sharedMemoryInterpolatiomCmpAlgos.hpp 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
// -*-c++-*-
// See LICENCE file at project root

// ==== CMAKE =====
// @FUSE_FFT
// @FUSE_BLAS
//  ==== Git =====

// ================

/** \brief Uniform FMM example
 *
 * \file
 * \authors B. Bramas, O. Coulaud
 *
 * This program runs the FMM Algorithm with the interpolation kernel based on
 * either uniform (grid points) or Chebychev interpolation (1/r kernel). 
 * It then compares the results with a direct computation.
 */

#include <iostream>
#include <iomanip>
#include <memory>

#include <cstdio>
#include <cstdlib>
#include <string>


#include "ScalFmmConfig.h"
#include "Utils/FGlobal.hpp"

#include "Utils/FParameters.hpp"
#include "Utils/FParameterNames.hpp"

#include "Files/FFmaGenericLoader.hpp"
// Leaves
#include "Components/FSimpleLeaf.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
// Octree
#include "Containers/FOctree.hpp"
//
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
//
#ifdef _OPENMP
#include "Core/FFmmAlgorithmTask.hpp"
#include "Core/FFmmAlgorithmNewTask.hpp"
#include "Core/FFmmAlgorithmSectionTask.hpp"
#else
#include "Core/FFmmAlgorithm.hpp"
#endif
//
// Order of the Interpolation approximation
static constexpr unsigned ORDER = 6 ;
using FReal                 = double;
//   1/r kernel
//
using MatrixKernelType     = FInterpMatrixKernelR<FReal> ;

//
/// definition of the common tree structure
using CellType      = FInterpolationCell<FReal, ORDER>;
//using CellUpType    = typename CellType::multipole_t;
//using CellDownType  = typename CellType::local_expansion_t;
//using CellSymbType  = FSymbolicData;  
using ContainerType = FP2PParticleContainerIndexed<FReal>;
using LeafType      = FSimpleLeaf<FReal,  ContainerType >   ;
using OctreeType     = FOctree<FReal, CellType,ContainerType,LeafType>;
using KernelType    = FInterpolationKernel<FReal,CellType,ContainerType,MatrixKernelType,ORDER> ;


#ifdef _OPENMP
using TaskFmmAlgo        = FFmmAlgorithmTask<OctreeType,CellType,ContainerType,KernelType,LeafType>;
using TaskNewFmmAlgo     = FFmmAlgorithmNewTask<OctreeType,CellType,ContainerType,KernelType,LeafType>;
using SectionTaskFmmAlgo = FFmmAlgorithmSectionTask<OctreeType,CellType,ContainerType,KernelType,LeafType> ;
#else
using FmmType  = FFmmAlgorithm<OctreeType,CellType,ContainerType,KernelType,LeafType>;
#endif



// Simply create particles and try the kernels
int main(int argc, char* argv[]) {
  const FParameterNames LocalOptionAlgo= { {"-algo"} , " Algorithm to run (task, newtask, sectiontask)\n"};
  const FParameterNames LocalOptionCmp = {
    {"-cmp"} , "Use to check the result with the exact solution given in the input file\n" };
  FHelpDescribeAndExit(
		       argc, argv,
		       "Driver for Lagrange Or Chebychev interpolation kernel  (1/r kernel).",
		       FParameterDefinitions::OctreeHeight,
		       FParameterDefinitions::OctreeSubHeight,
		       FParameterDefinitions::InputFile,
		       FParameterDefinitions::OutputFile,
		       FParameterDefinitions::NbThreads,
		       LocalOptionAlgo,LocalOptionCmp
		       );
  

  const std::string defaultFile(SCALFMMDataPath+"unitCubeXYZQ100.bfma" );
  const std::string filename       = FParameters::getStr(argc,argv,FParameterDefinitions::InputFile.options, defaultFile.c_str());
  const int TreeHeight    = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeHeight.options, 5);
  const int SubTreeHeight = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeSubHeight.options, 2);
  
#ifdef _OPENMP
  const unsigned int NbThreads = FParameters::getValue(argc, argv, FParameterDefinitions::NbThreads.options, omp_get_max_threads());
  omp_set_num_threads(NbThreads);
  std::cout << "\n>> Using " << NbThreads << " threads.\n" << std::endl;
#else
  const int NbThreads = FParameters::getValue(argc, argv, FParameterDefinitions::NbThreads.options, 1);
  std::cout << "\n>> Sequential version.\n" << std::endl;
#endif
  //
  {
    std::string indent("    ");
    auto w = std::setw(18);
    std::cout << "Parameters" << std::endl << std::left
	      << indent << w << "Octree Depth: "     << TreeHeight    << std::endl
	      << indent << w << "SubOctree depth: "  << SubTreeHeight << std::endl
	      << indent << w << "Input file  name: " << filename      << std::endl
	      << indent << w << "Thread number: "    << NbThreads     << std::endl
	      << std::endl;
  }
  //
  // init timer
  FTic time;
  
  // open particle file
  ////////////////////////////////////////////////////////////////////
  //
  FFmaGenericLoader<FReal> loader(filename);
  if (loader.getNbRecordPerline() !=8 ){
    std::cerr << "File should contain 8 data to read (x,y,z,q,p,fx,fy,fz)\n";
    std::exit(EXIT_FAILURE);
  }
  FSize nbParticles = loader.getNumberOfParticles() ;
  FmaRWParticle<FReal,8,8> * const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
  //
  //
  // open particle file
  ////////////////////////////////////////////////////////////////////
  //
  loader.fillParticle(particles,nbParticles);
  time.tac();
  //
  // init oct-tree
  OctreeType tree(TreeHeight, SubTreeHeight, loader.getBoxWidth(), loader.getCenterOfBox());
  FReal  energyD = 0.0 ;
  //
  // Read particles and insert them in octree
  { // -----------------------------------------------------
    std::cout << "Creating & Inserting " << loader.getNumberOfParticles()
	      << " particles ..." << std::endl;
    std::cout << "\tHeight : " << TreeHeight << " \t sub-height : " << SubTreeHeight << std::endl;
    time.tic();
    //
    //
    //
    /////////////////////////////////////////////////////////////////////////////////////////////////
    // Compute direct energy
    /////////////////////////////////////////////////////////////////////////////////////////////////
    
    for(int idx = 0 ; idx <  nbParticles  ; ++idx){
      tree.insert(particles[idx].getPosition() , idx, particles[idx].getPhysicalValue() );
      energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
    } 
    time.tac();
    std::cout << "Done  " << "(@Creating and Inserting Particles = "
	      << time.elapsed() << " s) ." << std::endl;
  }
  ////////////////////////////////////////////////////////////////////
  //
  //    Execute FMM Algorithm
  //
  ////////////////////////////////////////////////////////////////////

  { // -----------------------------------------------------
    std::cout << "\n" << interpolationType << "  FMM (ORDER= "<< ORDER << ") ... " << std::endl;
    
    const MatrixKernelType    MatrixKernel;
    time.tic();
    //
    std::unique_ptr<KernelType> kernels(new KernelType(TreeHeight, loader.getBoxWidth(), 
							 loader.getCenterOfBox(),&MatrixKernel));
    std::string  algoStr  = FParameters::getStr(argc,argv,"-algo",  "task");
    //
    TaskFmmAlgo         algo1(&tree, kernels.get() );
    TaskNewFmmAlgo      algo2(&tree, kernels.get() );
    SectionTaskFmmAlgo  algo3(&tree, kernels.get() );
    
    
    FAbstractAlgorithm * algo  = nullptr;
    FAlgorithmTimers   * timer = nullptr;
    if( "task" == algoStr) {
      algo  = &algo1 ;
      timer = &algo1 ;
    } else if( "newtask" == algoStr) {
      algo  = &algo2 ;
      timer = &algo2 ;
    } else if ( "sectiontask" == algoStr ) {
      algo  = &algo3 ;
      timer = &algo3 ;
    } else {
      std::cout << "Unknown algorithm: " << algoStr << std::endl;
      std::exit(EXIT_FAILURE);
    }
    std::cout << "Algorithm to check: "<< algoStr <<std::endl;
    time.tic();
    
    //
    algo->execute();   // Here the call of the FMM algorithm
    //
    time.tac();
    std::cout << "Timers Far Field \n"
	      << "P2M " << timer->getTime(FAlgorithmTimers::P2MTimer) << " seconds\n"
	      << "M2M " << timer->getTime(FAlgorithmTimers::M2MTimer) << " seconds\n"
	      << "M2L " << timer->getTime(FAlgorithmTimers::M2LTimer) << " seconds\n"
	      << "L2L " << timer->getTime(FAlgorithmTimers::L2LTimer) << " seconds\n"
	      << "L2P " << timer->getTime(FAlgorithmTimers::L2PTimer) << " seconds\n"
	      << "P2P and L2P " << timer->getTime(FAlgorithmTimers::NearTimer) << " seconds\n"
	      << std::endl;
    
    
    std::cout << "Done  " << "(@Algorithm = " << time.elapsed() << " s) ." << std::endl;
  }
  // -----------------------------------------------------
  //
  // Some output
  //
  //
  { // -----------------------------------------------------
    FSize N1=0, N2= loader.getNumberOfParticles()/2, N3= loader.getNumberOfParticles() -1; ;
    FReal energy =0.0 ;
    //
    //   Loop over all leaves
    //
    std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl;
    std::cout << std::scientific;
    std::cout.precision(10) ;

    tree.forEachLeaf([&](LeafType* leaf){
	const FReal*const posX = leaf->getTargets()->getPositions()[0];
	const FReal*const posY = leaf->getTargets()->getPositions()[1];
	const FReal*const posZ = leaf->getTargets()->getPositions()[2];

	const FReal*const potentials = leaf->getTargets()->getPotentials();
	const FReal*const forcesX = leaf->getTargets()->getForcesX();
	const FReal*const forcesY = leaf->getTargets()->getForcesY();
	const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
	const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
	const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();

	const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();

	for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
	  const FSize indexPartOrig = indexes[idxPart];
	  if ((indexPartOrig == N1) || (indexPartOrig == N2) || (indexPartOrig == N3)  ) {
	    std::cout << "Index "<< indexPartOrig <<"  potential  " << potentials[idxPart]
		      << " Pos "<<posX[idxPart]<<" "<<posY[idxPart]<<" "<<posZ[idxPart]
		      << "   Forces: " << forcesX[idxPart] << " " << forcesY[idxPart] << " "<< forcesZ[idxPart] <<std::endl;
	  }
	  energy += potentials[idxPart]*physicalValues[idxPart] ;
	}
      });
    std::cout <<std::endl<<"Energy: "<< energy<<std::endl;
    std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl<<std::endl;

  }
  // -----------------------------------------------------
  if(FParameters::existParameter(argc, argv, FParameterDefinitions::OutputFile.options)){
    std::string name(FParameters::getStr(argc,argv,FParameterDefinitions::OutputFile.options,   "output.fma"));
    FFmaGenericWriter<FReal> writer(name) ;
    //
    FSize NbPoints = loader.getNumberOfParticles();
    FReal * computedParticles = new FReal[8*NbPoints]() ;
    memset(computedParticles,0,8*NbPoints*sizeof(FReal));
    FSize j = 0 ;
    tree.forEachLeaf([&](LeafType* leaf){
	//
	// Input
	const FReal*const posX = leaf->getTargets()->getPositions()[0];
	const FReal*const posY = leaf->getTargets()->getPositions()[1];
	const FReal*const posZ = leaf->getTargets()->getPositions()[2];
	const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
	const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
	//
	// Computed data
	const FReal*const potentials = leaf->getTargets()->getPotentials();
	const FReal*const forcesX = leaf->getTargets()->getForcesX();
	const FReal*const forcesY = leaf->getTargets()->getForcesY();
	const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
	//
	const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
	for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
	  j = 8*indexes[idxPart];
	  computedParticles[j]      = posX[idxPart] ;
	  computedParticles[j+1]  = posY[idxPart] ;
	  computedParticles[j+2]  = posZ[idxPart] ;
	  computedParticles[j+3]  = physicalValues[idxPart] ;
	  computedParticles[j+4]  = potentials[idxPart] ;
	  computedParticles[j+5]  =  forcesX[idxPart] ;
	  computedParticles[j+6]  =  forcesY[idxPart] ;
	  computedParticles[j+7]  =  forcesZ[idxPart] ;
	}
      });

    writer.writeHeader( loader.getCenterOfBox(), loader.getBoxWidth() ,  NbPoints, sizeof(FReal), 8) ;
    writer.writeArrayOfReal(computedParticles,  8 , NbPoints);

    delete[] computedParticles;

    //
    std::string name1( "output.fma");
    //
    FFmaGenericWriter<FReal> writer1(name1) ;
    writer1.writeDistributionOfParticlesFromOctree(&tree,NbPoints) ;
  }
  if(FParameters::existParameter(argc, argv, "-cmp") ){
    std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl;
    std::cout << std::scientific;
    std::cout.precision(10) ;

    printf("Compute Diff...");
    FMath::FAccurater<FReal> potentialDiff;
    FMath::FAccurater<FReal> fx, fy, fz, f;
    FReal energy = 0.0;
    { // Check that each particle has been summed with all other
      
      tree.forEachLeaf([&](LeafType* leaf){
	  const FReal*const potentials = leaf->getTargets()->getPotentials();
	  const FReal*const forcesX = leaf->getTargets()->getForcesX();
	  const FReal*const forcesY = leaf->getTargets()->getForcesY();
	  const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
	  const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
	  const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
	  
	  const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
	  
	  for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
	    const FSize indexPartOrig = indexes[idxPart];
	    potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
	    fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
	    fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
	    fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
	    f.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
	    f.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
	    f.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
	    energy   += potentials[idxPart]*physicalValues[idxPart];
	  }
	});

      std::cout << energy << " " << energyD << std::endl;
      delete[] particles;

      f.setNbElements(nbParticles);
      std::cout << "FChebSymKernel Energy "  << FMath::Abs(energy-energyD) <<  "  Relative     "<< FMath::Abs(energy-energyD) / FMath::Abs(energyD) <<std::endl;
      std::cout << " Potential Error " << potentialDiff << std::endl;
      std::cout << " Fx Error " << fx << std::endl;
      std::cout << " Fy Error " << fy << std::endl;
      std::cout << " Fz Error " << fz << std::endl;
      std::cout << " F  Error " << f << std::endl;
      std::cout <<std::endl<<"Energy: "<< energy<<std::endl;
      std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl<<std::endl;
    }
    
    // -----------------------------------------------------
    
  }


  return 0;
}