FChebSymM2LHandler.hpp 24.1 KB
Newer Older
BRAMAS Berenger's avatar
BRAMAS Berenger committed
1
// ===================================================================================
2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Bérenger Bramas, Matthias Messner
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.  
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info". 
// "http://www.gnu.org/licenses".
BRAMAS Berenger's avatar
BRAMAS Berenger committed
15
// ===================================================================================
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#ifndef FCHEBSYMM2LHANDLER_HPP
#define FCHEBSYMM2LHANDLER_HPP

#include <climits>

#include "../../Utils/FBlas.hpp"

#include "./FChebTensor.hpp"
#include "./FChebSymmetries.hpp"
#include "./FChebM2LHandler.hpp"

/**
 * @author Matthias Messner (matthias.matthias@inria.fr)
 * Please read the license
 */


Matthias Messner's avatar
Matthias Messner committed
33 34
/*!  Choose either \a FULLY_PIVOTED_ACASVD or \a PARTIALLY_PIVOTED_ACASVD or
	\a ONLY_SVD.
Matthias Messner's avatar
Matthias Messner committed
35
*/
36
//#define ONLY_SVD
Matthias Messner's avatar
Matthias Messner committed
37
//#define FULLY_PIVOTED_ACASVD
38
#define PARTIALLY_PIVOTED_ACASVD
Matthias Messner's avatar
Matthias Messner committed
39 40


Matthias Messner's avatar
Matthias Messner committed
41 42


Matthias Messner's avatar
Matthias Messner committed
43 44 45 46
/*!  The fully pivoted adaptive cross approximation (fACA) compresses a
	far-field interaction as \f$K\sim UV^\top\f$. The fACA requires all entries
	to be computed beforehand, then the compression follows in
	\f$\mathcal{O}(2\ell^3k)\f$ operations based on the required accuracy
Matthias Messner's avatar
Matthias Messner committed
47
	\f$\varepsilon\f$. The matrix K will be destroyed as a result.
Matthias Messner's avatar
Matthias Messner committed
48 49

	@param[in] K far-field to be approximated
50 51
	@param[in] nx number of rows
	@param[in] ny number of cols
Matthias Messner's avatar
Matthias Messner committed
52 53 54 55 56
	@param[in] eps prescribed accuracy
	@param[out] U matrix containing \a k column vectors
	@param[out] V matrix containing \a k row vectors
	@param[out] k final low-rank depends on prescribed accuracy \a eps
*/
57 58 59
void fACA(FReal *const K,
					const unsigned int nx, const unsigned int ny,
					const double eps, FReal* &U, FReal* &V, unsigned int &k)
Matthias Messner's avatar
Matthias Messner committed
60 61
{
	// control vectors (true if not used, false if used)
62 63 64 65
	bool *const r = new bool[nx];
	bool *const c = new bool[ny];
	for (unsigned int i=0; i<nx; ++i) r[i] = true;
	for (unsigned int j=0; j<ny; ++j) c[j] = true;
Matthias Messner's avatar
Matthias Messner committed
66 67 68

	// compute Frobenius norm of original Matrix K
	FReal norm2K = 0;
69 70 71
	for (unsigned int j=0; j<ny; ++j) {
		const FReal *const colK = K + j*nx;
		norm2K += FBlas::scpr(nx, colK, colK);
Matthias Messner's avatar
Matthias Messner committed
72 73 74 75
	}

	// initialize rank k and UV'
	k = 0;
76 77 78 79 80
	const int maxk = (nx + ny) / 2;
	U = new FReal[nx * maxk];
	V = new FReal[ny * maxk];
	FBlas::setzero(nx*maxk, U);
	FBlas::setzero(ny*maxk, V);
Matthias Messner's avatar
Matthias Messner committed
81 82 83 84 85 86 87 88 89
	FReal norm2R;

	////////////////////////////////////////////////
	// start fully pivoted ACA
	do {
		
		// find max(K) and argmax(K)
		FReal maxK = 0.;
		int pi=0, pj=0;
90
		for (unsigned int j=0; j<ny; ++j)
Matthias Messner's avatar
Matthias Messner committed
91
			if (c[j]) {
92 93
				const FReal *const colK = K + j*nx;
				for (unsigned int i=0; i<nx; ++i)
Matthias Messner's avatar
Matthias Messner committed
94 95 96 97 98 99 100 101
					if (r[i] && maxK < FMath::Abs(colK[i])) {
						maxK = FMath::Abs(colK[i]);
						pi = i; 
						pj = j;
					}
			}

		// copy pivot cross into U and V
102 103 104 105 106
		FReal *const colU = U + k*nx;
		FReal *const colV = V + k*ny;
		const FReal pivot = K[pj*nx + pi];
		for (unsigned int i=0; i<nx; ++i) if (r[i]) colU[i] = K[pj*nx + i];
		for (unsigned int j=0; j<ny; ++j) if (c[j]) colV[j] = K[j *nx + pi] / pivot;
Matthias Messner's avatar
Matthias Messner committed
107 108 109 110 111 112
		
		// dont use these cols and rows anymore
		c[pj] = false;
		r[pi] = false;
		
		// subtract k-th outer product from K
113
		for (unsigned int j=0; j<ny; ++j)
Matthias Messner's avatar
Matthias Messner committed
114
			if (c[j]) {
115 116
				FReal *const colK = K + j*nx;
				FBlas::axpy(nx, FReal(-1. * colV[j]), colU, colK);
Matthias Messner's avatar
Matthias Messner committed
117 118 119 120
			}

		// compute Frobenius norm of updated K
		norm2R = 0.;
121
		for (unsigned int j=0; j<ny; ++j)
Matthias Messner's avatar
Matthias Messner committed
122
			if (c[j]) {
123 124
				const FReal *const colK = K + j*nx;
				norm2R += FBlas::scpr(nx, colK, colK);
Matthias Messner's avatar
Matthias Messner committed
125 126 127 128 129 130 131
			}

		// increment rank k
		k++;
		
	} while (norm2R > eps*eps * norm2K);
	////////////////////////////////////////////////
132 133 134

	delete [] r;
	delete [] c;
Matthias Messner's avatar
Matthias Messner committed
135 136 137
}


Matthias Messner's avatar
Matthias Messner committed
138 139 140 141




142 143 144 145 146





Matthias Messner's avatar
Matthias Messner committed
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*!  The partially pivoted adaptive cross approximation (pACA) compresses a
	far-field interaction as \f$K\sim UV^\top\f$. The pACA computes the matrix
	entries on the fly, as they are needed. The compression follows in
	\f$\mathcal{O}(2\ell^3k)\f$ operations based on the required accuracy
	\f$\varepsilon\f$. The matrix K will be destroyed as a result.

	@tparam ComputerType the functor type which allows to compute matrix entries
	
	@param[in] Computer the entry-computer functor
	@param[in] eps prescribed accuracy
	@param[in] nx number of rows
	@param[in] ny number of cols
	@param[out] U matrix containing \a k column vectors
	@param[out] V matrix containing \a k row vectors
	@param[out] k final low-rank depends on prescribed accuracy \a eps
*/
template <typename ComputerType>
164
void pACA(const ComputerType& Computer,
Matthias Messner's avatar
Matthias Messner committed
165
					const unsigned int nx, const unsigned int ny,
166
					const FReal eps, FReal* &U, FReal* &V, unsigned int &k)
Matthias Messner's avatar
Matthias Messner committed
167 168 169 170 171 172 173 174 175
{
	// control vectors (true if not used, false if used)
	bool *const r = new bool[nx];
	bool *const c = new bool[ny];
	for (unsigned int i=0; i<nx; ++i) r[i] = true;
	for (unsigned int j=0; j<ny; ++j) c[j] = true;
	
	// initialize rank k and UV'
	k = 0;
176
	const FReal eps2 = eps * eps;
Matthias Messner's avatar
Matthias Messner committed
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	const int maxk = (nx + ny) / 2;
	U = new FReal[nx * maxk];
	V = new FReal[ny * maxk];
	
	// initialize norm
	FReal norm2S(0.);
	FReal norm2uv(0.);
	
	////////////////////////////////////////////////
	// start partially pivoted ACA
	unsigned int J = 0, I = 0;
	
	do {
		FReal *const colU = U + nx*k;
		FReal *const colV = V + ny*k;
		
		////////////////////////////////////////////
		// compute row I and its residual
		Computer(I, I+1, 0, ny, colV);
		r[I] = false;
		for (unsigned int l=0; l<k; ++l) {
			FReal *const u = U + nx*l;
			FReal *const v = V + ny*l;
200
			FBlas::axpy(ny, FReal(-1. * u[I]), v, colV);
Matthias Messner's avatar
Matthias Messner committed
201 202 203 204
		}
		
		// find max of residual and argmax
		FReal maxval = 0.;
205 206 207 208
		for (unsigned int j=0; j<ny; ++j) {
			const FReal abs_val = FMath::Abs(colV[j]);
			if (c[j] && maxval < abs_val) {
				maxval = abs_val;
Matthias Messner's avatar
Matthias Messner committed
209 210
				J = j;
			}
211 212
		}
		// find pivot and scale column of V
213 214
		const FReal pivot = FReal(1.) / colV[J];
		FBlas::scal(ny, pivot, colV);
Matthias Messner's avatar
Matthias Messner committed
215 216 217 218 219 220 221 222
		
		////////////////////////////////////////////
		// compute col J and its residual
		Computer(0, nx, J, J+1, colU);
		c[J] = false;
		for (unsigned int l=0; l<k; ++l) {
			FReal *const u = U + nx*l;
			FReal *const v = V + ny*l;
223
			FBlas::axpy(nx, FReal(-1. * v[J]), u, colU);
Matthias Messner's avatar
Matthias Messner committed
224 225 226 227
		}
		
		// find max of residual and argmax
		maxval = 0.;
228 229 230 231
		for (unsigned int i=0; i<nx; ++i) {
			const FReal abs_val = FMath::Abs(colU[i]);
			if (r[i] && maxval < abs_val) {
				maxval = abs_val;
Matthias Messner's avatar
Matthias Messner committed
232 233
				I = i;
			}
234
		}
Matthias Messner's avatar
Matthias Messner committed
235 236 237 238 239 240 241 242 243 244 245 246 247
		
		////////////////////////////////////////////
			// increment Frobenius norm: |Sk|^2 += |uk|^2 |vk|^2 + 2 sumj ukuj vjvk
		FReal normuuvv(0.);
		for (unsigned int l=0; l<k; ++l)
			normuuvv += FBlas::scpr(nx, colU, U + nx*l) * FBlas::scpr(ny, V + ny*l, colV);
		norm2uv = FBlas::scpr(nx, colU, colU) * FBlas::scpr(ny, colV, colV);
		norm2S += norm2uv + 2*normuuvv;
		
		////////////////////////////////////////////
		// increment low-rank
		k++;

248
	} while (norm2uv > eps2 * norm2S);
Matthias Messner's avatar
Matthias Messner committed
249 250 251 252 253 254 255
	
	delete [] r;
	delete [] c;
}



Matthias Messner's avatar
Matthias Messner committed
256 257 258 259 260
/*!  Precomputes the 16 far-field interactions (due to symmetries in their
  arrangement all 316 far-field interactions can be represented by
  permutations of the 16 we compute in this function). Depending on whether
  FACASVD is defined or not, either ACA+SVD or only SVD is used to compress
  them. */
261
template <int ORDER, typename MatrixKernelClass>
262
static void precompute(const MatrixKernelClass *const MatrixKernel, const FReal CellWidth,
263
											 const FReal Epsilon, FReal* K[343], int LowRank[343])
264
{
COULAUD Olivier's avatar
COULAUD Olivier committed
265 266
  //	std::cout << "\nComputing 16 far-field interactions (l=" << ORDER << ", eps=" << Epsilon
  //						<< ") for cells of width w = " << CellWidth << std::endl;
267

268
	static const unsigned int nnodes = ORDER*ORDER*ORDER;
269 270 271 272

	// interpolation points of source (Y) and target (X) cell
	FPoint X[nnodes], Y[nnodes];
	// set roots of target cell (X)
273
	FChebTensor<ORDER>::setRoots(FPoint(0.,0.,0.), CellWidth, X);
274 275 276 277
	// temporary matrix
	FReal* U = new FReal [nnodes*nnodes];

	// needed for the SVD
Matthias Messner's avatar
Matthias Messner committed
278
	unsigned int INFO;
279 280 281 282
	const unsigned int LWORK = 2 * (3*nnodes + nnodes);
	FReal *const WORK = new FReal [LWORK];
	FReal *const VT = new FReal [nnodes*nnodes];
	FReal *const S = new FReal [nnodes];
Matthias Messner's avatar
Matthias Messner committed
283 284 285 286


	// initialize timer
	FTic time;
287 288 289 290 291
	double overall_time(0.);
	double elapsed_time(0.);

	// initialize rank counter
	unsigned int overall_rank = 0;
Matthias Messner's avatar
Matthias Messner committed
292

293 294 295 296 297
	unsigned int counter = 0;
	for (int i=2; i<=3; ++i) {
		for (int j=0; j<=i; ++j) {
			for (int k=0; k<=j; ++k) {

Matthias Messner's avatar
Matthias Messner committed
298
				// assemble matrix and apply weighting matrices
299 300
				const FPoint cy(CellWidth*FReal(i), CellWidth*FReal(j), CellWidth*FReal(k));
				FChebTensor<ORDER>::setRoots(cy, CellWidth, Y);
Matthias Messner's avatar
Matthias Messner committed
301 302
				FReal weights[nnodes];
				FChebTensor<ORDER>::setRootOfWeights(weights);
303

Matthias Messner's avatar
Matthias Messner committed
304 305 306 307 308 309 310 311 312 313
				// now the entry-computer is responsible for weighting the matrix entries
				EntryComputer<MatrixKernelClass> Computer(nnodes, X, nnodes, Y, weights);

				// start timer
				time.tic();

#if (defined ONLY_SVD || defined FULLY_PIVOTED_ACASVD)
				Computer(0, nnodes, 0, nnodes, U);
#endif
				/*
314 315 316 317 318 319 320
				// applying weights ////////////////////////////////////////
				FReal weights[nnodes];
				FChebTensor<ORDER>::setRootOfWeights(weights);
				for (unsigned int n=0; n<nnodes; ++n) {
					FBlas::scal(nnodes, weights[n], U + n,  nnodes); // scale rows
					FBlas::scal(nnodes, weights[n], U + n * nnodes); // scale cols
				}
Matthias Messner's avatar
Matthias Messner committed
321 322 323 324 325 326 327 328 329 330
				*/

				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				// ALL PREPROC FLAGS ARE SET ON TOP OF THIS FILE !!! /////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////

331

Matthias Messner's avatar
Matthias Messner committed
332 333

				//////////////////////////////////////////////////////////////
Matthias Messner's avatar
Matthias Messner committed
334
#if (defined FULLY_PIVOTED_ACASVD || defined PARTIALLY_PIVOTED_ACASVD) ////////////
Matthias Messner's avatar
Matthias Messner committed
335 336
				FReal *UU, *VV;
				unsigned int rank;
Matthias Messner's avatar
Matthias Messner committed
337 338

#ifdef FULLY_PIVOTED_ACASVD
339
				fACA(U,        nnodes, nnodes, Epsilon, UU, VV, rank);
Matthias Messner's avatar
Matthias Messner committed
340
#else
341
				pACA(Computer, nnodes, nnodes, Epsilon, UU, VV, rank);
Matthias Messner's avatar
Matthias Messner committed
342
#endif 
Matthias Messner's avatar
Matthias Messner committed
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

				// QR decomposition
				FReal* phi = new FReal [rank*rank];
				{
					// QR of U and V
					FReal* tauU = new FReal [rank];
					INFO = FBlas::geqrf(nnodes, rank, UU, tauU, LWORK, WORK);
					assert(INFO==0);
					FReal* tauV = new FReal [rank];
					INFO = FBlas::geqrf(nnodes, rank, VV, tauV, LWORK, WORK);
					assert(INFO==0);
					// phi = Ru Rv'
					FReal* rU = new FReal [2 * rank*rank];
					FReal* rV = rU + rank*rank;
					FBlas::setzero(2 * rank*rank, rU);
					for (unsigned int l=0; l<rank; ++l) {
						FBlas::copy(l+1, UU + l*nnodes, rU + l*rank);
						FBlas::copy(l+1, VV + l*nnodes, rV + l*rank);
					}
					FBlas::gemmt(rank, rank, rank, FReal(1.), rU, rank, rV, rank, phi, rank);
					delete [] rU;
					// get Qu and Qv
					INFO = FBlas::orgqr(nnodes, rank, UU, tauU, LWORK, WORK);
					assert(INFO==0);
					INFO = FBlas::orgqr(nnodes, rank, VV, tauV, LWORK, WORK);
					assert(INFO==0);
					delete [] tauU;
					delete [] tauV;
				}
				
				const unsigned int aca_rank = rank;

				// SVD
				{
					INFO = FBlas::gesvd(aca_rank, aca_rank, phi, S, VT, aca_rank, LWORK, WORK);
					if (INFO!=0) throw std::runtime_error("SVD did not converge with " + INFO);
					rank = getRank(S, aca_rank, Epsilon);
				}					
				
				const unsigned int idx = (i+3)*7*7 + (j+3)*7 + (k+3);

				// store
				{
					// allocate
					assert(K[idx]==NULL);
					K[idx] = new FReal [2*rank*nnodes];
					
					// set low rank
					LowRank[idx] = rank;
					
					// (U Sigma)
					for (unsigned int r=0; r<rank; ++r)
						FBlas::scal(aca_rank, S[r], phi + r*aca_rank);

					// Qu (U Sigma) 
					FBlas::gemm(nnodes, aca_rank, rank, FReal(1.), UU, nnodes, phi, aca_rank, K[idx], nnodes);
					delete [] phi;

					// Vt -> V and then Qu V
					FReal *const V = new FReal [aca_rank * rank];
					for (unsigned int r=0; r<rank; ++r)
						FBlas::copy(aca_rank, VT + r, aca_rank, V + r*aca_rank, 1);
					FBlas::gemm(nnodes, aca_rank, rank, FReal(1.), VV, nnodes, V, aca_rank, K[idx] + rank*nnodes, nnodes);
					delete [] V;
				}

				//// store recompressed UV
				//const unsigned int idx = (i+3)*7*7 + (j+3)*7 + (k+3);
				//assert(K[idx]==NULL);
				//K[idx] = new FReal [2*rank*nnodes];
				//LowRank[idx] = rank;
				//FBlas::copy(rank*nnodes, UU,  K[idx]);
				//FBlas::copy(rank*nnodes, VV,  K[idx] + rank*nnodes);
			
				delete [] UU;
				delete [] VV;

Matthias Messner's avatar
Matthias Messner committed
420 421
				elapsed_time = time.tacAndElapsed(); 
				overall_time += elapsed_time;
422
				overall_rank += rank;
COULAUD Olivier's avatar
COULAUD Olivier committed
423 424
				// std::cout << "(" << i << "," << j << "," << k << ") " << idx <<
				// 	", low rank = " << rank << " (" << aca_rank << ") in " << elapsed_time << "s" << std::endl;
Matthias Messner's avatar
Matthias Messner committed
425

Matthias Messner's avatar
Matthias Messner committed
426 427 428 429 430 431 432 433 434
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				// ALL PREPROC FLAGS ARE SET ON TOP OF THIS FILE !!! /////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////

#elif defined ONLY_SVD
435
				// truncated singular value decomposition of matrix
Matthias Messner's avatar
Matthias Messner committed
436 437
				INFO = FBlas::gesvd(nnodes, nnodes, U, S, VT, nnodes, LWORK, WORK);
				if (INFO!=0) throw std::runtime_error("SVD did not converge with " + INFO);
438
				const unsigned int rank = getRank<ORDER>(S, Epsilon);
Matthias Messner's avatar
Matthias Messner committed
439
				
440 441 442 443 444 445 446 447 448 449 450
				// store 
				const unsigned int idx = (i+3)*7*7 + (j+3)*7 + (k+3);
				assert(K[idx]==NULL);
				K[idx] = new FReal [2*rank*nnodes];
				LowRank[idx] = rank;
				for (unsigned int r=0; r<rank; ++r)
					FBlas::scal(nnodes, S[r], U + r*nnodes);
				FBlas::copy(rank*nnodes, U,  K[idx]);
				for (unsigned int r=0; r<rank; ++r)
					FBlas::copy(nnodes, VT + r, nnodes, K[idx] + rank*nnodes + r*nnodes, 1);

Matthias Messner's avatar
Matthias Messner committed
451 452
				elapsed_time = time.tacAndElapsed(); 
				overall_time += elapsed_time;
453
				overall_rank += rank;
COULAUD Olivier's avatar
COULAUD Olivier committed
454 455
				//				std::cout << "(" << i << "," << j << "," << k << ") " << idx <<
				//	", low rank = " << rank << " in " << elapsed_time << "s" << std::endl;
Matthias Messner's avatar
Matthias Messner committed
456 457
#else
#error Either fully-, partially pivoted ACA or only SVD must be defined!
Matthias Messner's avatar
Matthias Messner committed
458 459 460
#endif ///////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////

Matthias Messner's avatar
Matthias Messner committed
461 462 463 464 465 466 467 468
				
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				// ALL PREPROC FLAGS ARE SET ON TOP OF THIS FILE !!! /////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
Matthias Messner's avatar
Matthias Messner committed
469 470


471 472 473 474 475 476 477 478 479 480 481
				// un-weighting ////////////////////////////////////////////
				for (unsigned int n=0; n<nnodes; ++n) {
					FBlas::scal(rank, FReal(1.) / weights[n], K[idx] + n,               nnodes); // scale rows
					FBlas::scal(rank, FReal(1.) / weights[n], K[idx] + rank*nnodes + n, nnodes); // scale rows
				}
				//////////////////////////////////////////////////////////		

				counter++;
			}
		}
	}
482 483 484 485 486 487
		std::cout << "The approximation of the " << counter
              << " far-field interactions (overall rank " << overall_rank 
              << " / " << 16*nnodes 
              << " , sizeM2L= " << 2*overall_rank*nnodes*sizeof(FReal) << ""
              << " / " << 16*nnodes*nnodes*sizeof(FReal) << " B"
              << ") took " << overall_time << "s\n" << std::endl;
488 489 490 491 492 493 494 495 496 497 498 499 500 501
	delete [] U;
	delete [] WORK;
	delete [] VT;
	delete [] S;
}









Matthias Messner's avatar
Matthias Messner committed
502
/*!  \class SymmetryHandler 
503

Matthias Messner's avatar
Matthias Messner committed
504 505 506 507 508 509 510
	\brief Deals with all the symmetries in the arrangement of the far-field interactions

	Stores permutation indices and permutation vectors to reduce 316 (7^3-3^3)
  different far-field interactions to 16 only. We use the number 343 (7^3)
  because it allows us to use to associate the far-field interactions based on
  the index \f$t = 7^2(i+3) + 7(j+3) + (k+3)\f$ where \f$(i,j,k)\f$ denotes
  the relative position of the source cell to the target cell. */
511 512 513
template <int ORDER, KERNEL_FUNCTION_TYPE TYPE> class SymmetryHandler;

/*! Specialization for homogeneous kernel functions */
514
template <int ORDER>
515
class SymmetryHandler<ORDER, HOMOGENEOUS>
516 517 518 519 520 521
{
  static const unsigned int nnodes = ORDER*ORDER*ORDER;

	// M2L operators
	FReal*    K[343];
	int LowRank[343];
522 523

public:
524 525 526 527 528 529 530 531
	
	// permutation vectors and permutated indices
	unsigned int pvectors[343][nnodes];
	unsigned int pindices[343];


	/** Constructor: with 16 small SVDs */
	template <typename MatrixKernelClass>
532
	SymmetryHandler(const MatrixKernelClass *const MatrixKernel, const FReal Epsilon,
533
									const FReal, const unsigned int)
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	{
		// init all 343 item to zero, because effectively only 16 exist
		for (unsigned int t=0; t<343; ++t) {
			K[t] = NULL;
			LowRank[t] = 0;
		}
			
		// set permutation vector and indices
		const FChebSymmetries<ORDER> Symmetries;
		for (int i=-3; i<=3; ++i)
			for (int j=-3; j<=3; ++j)
				for (int k=-3; k<=3; ++k) {
					const unsigned int idx = ((i+3) * 7 + (j+3)) * 7 + (k+3);
					pindices[idx] = 0;
					if (abs(i)>1 || abs(j)>1 || abs(k)>1)
						pindices[idx] = Symmetries.getPermutationArrayAndIndex(i,j,k, pvectors[idx]);
				}

		// precompute 16 M2L operators
553 554
		const FReal ReferenceCellWidth = FReal(2.);
		precompute<ORDER>(MatrixKernel, ReferenceCellWidth, Epsilon, K, LowRank);
555 556 557 558 559 560 561 562 563 564
	}



	/** Destructor */
	~SymmetryHandler()
	{
		for (unsigned int t=0; t<343; ++t) if (K[t]!=NULL) delete [] K[t];
	}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

	/*! return the t-th approximated far-field interactions*/
	const FReal *const getK(const unsigned int, const unsigned int t) const
	{	return K[t]; }

	/*! return the t-th approximated far-field interactions*/
	const int getLowRank(const unsigned int, const unsigned int t) const
	{	return LowRank[t]; }

};






/*! Specialization for non-homogeneous kernel functions */
template <int ORDER>
class SymmetryHandler<ORDER, NON_HOMOGENEOUS>
{
  static const unsigned int nnodes = ORDER*ORDER*ORDER;

	// Height of octree; needed only in the case of non-homogeneous kernel functions
	const unsigned int TreeHeight;

	// M2L operators for all levels in the octree
	FReal***    K;
	int** LowRank;

public:
	
	// permutation vectors and permutated indices
	unsigned int pvectors[343][nnodes];
	unsigned int pindices[343];


	/** Constructor: with 16 small SVDs */
	template <typename MatrixKernelClass>
	SymmetryHandler(const MatrixKernelClass *const MatrixKernel, const double Epsilon,
									const FReal RootCellWidth, const unsigned int inTreeHeight)
		: TreeHeight(inTreeHeight)
	{
		// init all 343 item to zero, because effectively only 16 exist
		K       = new FReal** [TreeHeight];
		LowRank = new int*    [TreeHeight];
		K[0]       = NULL; K[1]       = NULL;
		LowRank[0] = NULL; LowRank[1] = NULL;
		for (unsigned int l=2; l<TreeHeight; ++l) {
			K[l]       = new FReal* [343];
			LowRank[l] = new int    [343];
			for (unsigned int t=0; t<343; ++t) {
				K[l][t]       = NULL;
				LowRank[l][t] = 0;
			}
		}
		

		// set permutation vector and indices
		const FChebSymmetries<ORDER> Symmetries;
		for (int i=-3; i<=3; ++i)
			for (int j=-3; j<=3; ++j)
				for (int k=-3; k<=3; ++k) {
					const unsigned int idx = ((i+3) * 7 + (j+3)) * 7 + (k+3);
					pindices[idx] = 0;
					if (abs(i)>1 || abs(j)>1 || abs(k)>1)
						pindices[idx] = Symmetries.getPermutationArrayAndIndex(i,j,k, pvectors[idx]);
				}

		// precompute 16 M2L operators at all levels having far-field interactions
		FReal CellWidth = RootCellWidth / FReal(2.); // at level 1
		CellWidth /= FReal(2.);                      // at level 2
		for (unsigned int l=2; l<TreeHeight; ++l) {
			precompute<ORDER>(MatrixKernel, CellWidth, Epsilon, K[l], LowRank[l]);
			CellWidth /= FReal(2.);                    // at level l+1 
		}
	}



	/** Destructor */
	~SymmetryHandler()
	{
		for (unsigned int l=0; l<TreeHeight; ++l) {
			if (K[l]!=NULL) {
				for (unsigned int t=0; t<343; ++t) if (K[l][t]!=NULL) delete [] K[l][t];
				delete [] K[l];
			}
			if (LowRank[l]!=NULL)	delete [] LowRank[l];
		}
		delete [] K;
		delete [] LowRank;
	}

	/*! return the t-th approximated far-field interactions*/
	const FReal *const getK(const unsigned int l, const unsigned int t) const
	{	return K[l][t]; }

	/*! return the t-th approximated far-field interactions*/
	const int getLowRank(const unsigned int l, const unsigned int t) const
	{	return LowRank[l][t]; }

666 667 668 669 670 671 672 673 674 675 676 677 678
};








#include <fstream>
#include <sstream>


Matthias Messner's avatar
Matthias Messner committed
679 680 681
/**
 * Computes, compresses and stores the 16 M2L kernels in a binary file.
 */
682 683 684 685 686 687 688 689 690
template <int ORDER, typename MatrixKernelClass>
static void ComputeAndCompressAndStoreInBinaryFile(const MatrixKernelClass *const MatrixKernel, const FReal Epsilon)
{
	static const unsigned int nnodes = ORDER*ORDER*ORDER;

	// compute and compress ////////////
	FReal* K[343];
	int LowRank[343];
	for (unsigned int idx=0; idx<343; ++idx) { K[idx] = NULL; LowRank[idx] = 0;	}
691
	precompute<ORDER>(MatrixKernel, FReal(2.), Epsilon, K, LowRank);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

	// write to binary file ////////////
	FTic time; time.tic();
	// start computing process
	const char precision = (typeid(FReal)==typeid(double) ? 'd' : 'f');
	std::stringstream sstream;
	sstream << "sym2l_" << precision << "_o" << ORDER << "_e" << Epsilon << ".bin";
	const std::string filename(sstream.str());
	std::ofstream stream(filename.c_str(),
											 std::ios::out | std::ios::binary | std::ios::trunc);
	if (stream.good()) {
		stream.seekp(0);
		for (unsigned int idx=0; idx<343; ++idx)
			if (K[idx]!=NULL) {
				// 1) write index
				stream.write(reinterpret_cast<char*>(&idx), sizeof(int));
				// 2) write low rank (int)
				int rank = LowRank[idx];
				stream.write(reinterpret_cast<char*>(&rank), sizeof(int));
				// 3) write U and V (both: rank*nnodes * FReal)
				FReal *const U = K[idx];
				FReal *const V = K[idx] + rank*nnodes;
				stream.write(reinterpret_cast<char*>(U), sizeof(FReal)*rank*nnodes);
				stream.write(reinterpret_cast<char*>(V), sizeof(FReal)*rank*nnodes);
			}
	} else throw std::runtime_error("File could not be opened to write");
	stream.close();
	// write info
COULAUD Olivier's avatar
COULAUD Olivier committed
720 721
	//	std::cout << "Compressed M2L operators stored in binary file " << filename
	//					<< " in " << time.tacAndElapsed() << "sec."	<< std::endl;
722 723 724 725 726 727

	// free memory /////////////////////
	for (unsigned int t=0; t<343; ++t) if (K[t]!=NULL) delete [] K[t];
}


Matthias Messner's avatar
Matthias Messner committed
728 729 730 731
/**
 * Reads the 16 compressed M2L kernels from the binary files and writes them
 * in K and the respective low-rank in LowRank.
 */
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
template <int ORDER>
void ReadFromBinaryFile(const FReal Epsilon, FReal* K[343], int LowRank[343])
{
	// compile time constants
	const unsigned int nnodes = ORDER*ORDER*ORDER;
	
	// find filename
	const char precision = (typeid(FReal)==typeid(double) ? 'd' : 'f');
	std::stringstream sstream;
	sstream << "sym2l_" << precision << "_o" << ORDER << "_e" << Epsilon << ".bin";
	const std::string filename(sstream.str());

	// read binary file
	std::ifstream istream(filename.c_str(),
												std::ios::in | std::ios::binary | std::ios::ate);
	const std::ifstream::pos_type size = istream.tellg();
	if (size<=0) throw std::runtime_error("The requested binary file does not yet exist. Exit.");
	
	if (istream.good()) {
		istream.seekg(0);
		// 1) read index (int)
		int _idx;
		istream.read(reinterpret_cast<char*>(&_idx), sizeof(int));
		// loop to find 16 compressed m2l operators
		for (int idx=0; idx<343; ++idx) {
			K[idx] = NULL;
			LowRank[idx] = 0;
			// if it exists
			if (idx == _idx) {
				// 2) read low rank (int)
				int rank;
				istream.read(reinterpret_cast<char*>(&rank), sizeof(int));
				LowRank[idx] = rank;
				// 3) read U and V (both: rank*nnodes * FReal)
				K[idx] = new FReal [2*rank*nnodes];
				FReal *const U = K[idx];
				FReal *const V = K[idx] + rank*nnodes;
				istream.read(reinterpret_cast<char*>(U), sizeof(FReal)*rank*nnodes);
				istream.read(reinterpret_cast<char*>(V), sizeof(FReal)*rank*nnodes);

				// 1) read next index
				istream.read(reinterpret_cast<char*>(&_idx), sizeof(int));
			}
		}
	}	else throw std::runtime_error("File could not be opened to read");
	istream.close();
}





#endif