utestChebyshevDirectPeriodic.cpp 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Berenger Bramas, Matthias Messner
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.  
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info". 
// "http://www.gnu.org/licenses".
// ===================================================================================

// ==== CMAKE =====
// @FUSE_BLAS
// ================

#include "Utils/FGlobal.hpp"

#include "Containers/FOctree.hpp"
#include "Containers/FVector.hpp"

#include "Files/FRandomLoader.hpp"
#include "Files/FTreeIO.hpp"

#include "Core/FFmmAlgorithmPeriodic.hpp"

#include "FUTester.hpp"


#include "Kernels/Chebyshev/FChebCell.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Chebyshev/FChebKernel.hpp"
#include "Kernels/Chebyshev/FChebSymKernel.hpp"

#include "Components/FSimpleLeaf.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"

/*
  In this test we compare the Chebyshev fmm results and the direct results.
 */


/** the test class
 *
 */
class TestChebyshevDirect : public FUTester<TestChebyshevDirect> {

	///////////////////////////////////////////////////////////
	// The tests!
	///////////////////////////////////////////////////////////

	template <class CellClass, class ContainerClass, class KernelClass, class MatrixKernelClass,
	class LeafClass, class OctreeClass, class FmmClass>
	void RunTest()	{
		// Warning in make test the exec dir it Build/UTests
		// Load particles

		const int NbLevels        = 4;
		const int SizeSubLevels = 2;
		const int PeriodicDeep  = 2;
		const int NbParticles     = 250;

		FRandomLoader loader(NbParticles);

		Print("Number of particles:");
		Print(loader.getNumberOfParticles());

		// Create octree
		OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());

    // interaction kernel evaluator
    const MatrixKernelClass MatrixKernel;

		struct TestParticle{
			FPoint position;
			FReal forces[3];
			FReal physicalValue;
			FReal potential;
		};
		FReal coeff = -1.0, value = 0.10, sum = 0.0;
		TestParticle* const particles = new TestParticle[loader.getNumberOfParticles()];
		for(int idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
			FPoint position;
			loader.fillParticle(&position);
			// put in tree
			value *= coeff ;
			sum += value ;
			// put in tree
			tree.insert(position, idxPart, value);
			// get copy
			particles[idxPart].position         = position;
			particles[idxPart].physicalValue = value;
			particles[idxPart].potential        = 0.0;
			particles[idxPart].forces[0]        = 0.0;
			particles[idxPart].forces[1]        = 0.0;
			particles[idxPart].forces[2]        = 0.0;
		}
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Run FMM computation
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Fmm...");
		FmmClass algo(&tree,PeriodicDeep );
		KernelClass kernels(algo.extendedTreeHeight(), algo.extendedBoxWidth(), algo.extendedBoxCenter(),&MatrixKernel);
		algo.setKernel(&kernels);
		algo.execute();
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Run direct computation
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Direct...");

		FTreeCoordinate min, max;
		algo.repetitionsIntervals(&min, &max);
		FReal energy= 0.0 , energyD = 0.0 ;

		for(int idxTarget = 0 ; idxTarget < loader.getNumberOfParticles() ; ++idxTarget){
			for(int idxOther = idxTarget + 1 ; idxOther < loader.getNumberOfParticles() ; ++idxOther){
				FP2P::MutualParticles(particles[idxTarget].position.getX(), particles[idxTarget].position.getY(),
						particles[idxTarget].position.getZ(),particles[idxTarget].physicalValue,
						&particles[idxTarget].forces[0],&particles[idxTarget].forces[1],
						&particles[idxTarget].forces[2],&particles[idxTarget].potential,
						particles[idxOther].position.getX(), particles[idxOther].position.getY(),
						particles[idxOther].position.getZ(),particles[idxOther].physicalValue,
						&particles[idxOther].forces[0],&particles[idxOther].forces[1],
                              &particles[idxOther].forces[2],&particles[idxOther].potential,&MatrixKernel);

			}
			for(int idxX = min.getX() ; idxX <= max.getX() ; ++idxX){
				for(int idxY = min.getY() ; idxY <= max.getY() ; ++idxY){
					for(int idxZ = min.getZ() ; idxZ <= max.getZ() ; ++idxZ){
						if(idxX ==0 && idxY == 0 && idxZ == 0) continue;
						// next lines for test

						const FPoint offset(loader.getBoxWidth() * FReal(idxX),
								loader.getBoxWidth() * FReal(idxY),
								loader.getBoxWidth() * FReal(idxZ));

						for(int idxSource = 0 ; idxSource < NbParticles ; ++idxSource){
							TestParticle source = particles[idxSource];
							source.position += offset;

							FP2P::NonMutualParticles(
									source.position.getX(), source.position.getY(),
									source.position.getZ(),source.physicalValue,
									particles[idxTarget].position.getX(), particles[idxTarget].position.getY(),
									particles[idxTarget].position.getZ(),particles[idxTarget].physicalValue,
									&particles[idxTarget].forces[0],&particles[idxTarget].forces[1],
									&particles[idxTarget].forces[2],&particles[idxTarget].potential,&MatrixKernel);
						}
					}
				}
			}
		}
		for(int idx = 0 ; idx <  loader.getNumberOfParticles()  ; ++idx){
			energyD +=  particles[idx].potential*particles[idx].physicalValue ;
		}
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compare
		/////////////////////////////////////////////////////////////////////////////////////////////////

		Print("Compute Diff...");
		FMath::FAccurater potentialDiff;
		FMath::FAccurater fx, fy, fz;

		{ // Check that each particle has been summed with all other

			tree.forEachLeaf([&](LeafClass* leaf){
				const FReal*const potentials        = leaf->getTargets()->getPotentials();
				const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
				const FReal*const forcesX = leaf->getTargets()->getForcesX();
				const FReal*const forcesY = leaf->getTargets()->getForcesY();
				const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
				const int nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
				const FVector<int>& indexes = leaf->getTargets()->getIndexes();

				for(int idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
					const int indexPartOrig = indexes[idxPart];
					potentialDiff.add(particles[indexPartOrig].potential,potentials[idxPart]);
					fx.add(particles[indexPartOrig].forces[0],forcesX[idxPart]);
					fy.add(particles[indexPartOrig].forces[1],forcesY[idxPart]);
					fz.add(particles[indexPartOrig].forces[2],forcesZ[idxPart]);
					energy+=potentials[idxPart]*physicalValues[idxPart];
				}
			});
		}

		delete[] particles;

		// Print for information

        Print("Potential diff is = ");
        printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
        printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
		printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
        Print("Fx diff is = ");
		printf("         Fx L2Norm     %e\n",fx.getL2Norm());
		printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
		printf("         Fx RMSError   %e\n",fx.getRMSError());
        Print("Fy diff is = ");
		printf("        Fy L2Norm     %e\n",fy.getL2Norm());
		printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
		printf("        Fy RMSError   %e\n",fy.getRMSError());
        Print("Fz diff is = ");
		printf("        Fz L2Norm     %e\n",fz.getL2Norm());
		printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
		printf("        Fz RMSError   %e\n",fz.getRMSError());
        FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
		printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
		printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
		printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
		printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

		// Assert
        const FReal MaximumDiffPotential = FReal(9e-3);
        const FReal MaximumDiffForces     = FReal(9e-2);


        uassert(potentialDiff.getL2Norm() < MaximumDiffPotential);    //1
        uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
        uassert(fx.getL2Norm()  < MaximumDiffForces);                       //3
        uassert(fx.getRMSError() < MaximumDiffForces);                      //4
        uassert(fy.getL2Norm()  < MaximumDiffForces);                       //5
        uassert(fy.getRMSError() < MaximumDiffForces);                      //6
        uassert(fz.getL2Norm()  < MaximumDiffForces);                      //8
        uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
        uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
        uassert(FMath::Abs(energy-energyD) < 10*MaximumDiffPotential);                     //10  Total Energy

	}

	/** If memstas is running print the memory used */
	void PostTest() {
		if( FMemStats::controler.isUsed() ){
			std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated()
										<< " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
			std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated()
										<< " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
			std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated()
										<< " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
		}
	}


	///////////////////////////////////////////////////////////
	// Set the tests!
	///////////////////////////////////////////////////////////


	/** TestChebKernel */
	void TestChebKernel(){
		const unsigned int ORDER = 6;
		typedef FP2PParticleContainerIndexed<> ContainerClass;
		typedef FSimpleLeaf<ContainerClass> LeafClass;
		typedef FInterpMatrixKernelR MatrixKernelClass;
		typedef FChebCell<ORDER> CellClass;
		typedef FOctree<CellClass,ContainerClass,LeafClass> OctreeClass;
		typedef FChebKernel<CellClass,ContainerClass,MatrixKernelClass,ORDER> KernelClass;
		typedef FFmmAlgorithmPeriodic<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
		// run test
		std::cout <<" TEST 1  "<<std::endl;
		RunTest<CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass>();
	}

	/** TestChebSymKernel */
	void TestChebSymKernel(){
		const unsigned int ORDER = 7;
		typedef FP2PParticleContainerIndexed<> ContainerClass;
		typedef FSimpleLeaf<ContainerClass> LeafClass;
		typedef FInterpMatrixKernelR MatrixKernelClass;
		typedef FChebCell<ORDER> CellClass;
		typedef FOctree<CellClass,ContainerClass,LeafClass> OctreeClass;
		typedef FChebSymKernel<CellClass,ContainerClass,MatrixKernelClass,ORDER> KernelClass;
		typedef FFmmAlgorithmPeriodic<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
		// run test
		std::cout <<std::endl<<" TEST 2 "<<std::endl;
		RunTest<CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass>();
	}



	///////////////////////////////////////////////////////////
	// Set the tests!
	///////////////////////////////////////////////////////////

	/** set test */
	void SetTests(){
		AddTest(&TestChebyshevDirect::TestChebKernel,"Test Chebyshev Kernel with one big SVD") ;
		AddTest(&TestChebyshevDirect::TestChebSymKernel,"Test Chebyshev Kernel with 16 small SVDs and symmetries");
	}
};


// You must do this
TestClass(TestChebyshevDirect)