testAdaptiveChebSymFMM.cpp 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Berenger Bramas, Matthias Messner
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================

// ==== CMAKE =====
// @FUSE_BLAS
// ================

#include <iostream>
#include <cstdio>


#include "Utils/FParameters.hpp"
#include "Utils/FTic.hpp"

#include "Containers/FOctree.hpp"
//#include "Containers/FVector.hpp"

//#include "Components/FSimpleLeaf.hpp"

#include "Utils/FPoint.hpp"

#include "Files/FFmaGenericLoader.hpp"
#include "Files/FRandomLoader.hpp"

#include "Components/FBasicKernels.hpp"
#include "Components/FSimpleIndexedLeaf.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"

#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Chebyshev/FChebCell.hpp"

#include "AdaptiveTree/FAdaptChebSymKernel.hpp"
46 47 48
#include "Adaptive/FAdaptiveCell.hpp"
#include "Adaptive/FAdaptiveKernelWrapper.hpp"
#include "Adaptive/FAbstractAdaptiveKernel.hpp"
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
//
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Chebyshev/FChebCell.hpp"
#include "AdaptiveTree/FAdaptChebSymKernel.hpp"
#include "AdaptiveTree/FAdaptTools.hpp"
//
//
#include "Core/FFmmAlgorithm.hpp"
//#include "Core/FFmmAlgorithmThread.hpp"
//#include "Core/FFmmAlgorithmTask.hpp"

/** This program show an example of use of the fmm basic algo
 * it also check that each particles is impacted each other particles
 */

void usage() {
	std::cout << "Driver to obtain statistics on the octree" << std::endl;
	std::cout <<	 "Options  "<< std::endl
			<<     "      -help       to see the parameters    " << std::endl
			<<	     "      -depth        the depth of the octree   "<< std::endl
			<<	     "      -subdepth   specifies the size of the sub octree   " << std::endl
			<<     "      -fin name specifies the name of the particle distribution" << std::endl
			<<     "      -sM    s_min^M threshold for Multipole (l+1)^2 for Spherical harmonics"<<std::endl
			<<     "      -sL    s_min^L threshold for Local  (l+1)^2 for Spherical harmonics"<<std::endl;
}
// Simply create particles and try the kernels
int main(int argc, char ** argv){
	//
	// accuracy
	const unsigned int P = 3 ;
	//    typedef FTestCell                   CellClass;
	//    typedef FAdaptiveTestKernel< CellClass, ContainerClass >         KernelClass;
	typedef FChebCell<P>                                        CellClass;
	typedef FP2PParticleContainerIndexed<>            ContainerClass;
	typedef FSimpleIndexedLeaf<ContainerClass>    LeafClass;
	typedef FInterpMatrixKernelR                               MatrixKernelClass;
	//
	typedef FAdaptiveChebSymKernel<CellClass,ContainerClass,MatrixKernelClass,P> KernelClass;
	//
	//
	typedef FAdaptiveCell< CellClass, ContainerClass >                                        CellWrapperClass;
	typedef FAdaptiveKernelWrapper< KernelClass, CellClass, ContainerClass >   KernelWrapperClass;
	typedef FOctree< CellWrapperClass, ContainerClass , LeafClass >                  OctreeClass;

	// FFmmAlgorithmTask FFmmAlgorithmThread
	typedef FFmmAlgorithm<OctreeClass, CellWrapperClass, ContainerClass, KernelWrapperClass, LeafClass >     FmmClass;

	///////////////////////What we do/////////////////////////////
	std::cout << ">> This executable has to be used to test the FMM algorithm.\n";
	//////////////////////////////////////////////////////////////
	//
	const int NbLevels        = FParameters::getValue(argc,argv,"-depth", 7);
101
	const int SizeSubLevels = FParameters::getValue(argc,argv,"-subdepth", 3);
102 103 104 105 106 107 108 109 110 111
	const int sminM            = FParameters::getValue(argc,argv,"-sM", P*P*P);
	const int sminL             = FParameters::getValue(argc,argv,"-sL", P*P*P);
	//


	FTic counter;

	//////////////////////////////////////////////////////////////////////////////////
	// Not Random Loader
	//////////////////////////////////////////////////////////////////////////////////
112
	const std::string fileName(FParameters::getStr(argc,argv,"-fin",   "../Data/prolate50.out.fma"));
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
	FFmaGenericLoader loader(fileName);
	const long int NbPart  = loader.getNumberOfParticles() ;
	// Random Loader
	//const int NbPart       = FParameters::getValue(argc,argv,"-nb", 2000000);
	//	FRandomLoader loader(NbPart, 1, FPoint(0.5,0.5,0.5), 1);
	//////////////////////////////////////////////////////////////////////////////////

	OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());

	//////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////

	std::cout << "Creating & Inserting " << NbPart << " particles ..." << std::endl;
	std::cout << "\tHeight : " << NbLevels << " \t sub-height : " << SizeSubLevels << std::endl;
	std::cout 		<< "         criteria SM:  "<< sminM     <<std::endl
			<< "         criteria SL:  "<< sminL     <<std::endl <<std::endl;
	//
130
	
131 132
		counter.tic();
		FReal L= loader.getBoxWidth();
133 134 135
		//FmaRParticle* particles=  new FmaRParticle[NbPart];
    FmaRWParticle<8,8>* const particles = new FmaRWParticle<8,8>[NbPart];

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
		FPoint minPos(L,L,L), maxPos(-L,-L,-L);
		//
		loader.fillParticle(particles,NbPart);

		for(int idxPart = 0 ; idxPart < NbPart; ++idxPart){
			const FPoint PP(particles[idxPart].getPosition() ) ;
			//
			minPos.setX(FMath::Min(minPos.getX(),PP.getX())) ;
			minPos.setY(FMath::Min(minPos.getY(),PP.getY())) ;
			minPos.setZ(FMath::Min(minPos.getZ(),PP.getZ())) ;
			maxPos.setX(FMath::Max(maxPos.getX(),PP.getX())) ;
			maxPos.setY(FMath::Max(maxPos.getY(),PP.getY())) ;
			maxPos.setZ(FMath::Max(maxPos.getZ(),PP.getZ())) ;
			//
			tree.insert(PP, idxPart, particles[idxPart].getPhysicalValue());
151
		
152 153 154 155 156 157 158 159 160 161 162 163 164


		counter.tac();
		std::cout << "Data are inside the box delimited by "<<std::endl
				<< "         Min corner:  "<< minPos<<std::endl
				<< "         Max corner:  "<< maxPos<<std::endl <<std::endl;
		std::cout << "Done  " << "(@Creating and Inserting Particles = " << counter.elapsed() << " s)." << std::endl;
	}
	//////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////

	std::cout << "Working on particles ..." << std::endl;
	counter.tic();
165 166
  const MatrixKernelClass MatrixKernel;
	KernelWrapperClass kernels(NbLevels, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel);            // FTestKernels FBasicKernels
167 168 169 170 171
	FmmClass algo(&tree,&kernels);  //FFmmAlgorithm FFmmAlgorithmThread
	algo.execute();

	counter.tac();
	std::cout << "Done  " << "(@Algorithm = " << counter.elapsed() << " s)." << std::endl;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  //
  FReal energy= 0.0 , energyD = 0.0 ;
  /////////////////////////////////////////////////////////////////////////////////////////////////
  // Compute direct energy
  /////////////////////////////////////////////////////////////////////////////////////////////////

  for(int idx = 0 ; idx <  loader.getNumberOfParticles()  ; ++idx){
    energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
  }
  /////////////////////////////////////////////////////////////////////////////////////////////////
  // Compare
  /////////////////////////////////////////////////////////////////////////////////////////////////
  FMath::FAccurater potentialDiff;
  FMath::FAccurater fx, fy, fz;
  { // Check that each particle has been summed with all other

//    std::cout << "indexPartOrig || DIRECT V fx || FMM V fx" << std::endl;

    tree.forEachLeaf([&](LeafClass* leaf){
        const FReal*const potentials        = leaf->getTargets()->getPotentials();
        const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
        const FReal*const forcesX            = leaf->getTargets()->getForcesX();
        const FReal*const forcesY            = leaf->getTargets()->getForcesY();
        const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
        const int nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
        const FVector<int>& indexes      = leaf->getTargets()->getIndexes();

        for(int idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
          const int indexPartOrig = indexes[idxPart];
          potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
          fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
          fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
          fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
          energy   += potentials[idxPart]*physicalValues[idxPart];

//          std::cout << indexPartOrig 
//                    << " " << particles[indexPartOrig].getPotential() << " " << particles[indexPartOrig].getForces()[0] 
//                    << " " << potentials[idxPart] << " " << forcesX[idxPart]
//                    << std::endl;

        }
      });
  }

  delete[] particles;

  // Print for information
  std::cout << "Potential " << potentialDiff << std::endl;
  std::cout << "Fx " << fx << std::endl;
  std::cout << "Fy " << fy << std::endl;
  std::cout << "Fz " << fz << std::endl;

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

	OctreeClass::Iterator octreeIterator(&tree);
	std::ofstream file("aa.tree", std::ofstream::out );

	//
	////////////////////////////////////////////////////////////////////
	//              Export adaptive tree in our format
	////////////////////////////////////////////////////////////////////
	//
	// -----------------------------------------------------
	//
	//
	//  Set Global id
	//
	long int idCell  = setGlobalID(tree);
	//////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////

	tree.forEachCellLeaf([&](CellWrapperClass* cell, LeafClass* leaf){
243
		file << "Cell Id " << cell->getGlobalId( ) << " Nb particles "<<  leaf->getSrc()->getNbParticles()<<std::endl;
244 245 246 247 248 249 250 251 252 253 254 255 256 257
	});

	octreeIterator.gotoTop() ;  // here we are at level 1 (first child)
	//	octreeIterator.moveDown() ;
	octreeIterator.gotoLeft();
	//	octreeIterator.moveDown() ; // We are at the levell 2
	std::cout << " Number of Cells: " << idCell <<std::endl;
	//
	std::cout << "Top of the octree " << octreeIterator.level() << std::endl ;
	for(int idxLevel = 1; idxLevel < NbLevels ;  ++idxLevel){
		file << std::endl << "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$"<< std::endl;
		file << "  Level " << idxLevel <<"  Level  "<<  octreeIterator.level()<<  "  -- leave level " <<   std::boolalpha <<  octreeIterator.isAtLeafLevel() << std::endl;
		do{
			if(octreeIterator.getCurrentCell()->hasDevelopment()){
258
				file <<"Cell id  "<< octreeIterator.getCurrentCell()->getGlobalId( ) << "   "<<*(octreeIterator.getCurrentCell())<< std::endl ;
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
			}
		} while(octreeIterator.moveRight());
		octreeIterator.moveDown() ;
		octreeIterator.gotoLeft();
	}
	std::cout << "   END    " << std::endl;

	// Check
	octreeIterator.gotoBottomLeft();
	do {
		std::cout << " Level " <<octreeIterator.level() <<std::endl;
	}while(octreeIterator.moveUp() );
	std::cout << "   RETURN 0  " << std::endl;

	return 0;
}