testAdaptiveChebSymFMM.cpp 8.56 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Berenger Bramas, Matthias Messner
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================

// ==== CMAKE =====
// @FUSE_BLAS
// ================
20 21
// Keep in private GIT
// @SCALFMM_PRIVATE
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

#include <iostream>
#include <cstdio>

#include "Utils/FParameters.hpp"
#include "Utils/FTic.hpp"

#include "Containers/FOctree.hpp"
#include "Components/FSimpleLeaf.hpp"

#include "Utils/FPoint.hpp"

#include "Files/FFmaGenericLoader.hpp"
#include "Files/FRandomLoader.hpp"

#include "Components/FBasicKernels.hpp"
#include "Components/FSimpleIndexedLeaf.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"

#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Chebyshev/FChebCell.hpp"

#include "Adaptive/FAdaptiveCell.hpp"
#include "Adaptive/FAdaptiveKernelWrapper.hpp"
#include "Adaptive/FAbstractAdaptiveKernel.hpp"
#include "Adaptive/FAdaptChebSymKernel.hpp"

#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Chebyshev/FChebCell.hpp"
#include "Adaptive/FAdaptTools.hpp"

#include "Adaptive/FAdaptivePrintKernel.hpp"

#include "Core/FFmmAlgorithm.hpp"
#include "Utils/FParameterNames.hpp"

/** This program show an example of use of the fmm basic algo
 * it also check that each particles is impacted each other particles
 */


// Simply create particles and try the kernels
int main(int argc, char ** argv){
    //
    const FParameterNames LocalOptionMinMultipoleThreshod {{"-sM"}," s_min^M threshold for Multipole (l+1)^2 for Spherical harmonic."};
    const FParameterNames LocalOptionMinLocalThreshod {{"-SL"}," s_min^L threshold for Local  (l+1)^2 for Spherical harmonics."};

    FHelpDescribeAndExit(argc, argv,
            "Test Adaptive kernel and compare it with the direct computation.",
            FParameterDefinitions::OctreeHeight,FParameterDefinitions::NbThreads,
            FParameterDefinitions::OctreeSubHeight, FParameterDefinitions::InputFile,
            LocalOptionMinMultipoleThreshod,LocalOptionMinLocalThreshod);

    const unsigned int P = 5 ;
    typedef FChebCell<P>                                        CellClass;
    typedef FP2PParticleContainerIndexed<>            ContainerClass;
    typedef FSimpleLeaf<ContainerClass>    LeafClass;
    typedef FInterpMatrixKernelR                               MatrixKernelClass;
    typedef FAdaptiveChebSymKernel<CellClass,ContainerClass,MatrixKernelClass,P> KernelClass;
    typedef FAdaptiveCell< CellClass, ContainerClass >                                        CellWrapperClass;
    typedef FAdaptiveKernelWrapper< KernelClass, CellClass, ContainerClass >   KernelWrapperClass;
    typedef FOctree< CellWrapperClass, ContainerClass , LeafClass >                  OctreeClass;
    typedef FFmmAlgorithm<OctreeClass, CellWrapperClass, ContainerClass, KernelWrapperClass, LeafClass >     FmmClass;

    FTic counter;

    //////////////////////////////////////////////////////////////////////////////////
    const int sminM    = FParameters::getValue(argc,argv,LocalOptionMinMultipoleThreshod.options, P*P*P);
    const int sminL     = FParameters::getValue(argc,argv,LocalOptionMinLocalThreshod.options, P*P*P);
    const std::string fileName(FParameters::getStr(argc,argv,FParameterDefinitions::InputFile.options,   "../Data/noDistprolate50.out.fma"));
    const unsigned int TreeHeight      = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeHeight.options, 3);
    const unsigned int SubTreeHeight = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeSubHeight.options, 2);

    FFmaGenericLoader loader(fileName);
    const long int NbPart  = loader.getNumberOfParticles() ;
    //////////////////////////////////////////////////////////////////////////////////

    OctreeClass tree(TreeHeight, SubTreeHeight, loader.getBoxWidth(), loader.getCenterOfBox());

    //////////////////////////////////////////////////////////////////////////////////

    std::cout << "Creating & Inserting " << NbPart << " particles ..." << std::endl;
    std::cout << "\tHeight : " << TreeHeight << " \t sub-height : " << SubTreeHeight << std::endl;
    std::cout << "         criteria SM:  "<< sminM     <<std::endl
              << "         criteria SL:  "<< sminL     <<std::endl <<std::endl;

    counter.tic();

    FmaRWParticle<8,8>* const particles = new FmaRWParticle<8,8>[NbPart];
    loader.fillParticle(particles,NbPart);

    for(int idxPart = 0 ; idxPart < NbPart; ++idxPart){
        const FPoint PP(particles[idxPart].getPosition() ) ;
        tree.insert(PP, idxPart, particles[idxPart].getPhysicalValue());
    }

    counter.tac();
    std::cout << "Done  " << "(@Creating and Inserting Particles = " << counter.elapsed() << " s)." << std::endl;

    //////////////////////////////////////////////////////////////////////////////////
    //////////////////////////////////////////////////////////////////////////////////

    std::cout << "Working on particles ..." << std::endl;

    counter.tic();

    const MatrixKernelClass MatrixKernel;
    KernelWrapperClass kernels(TreeHeight, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel,sminM,sminL);            // FTestKernels FBasicKernels
    FmmClass algo(&tree,&kernels);  //FFmmAlgorithm FFmmAlgorithmThread
    algo.execute();

    counter.tac();
    std::cout << "Done  " << "(@Algorithm = " << counter.elapsed() << " s)." << std::endl;

    /////////////////////////////////////////////////////////////////////////////////////////////////
    // Compute direct energy
    /////////////////////////////////////////////////////////////////////////////////////////////////
    FReal energyD = 0.0 ;
    for(int idx = 0 ; idx <  loader.getNumberOfParticles()  ; ++idx){
        energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
    }

    /////////////////////////////////////////////////////////////////////////////////////////////////
    // Compare
    /////////////////////////////////////////////////////////////////////////////////////////////////
    {
        FMath::FAccurater potentialDiff;
        FMath::FAccurater fx, fy, fz;
        FReal energy= 0.0;
        { // Check that each particle has been summed with all other

            //    std::cout << "indexPartOrig || DIRECT V fx || FMM V fx" << std::endl;

            tree.forEachCellLeaf([&](CellWrapperClass* cell, LeafClass* leaf){
                const FReal*const potentials        = leaf->getTargets()->getPotentials();
                const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
                const FReal*const forcesX            = leaf->getTargets()->getForcesX();
                const FReal*const forcesY            = leaf->getTargets()->getForcesY();
                const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
                const int nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
                const FVector<int>& indexes      = leaf->getTargets()->getIndexes();

                for(int idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
                    const int indexPartOrig = indexes[idxPart];
                    potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
                    fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
                    fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
                    fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
                    energy   += potentials[idxPart]*physicalValues[idxPart];

                }
            });
        }

        // Print for information
        std::cout << "Energy [relative L2 error] "  << FMath::Abs(energy-energyD) /energyD << std::endl;
        std::cout << "Potential " << potentialDiff << std::endl;
        std::cout << "Fx " << fx << std::endl;
        std::cout << "Fy " << fy << std::endl;
        std::cout << "Fz " << fz << std::endl;
    }

    delete[] particles;

    return 0;
}