Commit 33535434 by COULAUD Olivier

### Add DL_POLY factors for energy and force

parent 27be2040
 ... @@ -122,11 +122,11 @@ The potential at particle $x_i$ computed by ScalFMM code is given by ... @@ -122,11 +122,11 @@ The potential at particle $x_i$ computed by ScalFMM code is given by  V(x_i) = \sum_{j=0,i\neq j}^{N}{\frac{q_j}{\|x_i-x_j\|}} V(x_i) = \sum_{j=0,i\neq j}^{N}{\frac{q_j}{\|x_i-x_j\|}}  and the force on atom $x_i$ and the force on atom $x_i$ writes  f(x_i) = \sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}}. f(x_i) = \sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}}.  Finally, the total energy of the system writes Finally, the total energy of the system is  U = \frac{1}{2}\sum_{i=0}^{N}{q_i V(x_i)}. U = \frac{1}{2}\sum_{i=0}^{N}{q_i V(x_i)}.  ... @@ -396,29 +396,30 @@ energy & $E_0 = m_0(l_0/t_0)^2$&$1.6605402 \; 10^{−23}\; Joules$ & $10\; J\, ... @@ -396,29 +396,30 @@ energy &$E_0 = m_0(l_0/t_0)^2$&$1.6605402 \; 10^{−23}\; Joules $&$10\; J\, In internal variables the energy writes In internal variables the energy writes  U = \frac{q_0^2}{4 \pi\epsilon_0 l_0}\sum_{i=0}^{N}{\sum_{j
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment