_positions_xyz(int NbPositions, double * updatedXYZ){
        octree->forEachLeaf([&](LeafClass* leaf){
                ContainerClass * sources = leaf->getSrc();
                const FVector<int>& indexes = sources->getIndexes();
                int nbPartThere = sources->getNbParticles();
                for(int idxPart = 0 ; idxPart<nbPartThere ; ++idxPart){
                    sources->getWPositions()[0][idxPart] = updatedXYZ[indexes[idxPart]*3+0];
                    sources->getWPositions()[1][idxPart] = updatedXYZ[indexes[idxPart]*3+1];
                    sources->getWPositions()[2][idxPart] = updatedXYZ[indexes[idxPart]*3+2];
                }
            });
    }

    void set_positions(int NbPositions, double * X, double * Y, double * Z){
        octree->forEachLeaf([&](LeafClass* leaf){
                ContainerClass * sources = leaf->getSrc();
                const FVector<int>& indexes = sources->getIndexes();
                int nbPartThere = sources->getNbParticles();
                for(int idxPart = 0 ; idxPart<nbPartThere ; ++idxPart){
                    sources->getWPositions()[0][idxPart] = X[indexes[idxPart]];
                    sources->getWPositions()[1][idxPart] = Y[indexes[idxPart]];
                    sources->getWPositions()[2][idxPart] = Z[indexes[idxPart]];
                }
            });
    }


    void update_tree(){
        if(arranger){
            arranger->rearrange();
            //then, we need to re-allocate cells user data for the
            //cells created during the process and free user datas for
            //the cells removed during the process
            init_cell();
        }
        else{
            if(Algorithm == 2){ //case in wich the periodic algorithm is used
                arranger = new ArrangerClassPeriodic(octree);
                arranger->rearrange();
            }
            else{
                arranger = new ArrangerClass(octree);
                arranger->rearrange();
                init_cell();
            }
        }
    }



394 395 396
    /*
     * Call the user allocator on userDatas member field of each cell
     */
397 398 399 400 401 402 403 404 405 406 407
    void init_cell(){

        double boxwidth = octree->getBoxWidth();
        FPoint BoxCenter = octree->getBoxCenter();
        double boxCorner[3];
        boxCorner[0] = BoxCenter.getX() - boxwidth/2.0;
        boxCorner[1] = BoxCenter.getY() - boxwidth/2.0;
        boxCorner[2] = BoxCenter.getZ() - boxwidth/2.0;
        //apply user function on each cell
        octree->forEachCellWithLevel([&](CoreCell * currCell,const int currLevel){
                if(!(currCell->getContainer())){
408 409 410 411 412 413 414
                    FTreeCoordinate currCoord = currCell->getCoordinate();
                    int arrayCoord[3] = {currCoord.getX(),currCoord.getY(),currCoord.getZ()};
                    MortonIndex    currMorton = currCoord.getMortonIndex(currLevel);
                    double position[3];
                    position[0] = boxCorner[0] + currCoord.getX()*boxwidth/double(1<<currLevel);
                    position[1] = boxCorner[1] + currCoord.getY()*boxwidth/double(1<<currLevel);
                    position[2] = boxCorner[2] + currCoord.getZ()*boxwidth/double(1<<currLevel);
415 416 417
                    currCell->setContainer(CoreCell::GetInit()(currLevel,currMorton,arrayCoord,position));
                }
            });
418 419
    }

420

421 422
    void free_cell(Callback_free_cell user_cell_deallocator){
        octree->forEachCell([&](CoreCell * currCell){
PIACIBELLO Cyrille's avatar
PIACIBELLO Cyrille committed
423 424 425
                if(currCell->getContainer()){
                    user_cell_deallocator(currCell->getContainer());
                }
426 427 428 429
            });
    }

    void execute_fmm(){
430
        FAssertLF(kernel,"No kernel set, please use scalfmm_user_kernel_config before calling the execute routine ... Exiting \n");
431 432 433
        switch(Algorithm){
        case 0:
            {
434
                typedef FFmmAlgorithm<OctreeClass,CoreCell,ContainerClass,CoreKernelClass,LeafClass> AlgoClassSeq;
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
                AlgoClassSeq algoSeq(octree,kernel);
                algoSeq.execute();
                break;
            }
        case 1:
            {
                typedef FFmmAlgorithmThread<OctreeClass,CoreCell,ContainerClass,CoreKernelClass,LeafClass> AlgoClassThread;
                AlgoClassThread algoThread(octree,kernel);
                algoThread.execute();
                break;
            }
        case 2:
            {
                typedef FFmmAlgorithmPeriodic<OctreeClass,CoreCell,ContainerClass,CoreKernelClass,LeafClass> AlgoClassPeriodic;
                AlgoClassPeriodic algoPeriod(octree,2);
                algoPeriod.setKernel(kernel);
                algoPeriod.execute();
                break;
            }
        default :
            std::cout<< "No algorithm found (probably for strange reasons) : "<< Algorithm <<" exiting" << std::endl;
        }

    }
PIACIBELLO Cyrille's avatar
PIACIBELLO Cyrille committed
459

460
    void intern_dealloc_handle(Callback_free_cell userDeallocator){
PIACIBELLO Cyrille's avatar
PIACIBELLO Cyrille committed
461
        free_cell(userDeallocator);
462
    }
463 464 465 466
};


#endif //FUSERKERNELENGINE_HPP