statAdapt.cpp 16.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Berenger Bramas
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.  
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info". 
// "http://www.gnu.org/licenses".
// ===================================================================================
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <ctime>

#include "Utils/FParameters.hpp"
#include "Containers/FOctree.hpp"

#include "adaptiveTree/FAdaptCell.hpp"
#include "adaptiveTree/FAdaptTools.hpp"

#include "Components/FSimpleIndexedLeaf.hpp"
#include "Components/FBasicParticleContainer.hpp"


#include "Utils/FMath.hpp"
#include "Files/FFmaGenericLoader.hpp"


/// \file  statisticsOnOctree.cpp
//!
//! \brief Driver to generate statistics on the octree for the particle distribution given by parameter -infile
//!  \authors B. Bramas, O. Coulaud
//!
//!  This code gives you some statistics (Particles, Cells, P2P and M2L number of operators) on the octree
//!    Those statistics are shown level by level.
//!
//! The statistics are
//!
//!  <b>for particles:</b> min/max particles per leaf, the average number, the variance and the average number of P2P neighbors.
//!
//! <b>For each level in the octree</b>
//!
//!  \arg       The number of cells, of adaptive cells (cell with more one child)
//!  \arg          The average, min and max numbers of M2L operators and also its  variance.

//!
//!  <b> General arguments:</b>
//!     \param   -help(-h)      to see the parameters available in this driver
//!     \param   -depth    The depth of the octree
//!     \param   -sh          Specifies the size of the sub octree
//!
//!     \param   -infile name   Name of the particles file. The file have to be in our FMA format
//!     \param   -outfile name Generic name  for output file  (without extension)
//!
//!  <b> Statistics options:</b>
//!   \param -stat to build the statistivs on the octree
//!   \param -histP build a file to generate histogram of particles per leaf. The data are store in file given by -outfile arguments and  .txt extension. (only if -stat is set)
//   \param   -sM    s_min^M threshold for Multipole expansion (l+1)^2 for Spherical harmonics"
//   \param   -sL    s_min^M threshold for local expansion  (l+1)^2 for Spherical harmonics"
// Simply create particles and try the kernels
//
void usage() {
	std::cout << "Driver to obtain statistics on the octree" << std::endl;
	std::cout <<	 "Options  "<< std::endl
			<<     "      -help       to see the parameters    " << std::endl
			<<	     "      -depth    the depth of the octree   "<< std::endl
			<<	     "      -sh          specifies the size of the sub octree   " << std::endl
			<<     "      -infile name specifies the name of the particle distribution" << std::endl
			<<     "      -outfile name  specifies the file for the diagnostics" << std::endl
			<<     "      -histP   build the histogram of the particle number per leaf"<<std::endl
			<<     "      -sM    s_min^M threshold for Multipole (l+1)^2 for Spherical harmonics"<<std::endl;
}

int main(int argc, char ** argv){
	typedef FBasicParticleContainer<0>                                     ContainerClass;
	typedef FSimpleIndexedLeaf<ContainerClass>                                  LeafClass;
	typedef FAdaptCell<FBasicCell,LeafClass>                            CellClass;
	typedef FOctree<CellClass, ContainerClass, LeafClass >       OctreeClass;
	//
	if(FParameters::existParameter(argc, argv, "-h")||FParameters::existParameter(argc, argv, "-help")|| (argc < 3 )){
		usage() ;
		exit(-1);
	}
	//
	//   Octree parameters
	//
	const int NbLevels        = FParameters::getValue(argc,argv,"-depth", 5);
	const int SizeSubLevels = FParameters::getValue(argc,argv,"-sh", 3);
	const int sminM            = FParameters::getValue(argc,argv,"-sM", 0);
	const int sminL             = FParameters::getValue(argc,argv,"-sL", 0);
	//
	//  input and output  Files parameters
	//
	const char* const filename = FParameters::getStr(argc,argv,"-infile", "../Data/test20k.fma");
	const std::string genericFileName(FParameters::getStr(argc,argv,"-outfile",   "output"));
	//
	std::cout << "Opening : " << filename << "\n";
	FFmaGenericLoader loader(filename);
	if(!loader.isOpen()){
		std::cout << "Loader Error, " << filename << " is missing\n";
		return 1;
	}
	//
	// -----------------------------------------------------
	OctreeClass tree(NbLevels, SizeSubLevels,loader.getBoxWidth(),loader.getCenterOfBox());
	//
	// -----------------------------------------------------
	//     Creating and Inserting particles in the tree
	// -----------------------------------------------------
	//
	std::cout << "Tree box is cubic "<<std::endl
			<< "         Centre:   "<< loader.getCenterOfBox() <<std::endl
			<< "         Length:  "<< loader.getBoxWidth()       <<std::endl <<std::endl;
	//
	std::cout << "Creating and Inserting " << loader.getNumberOfParticles() << " particles ..." << std::endl;
	std::cout << "\tHeight : " << NbLevels << " \t sub-height : " << SizeSubLevels << std::endl;
	FPoint particlePosition, minPos, maxPos;
	FReal physicalValue;
	for(int idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
		loader.fillParticle(&particlePosition,&physicalValue);
		//
		minPos.setX(FMath::Min(minPos.getX(),particlePosition.getX())) ;
		minPos.setY(FMath::Min(minPos.getY(),particlePosition.getY())) ;
		minPos.setZ(FMath::Min(minPos.getZ(),particlePosition.getZ())) ;
		maxPos.setX(FMath::Max(maxPos.getX(),particlePosition.getX())) ;
		maxPos.setX(FMath::Max(maxPos.getY(),particlePosition.getY())) ;
		maxPos.setX(FMath::Max(maxPos.getZ(),particlePosition.getZ())) ;
		//
		tree.insert(particlePosition );
	}
	std::cout << "Data are inside the box delimited by "<<std::endl
			<< "         Min corner:  "<< minPos<<std::endl
			<< "         Max corner:  "<< maxPos<<std::endl <<std::endl;
	//
	OctreeClass::Iterator octreeIterator(&tree);

	//
	// -----------------------------------------------------
	//     Build information for adaptive tree
	// -----------------------------------------------------
	//
	{
		std::cout << " start build smin criteria " <<std::endl;
		//
		adaptiveTreeBuilSminC(tree,sminM,sminL) ;
		//
		//  Set Global id
		//
		long int idCell  = setGlobalID(tree);
		//
		//  Build CA and FA  lists
		std::cout << " start building CA and FA lists " <<std::endl;
		//
		adaptiveTreeBuildLists(tree) ;
		//
	}
	//
	// -----------------------------------------------------
	//     Start statistics
	// -----------------------------------------------------
	//
	int removeM = 0 ;
	if(FParameters::existParameter(argc, argv, "-stat")){ // get stats
		{    // get stats on the leaf level (Particles)
			long int allLeaves =  (1 << (3* (NbLevels-1) )) ;
			std::cout << std::endl<< "[STAT] Leaf level "  << " is  " << NbLevels << std::endl;
			std::cout << "[STAT] potentials leafs number is " << allLeaves<< std::endl;

			FReal averageParticles = 0.0, varianceParticles = 0.0 ;
			int nbLeafs = 0,minParticles = 1000000.0, maxParticles = 0.0 ;
			//
			// Start to compute statistics on particles
			//
			int  nbPart ,nbTPart=0;
			octreeIterator.gotoBottomLeft();
			do{
				nbPart                   = octreeIterator.getCurrentListTargets()->getNbParticles() ;
				minParticles          =  FMath::Min(minParticles,nbPart) ;
				maxParticles         =  FMath::Max(maxParticles,nbPart) ;
				nbTPart              += nbPart;
				varianceParticles += FReal(nbPart*nbPart) ;
				++nbLeafs;
				if(nbPart < sminM){
					++removeM;
				}
			} while(octreeIterator.moveRight());
			averageParticles   = nbTPart/FReal(nbLeafs);
			varianceParticles  = varianceParticles/FReal(nbLeafs) - averageParticles*averageParticles;
			//
			std::cout.precision(4);
			std::cout << "[STAT] Non empty leafs: " << nbLeafs << " % of non empty leaves: "<<100*static_cast<FReal>(nbLeafs)/static_cast<FReal>(allLeaves)<<" %" << std::endl;
			std::cout << "[STAT]  Particles on leafs:"  << std::endl
					<<   "[STAT]           Min:         "<< minParticles << std::endl
					<<   "[STAT]           Max:        "<< maxParticles << std::endl
					<<   "[STAT]           Average:  "<< averageParticles << std::endl
					<<   "[STAT]           Variance: " << varianceParticles << std::endl;
			std::cout << "[STAT]  number of P2M to remove: " << 		removeM <<	 std::endl;
			//
			//  Histogram of particles per leaf
			//

			if(FParameters::existParameter(argc, argv, "-histP")){
				int size = maxParticles+1;
				int * hist = new int [size] ;
				memset(hist,0,(size)*sizeof(int));
				octreeIterator.gotoBottomLeft();
				do{
					nbPart  = octreeIterator.getCurrentListTargets()->getNbParticles() ;
					++hist[nbPart] ;
				} while(octreeIterator.moveRight());
				//
				// write data
				//
				std::ofstream outfile( genericFileName + ".txt", std::ofstream::out);
				if(!outfile) {
					std::cout << "Cannot open file "<< std::endl;
					exit(-1)	;
				}	//
				outfile << "# Particle histogram.   "<< size << " chunk" <<std::endl;
				for(int i=0 ; i < size ; ++i){
					outfile << i << "  " << hist[i] <<std::endl;
				}
				delete [] hist ;
			}
			FReal averageNeighbors = 0.0, varianceNeighbors =0.0 ;
			int nbBox,minBox=30,maxBox=0;
			octreeIterator.gotoBottomLeft();
			ContainerClass*  neighborsP2P[27];
			do{
				//
				//  P2P Neighbors
				//
				nbBox = tree.getLeafsNeighbors(neighborsP2P, octreeIterator.getCurrentGlobalCoordinate(),NbLevels-1) ;
				// need the current particles and neighbors particles
				minBox                      =  FMath::Min(minBox,nbBox) ;
				maxBox                     =  FMath::Max(maxBox,nbBox) ;
				averageNeighbors   += FReal(nbBox);
				varianceNeighbors  += FReal(nbBox*nbBox) ;
			} while(octreeIterator.moveRight());
			//
			averageNeighbors/=FReal(nbLeafs) ;
			varianceNeighbors = varianceNeighbors/nbLeafs-averageNeighbors*averageNeighbors;
			//
			std::cout << "[STAT]  P2P Neighbors for each leaf " << std::endl
					<< "[STAT]           Min:       " <<  minBox << std::endl
					<< "[STAT]           Max:      " <<  maxBox << std::endl
					<< "[STAT]           Average: " <<  averageNeighbors<< std::endl
					<< "[STAT]           Variance: " <<  varianceNeighbors << std::endl<< std::endl;
		}
		//
		//    ---------------  END LEAVES ---------------
		//
		{

			long long int totalCells = 0;
			long long int totalM2L = 0;
			long long int totalM2ML2L = 0;

			int nbCellsAtTop = 0;
			int nbCellsAtBottom = 0;

			octreeIterator.gotoBottomLeft();

			for(int idxLevel = NbLevels - 1 ; idxLevel >= 1 ; --idxLevel){
				removeM =0 ;
				int nbCellsAtLevel = 0;
				int nbChildAtLevel = 0, adaptiveCell=0 ,nbChildForMyCell;
				int nbNeighborsAtLevel = 0;
				//
				int nbM2LNeighbors, minM2L=500,maxM2L=-1;
				FReal averageM2LNeighbors=0.0, varianceM2LNeighbors=0.0	;
				//
				const CellClass* neighborsM2L[343];
				do{
					++nbCellsAtLevel;
					// Check number of
					if( idxLevel != NbLevels - 1 ){
						nbChildForMyCell=0 ;
						auto** child = octreeIterator.getCurrentChild();
						auto  &  myCell = *(octreeIterator.getCurrentCell());
						int nbPart = 0 ;
						//						std::cout << "NB: ";
						for(int idxChild = 0 ; idxChild < 8 ; ++idxChild){
							if(child[idxChild]) {
								++nbChildForMyCell;
								nbPart += child[idxChild]->getnbPart();
								//								std::cout << "  "<< child[idxChild]->getnbPart();
							}
						}
						//						std::cout << std::endl;
						octreeIterator.getCurrentCell()->addPart(nbPart);
						if(octreeIterator.getCurrentCell()->getnbPart() < sminM){
							++removeM;
						}
						nbChildAtLevel += nbChildForMyCell ;
						if(nbChildForMyCell>1) {
							++adaptiveCell ;
						}
						else
						{myCell.setCelladaptive();}
					}
					const CellClass* neighbors[343];
					nbNeighborsAtLevel += tree.getInteractionNeighbors(neighbors, octreeIterator.getCurrentGlobalCoordinate(),idxLevel);
					//
					//  M2L Neighbors
					//
					nbM2LNeighbors = tree.getInteractionNeighbors(neighborsM2L, octreeIterator.getCurrentGlobalCoordinate(),idxLevel);
					minM2L                          =  FMath::Min(minM2L,nbM2LNeighbors) ;
					maxM2L                         =  FMath::Max(maxM2L,nbM2LNeighbors) ;
					averageM2LNeighbors  += FReal(nbM2LNeighbors) ;
					varianceM2LNeighbors += FReal(nbM2LNeighbors*nbM2LNeighbors) ;
				} while(octreeIterator.moveRight());
				//
				averageM2LNeighbors/=FReal(nbCellsAtLevel) ;
				varianceM2LNeighbors = varianceM2LNeighbors/nbCellsAtLevel-averageM2LNeighbors*averageM2LNeighbors;

				std::cout << "[STAT] Level = " << idxLevel << std::endl
						<< "[STAT]     >> Nb Cells =                                 \t " << nbCellsAtLevel << std::endl
						<< "[STAT]     >> Nb Adaptive Cells =                   \t" << adaptiveCell    << "  Non Adaptive (1 son): " <<100*FReal(nbCellsAtLevel-adaptiveCell)/nbCellsAtLevel<<std::endl
						<< "[STAT]     >> Number of M2M to remove: " << 		removeM <<	 std::endl
						<< "[STAT]     >> Nb M2M/L2L interactions =        \t" << nbChildAtLevel << std::endl
						<< "[STAT]     >> Average M2M/L2L interactions = \t" << FReal(nbChildAtLevel)/FReal(nbCellsAtLevel) << std::endl
						<< "[STAT]     >> Nb M2L interactions =                 \t" << nbNeighborsAtLevel << std::endl;
				std::cout << "[STAT]     >> M2L Neighbors for each leaf " << std::endl
						<< "[STAT]             >>  Min:        " <<  minM2L << std::endl
						<<  "[STAT]             >> Max:       " <<  maxM2L << std::endl
						<<  "[STAT]             >> Average: " <<  averageM2LNeighbors<< std::endl
						<<  "[STAT]             >> Variance: " <<  varianceM2LNeighbors << std::endl<< std::endl;

				totalCells += (long long int)(nbCellsAtLevel);
				totalM2L += (long long int)(nbNeighborsAtLevel);
				totalM2ML2L += (long long int)(nbChildAtLevel);
				nbCellsAtTop = nbCellsAtLevel;
				if( idxLevel == NbLevels - 1 ) nbCellsAtBottom = nbCellsAtLevel;
				std::cout << std::endl;
				//
				//  Go to next level
				octreeIterator.moveUp();
				octreeIterator.gotoLeft();
				//
			}
			//
			// Global statistics on the octree
			//
			std::cout << "[STAT] For all the tree\n";
			std::cout << "[STAT] >> Total Nb Cells = " << totalCells-nbCellsAtTop << "\n";
			std::cout << "[STAT] >> Total Nb M2M/L2L interactions = " << totalM2ML2L << "\n";
			std::cout << "[STAT] >> Total Average M2M/L2L interactions = " << FReal(totalM2ML2L-nbCellsAtTop)/FReal(totalCells-nbCellsAtBottom) << "\n";
			std::cout << "[STAT] >> Total Nb M2L interactions per cell = " << totalM2L << "\n";
			std::cout << "[STAT] >> Total Average M2L interactions per cell = " << FReal(totalM2L)/FReal(totalCells) << "\n";

			std::cout << "nbCellsAtTop " << nbCellsAtTop <<std::endl;
			//		idCell = totalCells ;
		}

	}
	//
	//  Set Global id for tulip export
	//
	long int idCell  = setGlobalID(tree);
	//
	//
	std::cout << " start export tulip " <<std::endl;

	//
	// Set Global indexes to save the octree in tulip format
	//
	// -----------------------------------------------------
	std::ofstream tlp("aa.tlp", std::ofstream::out );

	TulipExport( tlp, idCell, tree);

	std::cout << " NVCells " << idCell <<  std::endl ;


	octreeIterator.gotoTop() ;
	for(int idxLevel = 1 ; idxLevel < NbLevels ;  ++idxLevel){
		std::cout << "idxLevel: "<<idxLevel << "  Iterator Level    " << octreeIterator.level()<<  "  is leaves level: " << octreeIterator.isAtLeafLevel()	<<std::endl;
		octreeIterator.moveDown() ;octreeIterator.gotoLeft();
	}
	std::cout << "Level max " <<  NbLevels <<std::endl;



	std::ofstream file("aa.tree", std::ofstream::out );
	//
	octreeIterator.gotoTop() ;  // here we are at level 1 (first child)
	//
	////////////////////////////////////////////////////////////////////
	//              Export adaptive tree in our format
	////////////////////////////////////////////////////////////////////
	//
	// -----------------------------------------------------
	//
	std::cout << "Top of the octree " << octreeIterator.level() << std::endl ;
	for(int idxLevel = 1 ; idxLevel < NbLevels ;  ++idxLevel){
		file << std::endl << "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$"<< std::endl;
		file << "  Level " << idxLevel <<" OLevel  "<<  octreeIterator.level()<<  "  -- leave level " <<   std::boolalpha <<  octreeIterator.isAtLeafLevel() << std::endl;
		do{
			file << *(octreeIterator.getCurrentCell())<< std::endl ;
		} while(octreeIterator.moveRight());
		octreeIterator.moveDown() ;
		octreeIterator.gotoLeft();
	}
	std::cout << "   END    " << std::endl;

	// Check
	octreeIterator.gotoBottomLeft();
	do {
		std::cout << " Level " <<octreeIterator.level() <<std::endl;
	}while(octreeIterator.moveUp() );
	//
	return 0;
}