diff --git a/Doc/Site_dox/FInterpolationFMM.dox b/Doc/Site_dox/FInterpolationFMM.dox
index 8cd90f2ac5ff93cab811338fd62c2ebad583efbe..ef9e06a1f349d3e8565a73e2cf62409b182c0de8 100644
--- a/Doc/Site_dox/FInterpolationFMM.dox
+++ b/Doc/Site_dox/FInterpolationFMM.dox
@@ -1,10 +1,62 @@
 /*! \page interFMM Kernel Independent FMM
 
- * In this section, we briefly discuss the 
+ * In this section, we briefly discuss the Interpolation FAst Multipole method.
 
- * \section general
+ * \section General
 
- * \section MatrixKernel
+The interpolation fast multipole method
+
+*The method was introduced by Fong and Alt[1] for Chebyshev interpolation and was extended to regularly spaced points in[2,3].
+For interpolation based on Chebyshev polynomials, in[4] important optimizations are proposed reducing complexity and computation time (pre-calculation, compression M2L operator, ...)
+
+*<ol>
+*<li><a href="https://doi.org/DOI: 10.1016/j.jcp.2009.08.03">Fong, W., & Darve, E. (2009). The black-box fast multipole method. Journal of Computational Physics, 228(23), 8712–8725.</a></li>
+* <li> Fast hierarchical algorithms for generating Gaussian random fields. Pierre Blanchard, Olivier Coulaud, Eric Darve, Research Report 8811 (<a href="https://hal.inria.fr/hal-01228519">https://hal.inria.fr/hal-01228519</a>)</li>
+*<li>Pierre Blanchard. Fast hierarchical algorithms for the low-rank approximation of matrices, with applications to materials physics, geostatistics and data analysis. PhD of Université de Bordeaux, 2017. <a href="https://tel.archives-ouvertes.fr/tel-01534930">https://tel.archives-ouvertes.fr/tel-01534930</a> </li>
+*<li>Optimized M2L Kernels for the Chebyshev Interpolation based Fast Multipole Method, Matthias Messner; Berenger Bramas; Olivier Coulaud ;  Eric Darve
+ <a href="http://hal.inria.fr/docs/00/75/39/34/PDF/main.pdf">Research Report</a>, 2012</li>
+*</ol>
+
+ * \section Example
+Chebyshev
+* In this part we will run a simulation with Chebyshev orequispaced points:
+ *  Examples/LagrangeInterpolationFMM.cpp        equispaced points also called uniform or Lagrange points/interpolation
+ *  Examples/ChebyshevInterpolationFMM.cpp       Chebyshev interpolation
+
+ 
+*With the Interpolation kernel, the accuracy parameter, ORDER for this kernel is set to 7. The different options of these drivers are
+
+\code{.cpp}
+Examples/Release/ChebyshevInterpolationFMM -help
+Examples/Release/ChebyshevInterpolationFMM : Driver for Chebyshev interpolation kernel  (1/r kernel).
+*>> Here is the list of the parameters you can pass to this application :
+*	-show-compile, --show-compile, --flags,
+*		To have the list of flags and lib linked to scalfmm.
+*	-show-info, --show-host, --datehost,
+*		To have to print the current host and the execution date.
+*	-show-param, --show-param, -show-params, --show-params,
+*		To print out the paremeters passed to the command line.
+*	-f, -fin, --input-filename, -filename,
+*		To give an input file.
+*	-h, --height, -depth,
+*		The number of levels in the octree (at least 2 for the root and the leaves).
+*	-sh, --sub-height, -subdepth,
+*		The number of allocated levels in the sub octree.
+*	-f, -fin, --input-filename, -filename,
+*		To give an input file.
+*	-t, -nbthreads,
+*		To choose the number of threads.
+\endcode
+
+
+To run the simulation on particles in  my2kkpartfile.fma file with the Chebyshev interpoaltion and an octree of high 5 with 10 threads, launch the following command
+\code{.cpp}
+Examples/Release/ChebyshevInterpolationFMM  -f my2kkpartfile.fma -depth 5 -subdepth 3 -t 10
+
+ \endcode
+
+
+* \section MatrixKernel
  *
   * \subsection AddKernel How add a new Matrix Kernel