From 335354349680c91e46e19a0d63694bc05223394e Mon Sep 17 00:00:00 2001 From: Olivier Coulaud <Olivier.Coulaud@inria.fr> Date: Wed, 15 Jan 2014 15:11:49 +0100 Subject: [PATCH] Add DL_POLY factors for energy and force --- .../ScalFmm-PeriodicModel/periodicmodel.tex | 21 ++++++++++--------- 1 file changed, 11 insertions(+), 10 deletions(-) diff --git a/Doc/Src_tex/ScalFmm-PeriodicModel/periodicmodel.tex b/Doc/Src_tex/ScalFmm-PeriodicModel/periodicmodel.tex index aca699ddd..c4b31e8a3 100644 --- a/Doc/Src_tex/ScalFmm-PeriodicModel/periodicmodel.tex +++ b/Doc/Src_tex/ScalFmm-PeriodicModel/periodicmodel.tex @@ -122,11 +122,11 @@ The potential at particle $x_i$ computed by ScalFMM code is given by $$ V(x_i) = \sum_{j=0,i\neq j}^{N}{\frac{q_j}{\|x_i-x_j\|}} $$ -and the force on atom $x_i$ +and the force on atom $x_i$ writes $$ f(x_i) = \sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}}. $$ -Finally, the total energy of the system writes +Finally, the total energy of the system is $$ U = \frac{1}{2}\sum_{i=0}^{N}{q_i V(x_i)}. $$ @@ -396,29 +396,30 @@ energy & $E_0 = m_0(l_0/t_0)^2$&$1.6605402 \; 10^{−23}\; Joules $ & $10\; J\, In internal variables the energy writes $$ -U = \frac{q_0^2}{4 \pi\epsilon_0 l_0}\sum_{i=0}^{N}{\sum_{j<i}{\frac{q_i q_j}{\|x_i-x_j\|}}} = C_{energy}\sum_{i=0}^{N}{\sum_{j<i}{\frac{q_i q_j}{\|x_i-x_j\|}}} +U = \frac{q_0^2}{4 \pi\epsilon_0 l_0}\sum_{i=0}^{N}{\sum_{j<i}{\frac{q_i q_j}{\|x_i-x_j\|}}} = C_{energy} \;\sum_{i=0}^{N}{\sum_{j<i}{\frac{q_i q_j}{\|x_i-x_j\|}}} $$ and the forces write $$ f(x_i) = -\frac{q_0^2}{4 \pi\epsilon_0 l_0^2} q_i \sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}} - = -C_{force} q_i \sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}} + = C_{force} \; q_i \sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}} $$ -The Energy conversion factor is $\gamma_0 = \frac{q_0^2}{4 \pi\epsilon_0 l_0}/E_0 = 138935.4835$. The energy unit is in Joules and if you want $kcal mol^{-1}$ unit the the factor becomes $\gamma_0/418.400$. +The Energy conversion factor is $\gamma_0 = \frac{q_0^2}{4 \pi\epsilon_0 l_0}/E_0 = 138935.4835$. The energy unit is in Joules and if you want $kcal\, mol^{-1}$ unit the the factor becomes $\gamma_0/418.400$. To compare with the molecular dynamics code, the forces and the energy is multiplied by $C_{force}$ ($C_{energy}$ respectively). \begin{center} -\begin{tabular}{|l|c|c|c|c|c|} +\begin{tabular}{|l|c|c|c|} \hline - & \multicolumn{2}{|c|}{Energy} & \multicolumn{2}{c|}{Force} \\ -units& $kcal\, mol^{-1}$& & &\\ + & Constant & Value & Unit \\ \hline -$C_{energy}$& & & &\\ -$C_{force}$& -138935.4835/418.400& & &\\ +Energy & $C_{energy}$& 138935.4835/418.4 & $kcal\, mol^{-1}$\\ +Force &$C_{force}$& -138935.4835 & $10\,J mol^{-1}\, \AA^{-1}$\\ \hline \end{tabular} \end{center} +The force unit is the internal DL\_Poly unit. + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Conclusion} A new approach has been proposed to compute a periodic FMM. -- GitLab