Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
solverstack
ScalFMM
Commits
cff3d39b
Commit
cff3d39b
authored
Feb 22, 2021
by
COULAUD Olivier
Browse files
add interp test
parent
3f80e77c
Changes
1
Hide whitespace changes
Inline
Side-by-side
experimental/units/operators/interp.cpp
0 → 100644
View file @
cff3d39b
#
include
<
fstream
>
#include <iostream>
#include "scalfmm/container/point.hpp"
#include "scalfmm/interpolation/uniform.hpp"
#include "scalfmm/interpolation/chebyshev.hpp"
#include "scalfmm/matrix_kernels/laplace.hpp"
using
namespace
scalfmm
;
template
<
int
dimension
,
typename
value_type
,
typename
matrix_kernel_type
>
int
test_interp
(
const
std
::
size_t
order
)
{
static
constexpr
std
::
size_t
nb_inputs
{
matrix_kernel_type
::
km
};
static
constexpr
std
::
size_t
nb_outputs
{
matrix_kernel_type
::
kn
};
using
interpolator_type
=
scalfmm
::
interpolation
::
uniform_interpolator
<
value_type
,
dimension
,
matrix_kernel_type
>
;
// using interpolator_type = scalfmm::interpolation::chebyshev_interpolator<value_type, dimension, matrix_kernel_type>;
//
using
point_type
=
container
::
point
<
value_type
,
dimension
>
;
//
const
std
::
size_t
tree_height
{
3
};
const
value_type
box_width
{
1.
};
interpolator_type
interpolator
(
matrix_kernel_type
{},
order
,
tree_height
,
box_width
);
auto
roots
=
interpolator
.
roots
(
order
);
std
::
cout
<<
"roots "
<<
roots
<<
std
::
endl
;
const
int
N
=
80
;
auto
points
=
xt
::
linspace
(
value_type
(
-
1.
),
value_type
(
1
),
N
);
std
::
vector
<
value_type
>
poly_of_part
(
N
);
std
::
vector
<
value_type
>
der_poly_of_part
(
N
);
// generate fucnction atp = 3
std
::
size_t
p
=
order
/
2
;
// generate the pth lagrange polynomial and its derivative
for
(
std
::
size_t
part
=
0
;
part
<
points
.
size
();
++
part
)
{
poly_of_part
[
part
]
=
interpolator
.
polynomials
(
points
[
part
],
order
,
p
);
der_poly_of_part
[
part
]
=
interpolator
.
derivative
(
points
[
part
],
order
,
p
);
std
::
clog
<<
part
<<
" "
<<
points
[
part
]
<<
" "
<<
poly_of_part
[
part
]
<<
std
::
endl
;
}
//
// Save the roots in a file
std
::
ofstream
out
(
"roots.txt"
);
for
(
std
::
size_t
part
=
0
;
part
<
roots
.
size
();
++
part
)
{
// generate polynomials
out
<<
roots
[
part
]
<<
std
::
endl
;
}
out
.
close
();
// save basis function p and its derivative in a file
std
::
ofstream
out_p
(
"points.txt"
);
for
(
std
::
size_t
part
=
0
;
part
<
points
.
size
();
++
part
)
{
out_p
<<
points
[
part
]
<<
" "
<<
poly_of_part
[
part
]
<<
" "
<<
der_poly_of_part
[
part
]
<<
std
::
endl
;
}
out_p
.
close
();
std
::
ofstream
out_p1
(
"lagrange.txt"
);
for
(
std
::
size_t
part
=
0
;
part
<
points
.
size
();
++
part
)
{
out_p1
<<
points
[
part
]
<<
" "
;
for
(
int
n
=
0
;
n
<
order
;
++
n
)
{
out_p1
<<
interpolator
.
polynomials
(
points
[
part
],
order
,
n
)
<<
" "
;
}
out_p1
<<
std
::
endl
;
}
out_p1
.
close
();
return
1
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
using
value_type
=
double
;
using
matrix_kernel_type
=
scalfmm
::
matrix_kernels
::
laplace
::
one_over_r
;
test_interp
<
1
,
value_type
,
matrix_kernel_type
>
(
7
);
return
1
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment