adaptiveOctree.cpp 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Berenger Bramas
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.  
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info". 
// "http://www.gnu.org/licenses".
// ===================================================================================
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <ctime>

#include "Utils/FParameters.hpp"
#include "Containers/FOctree.hpp"

#include "AdaptiveTree/FAdaptCell.hpp"
#include "AdaptiveTree/FAdaptTools.hpp"

#include "Components/FSimpleIndexedLeaf.hpp"
#include "Components/FBasicParticleContainer.hpp"


#include "Utils/FMath.hpp"
#include "Files/FFmaGenericLoader.hpp"


/// \file  statisticsOnOctree.cpp
//!
//! \brief Driver to generate statistics on the octree for the particle distribution given by parameter -infile
//!  \authors B. Bramas, O. Coulaud
//!
//!  This code gives you some statistics (Particles, Cells, P2P and M2L number of operators) on the octree
//!    Those statistics are shown level by level.
//!
//! The statistics are
//!
//!  <b>for particles:</b> min/max particles per leaf, the average number, the variance and the average number of P2P neighbors.
//!
//! <b>For each level in the octree</b>
//!
//!  \arg       The number of cells, of adaptive cells (cell with more one child)
//!  \arg          The average, min and max numbers of M2L operators and also its  variance.

//!
//!  <b> General arguments:</b>
//!     \param   -help(-h)      to see the parameters available in this driver
//!     \param   -depth    The depth of the octree
//!     \param   -subdepth          Specifies the size of the sub octree
//!
//!     \param   -infile name   Name of the particles file. The file have to be in our FMA format
//!     \param    -bin              if the input file in binary mode
//!     \param   -outfile name Generic name  for output file  (without extension)
//!
//!  <b> Statistics options:</b>
//!   \param -stat to build the statistivs on the octree
//!   \param -histP build a file to generate histogram of particles per leaf. The data are store in file given by -outfile arguments and  .txt extension. (only if -stat is set)
//   \param   -sM    s_min^M threshold for Multipole expansion (l+1)^2 for Spherical harmonics"
//   \param   -sL    s_min^M threshold for local expansion  (l+1)^2 for Spherical harmonics"
// Simply create particles and try the kernels
//
void usage() {
	std::cout << "Driver to obtain statistics on the octree" << std::endl;
	std::cout <<	 "Options  "<< std::endl
			<<     "      -help       to see the parameters    " << std::endl
			<<	     "      -depth        the depth of the octree   "<< std::endl
			<<	     "      -subdepth   specifies the size of the sub octree   " << std::endl
			<<     "      -infile name specifies the name of the particle distribution" << std::endl
			<<     "      -outfile name  specifies the file for the diagnostics" << std::endl
			<<     "      -histP   build the histogram of the particle number per leaf"<<std::endl
			<<     "      -sM    s_min^M threshold for Multipole (l+1)^2 for Spherical harmonics"<<std::endl;
}

int main(int argc, char ** argv){
	typedef FBasicParticleContainer<0>                                     ContainerClass;
	typedef FSimpleIndexedLeaf<ContainerClass>                      LeafClass;
	typedef FAdaptCell<FBasicCell,LeafClass>                            CellClass;
	typedef FOctree<CellClass, ContainerClass, LeafClass >       OctreeClass;
	//
	if(FParameters::existParameter(argc, argv, "-h")||FParameters::existParameter(argc, argv, "-help")|| (argc < 3 )){
		usage() ;
		exit(-1);
	}
	//
	//   Octree parameters
	//
	const int NbLevels        = FParameters::getValue(argc,argv,"-depth", 5);
	const int SizeSubLevels = FParameters::getValue(argc,argv,"-subdepth", 3);
	const int sminM            = FParameters::getValue(argc,argv,"-sM", 0);
	const int sminL             = FParameters::getValue(argc,argv,"-sL", 0);
	//
	//  input and output  Files parameters
	//
	const  std::string filename(FParameters::getStr(argc,argv,"-infile", "../Data/prolate50.fma"));
	const std::string genericFileName(FParameters::getStr(argc,argv,"-outfile",   "output"));
	//
	std::cout << "Opening : " << filename << "\n";
	FFmaGenericLoader loader(filename);
	//
	// -----------------------------------------------------
	OctreeClass tree(NbLevels, SizeSubLevels,loader.getBoxWidth(),loader.getCenterOfBox());
	//
	// -----------------------------------------------------
	//     Creating and Inserting particles in the tree
	// -----------------------------------------------------
	//
	std::cout << "Tree box is cubic "<<std::endl
			<< "         Centre:   "<< loader.getCenterOfBox() <<std::endl
			<< "         Length:  "<< loader.getBoxWidth()       <<std::endl <<std::endl;
	//
	std::cout << "Creating and Inserting " << loader.getNumberOfParticles() << " particles ..." << std::endl;
	std::cout << "\tHeight : " << NbLevels << " \t sub-height : " << SizeSubLevels << std::endl;
	FPoint particlePosition, minPos, maxPos;
	FReal physicalValue;
	for(int idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
		loader.fillParticle(&particlePosition,&physicalValue);
		//
		minPos.setX(FMath::Min(minPos.getX(),particlePosition.getX())) ;
		minPos.setY(FMath::Min(minPos.getY(),particlePosition.getY())) ;
		minPos.setZ(FMath::Min(minPos.getZ(),particlePosition.getZ())) ;
		maxPos.setX(FMath::Max(maxPos.getX(),particlePosition.getX())) ;
		maxPos.setX(FMath::Max(maxPos.getY(),particlePosition.getY())) ;
		maxPos.setX(FMath::Max(maxPos.getZ(),particlePosition.getZ())) ;
		//
		tree.insert(particlePosition );
	}
	std::cout << "Data are inside the box delimited by "<<std::endl
			<< "         Min corner:  "<< minPos<<std::endl
			<< "         Max corner:  "<< maxPos<<std::endl <<std::endl;
	//
	OctreeClass::Iterator octreeIterator(&tree);

	//
	// -----------------------------------------------------
	//     Build information for adaptive tree
	// -----------------------------------------------------
	//
	{
		std::cout << " start build smin criteria " <<std::endl;
		//
		adaptiveTreeBuilSminC(tree,sminM,sminL) ;
		//
		//  Set Global id
		//
//		long int idCell  = setGlobalID(tree);
		//
		//  Build CA and FA  lists
		std::cout << " start building CA and FA lists " <<std::endl;
		//
		adaptiveTreeBuildLists(tree) ;
		//
	}
	//
	// -----------------------------------------------------
	//     Start statistics
	// -----------------------------------------------------
	//
	int removeM = 0 ;
	if(FParameters::existParameter(argc, argv, "-stat")){ // get stats
		{    // get stats on the leaf level (Particles)
			long int allLeaves =  (1 << (3* (NbLevels-1) )) ;
			std::cout << std::endl<< "[STAT] Leaf level "  << " is  " << NbLevels << std::endl;
			std::cout << "[STAT] potentials leafs number is " << allLeaves<< std::endl;

			FReal averageParticles = 0.0, varianceParticles = 0.0 ;
			int nbLeafs = 0,minParticles = 1000000.0, maxParticles = 0.0 ;
			//
			// Start to compute statistics on particles
			//
			int  nbPart ,nbTPart=0;
			octreeIterator.gotoBottomLeft();
			do{
				nbPart                   = octreeIterator.getCurrentListTargets()->getNbParticles() ;
				minParticles          =  FMath::Min(minParticles,nbPart) ;
				maxParticles         =  FMath::Max(maxParticles,nbPart) ;
				nbTPart              += nbPart;
				varianceParticles += FReal(nbPart*nbPart) ;
				++nbLeafs;
				if(nbPart < sminM){
					++removeM;
				}
			} while(octreeIterator.moveRight());
			averageParticles   = nbTPart/FReal(nbLeafs);
			varianceParticles  = varianceParticles/FReal(nbLeafs) - averageParticles*averageParticles;
			//
			std::cout.precision(4);
			std::cout << "[STAT] Non empty leafs: " << nbLeafs << " % of non empty leaves: "<<100*static_cast<FReal>(nbLeafs)/static_cast<FReal>(allLeaves)<<" %" << std::endl;
			std::cout << "[STAT]  Particles on leafs:"  << std::endl
					<<   "[STAT]           Min:         "<< minParticles << std::endl
					<<   "[STAT]           Max:        "<< maxParticles << std::endl
					<<   "[STAT]           Average:  "<< averageParticles << std::endl
					<<   "[STAT]           Variance: " << varianceParticles << std::endl;
			std::cout << "[STAT]  number of P2M to remove: " << 		removeM <<	 std::endl;
			//
			//  Histogram of particles per leaf
			//

			if(FParameters::existParameter(argc, argv, "-histP")){
				int size = maxParticles+1;
				int * hist = new int [size] ;
				memset(hist,0,(size)*sizeof(int));
				octreeIterator.gotoBottomLeft();
				do{
					nbPart  = octreeIterator.getCurrentListTargets()->getNbParticles() ;
					++hist[nbPart] ;
				} while(octreeIterator.moveRight());
				//
				// write data
				//
				std::ofstream outfile( genericFileName + ".txt", std::ofstream::out);
				if(!outfile) {
					std::cout << "Cannot open file "<< std::endl;
					exit(-1)	;
				}	//
				outfile << "# Particle histogram.   "<< size << " chunk" <<std::endl;
				for(int i=0 ; i < size ; ++i){
					outfile << i << "  " << hist[i] <<std::endl;
				}
				delete [] hist ;
			}
			FReal averageNeighbors = 0.0, varianceNeighbors =0.0 ;
			int nbBox,minBox=30,maxBox=0;
			octreeIterator.gotoBottomLeft();
			ContainerClass*  neighborsP2P[27];
			do{
				//
				//  P2P Neighbors
				//
				nbBox = tree.getLeafsNeighbors(neighborsP2P, octreeIterator.getCurrentGlobalCoordinate(),NbLevels-1) ;
				// need the current particles and neighbors particles
				minBox                      =  FMath::Min(minBox,nbBox) ;
				maxBox                     =  FMath::Max(maxBox,nbBox) ;
				averageNeighbors   += FReal(nbBox);
				varianceNeighbors  += FReal(nbBox*nbBox) ;
			} while(octreeIterator.moveRight());
			//
			averageNeighbors/=FReal(nbLeafs) ;
			varianceNeighbors = varianceNeighbors/nbLeafs-averageNeighbors*averageNeighbors;
			//
			std::cout << "[STAT]  P2P Neighbors for each leaf " << std::endl
					<< "[STAT]           Min:       " <<  minBox << std::endl
					<< "[STAT]           Max:      " <<  maxBox << std::endl
					<< "[STAT]           Average: " <<  averageNeighbors<< std::endl
					<< "[STAT]           Variance: " <<  varianceNeighbors << std::endl<< std::endl;
		}
		//
		//    ---------------  END LEAVES ---------------
		//
		{

			long long int totalCells = 0;
			long long int totalM2L = 0;
			long long int totalM2ML2L = 0;

			int nbCellsAtTop = 0;
			int nbCellsAtBottom = 0;

			octreeIterator.gotoBottomLeft();

			for(int idxLevel = NbLevels - 1 ; idxLevel >= 1 ; --idxLevel){
				removeM =0 ;
				int nbCellsAtLevel = 0;
				int nbChildAtLevel = 0, adaptiveCell=0 ,nbChildForMyCell;
				int nbNeighborsAtLevel = 0;
				//
				int nbM2LNeighbors, minM2L=500,maxM2L=-1;
				FReal averageM2LNeighbors=0.0, varianceM2LNeighbors=0.0	;
				//
				const CellClass* neighborsM2L[343];
				do{
					++nbCellsAtLevel;
					// Check number of
					if( idxLevel != NbLevels - 1 ){
						nbChildForMyCell=0 ;
						auto** child = octreeIterator.getCurrentChild();
						auto  &  myCell = *(octreeIterator.getCurrentCell());
						int nbPart = 0 ;
						//						std::cout << "NB: ";
						for(int idxChild = 0 ; idxChild < 8 ; ++idxChild){
							if(child[idxChild]) {
								++nbChildForMyCell;
								nbPart += child[idxChild]->getnbPart();
								//								std::cout << "  "<< child[idxChild]->getnbPart();
							}
						}
						//						std::cout << std::endl;
						octreeIterator.getCurrentCell()->addPart(nbPart);
						if(octreeIterator.getCurrentCell()->getnbPart() < sminM){
							++removeM;
						}
						nbChildAtLevel += nbChildForMyCell ;
						if(nbChildForMyCell>1) {
							++adaptiveCell ;
						}
						else
						{myCell.setCelladaptive();}
					}
					const CellClass* neighbors[343];
					nbNeighborsAtLevel += tree.getInteractionNeighbors(neighbors, octreeIterator.getCurrentGlobalCoordinate(),idxLevel);
					//
					//  M2L Neighbors
					//
					nbM2LNeighbors = tree.getInteractionNeighbors(neighborsM2L, octreeIterator.getCurrentGlobalCoordinate(),idxLevel);
					minM2L                          =  FMath::Min(minM2L,nbM2LNeighbors) ;
					maxM2L                         =  FMath::Max(maxM2L,nbM2LNeighbors) ;
					averageM2LNeighbors  += FReal(nbM2LNeighbors) ;
					varianceM2LNeighbors += FReal(nbM2LNeighbors*nbM2LNeighbors) ;
				} while(octreeIterator.moveRight());
				//
				averageM2LNeighbors/=FReal(nbCellsAtLevel) ;
				varianceM2LNeighbors = varianceM2LNeighbors/nbCellsAtLevel-averageM2LNeighbors*averageM2LNeighbors;

				std::cout << "[STAT] Level = " << idxLevel << std::endl
						<< "[STAT]     >> Nb Cells =                                 \t " << nbCellsAtLevel << std::endl
						<< "[STAT]     >> Nb Adaptive Cells =                   \t" << adaptiveCell    << "  Non Adaptive (1 son): " <<100*FReal(nbCellsAtLevel-adaptiveCell)/nbCellsAtLevel<<std::endl
						<< "[STAT]     >> Number of M2M to remove: " << 		removeM <<	 std::endl
						<< "[STAT]     >> Nb M2M/L2L interactions =        \t" << nbChildAtLevel << std::endl
						<< "[STAT]     >> Average M2M/L2L interactions = \t" << FReal(nbChildAtLevel)/FReal(nbCellsAtLevel) << std::endl
						<< "[STAT]     >> Nb M2L interactions =                 \t" << nbNeighborsAtLevel << std::endl;
				std::cout << "[STAT]     >> M2L Neighbors for each leaf " << std::endl
						<< "[STAT]             >>  Min:        " <<  minM2L << std::endl
						<<  "[STAT]             >> Max:       " <<  maxM2L << std::endl
						<<  "[STAT]             >> Average: " <<  averageM2LNeighbors<< std::endl
						<<  "[STAT]             >> Variance: " <<  varianceM2LNeighbors << std::endl<< std::endl;

				totalCells += (long long int)(nbCellsAtLevel);
				totalM2L += (long long int)(nbNeighborsAtLevel);
				totalM2ML2L += (long long int)(nbChildAtLevel);
				nbCellsAtTop = nbCellsAtLevel;
				if( idxLevel == NbLevels - 1 ) nbCellsAtBottom = nbCellsAtLevel;
				std::cout << std::endl;
				//
				//  Go to next level
				octreeIterator.moveUp();
				octreeIterator.gotoLeft();
				//
			}
			//
			// Global statistics on the octree
			//
			std::cout << "[STAT] For all the tree\n";
			std::cout << "[STAT] >> Total Nb Cells = " << totalCells-nbCellsAtTop << "\n";
			std::cout << "[STAT] >> Total Nb M2M/L2L interactions = " << totalM2ML2L << "\n";
			std::cout << "[STAT] >> Total Average M2M/L2L interactions = " << FReal(totalM2ML2L-nbCellsAtTop)/FReal(totalCells-nbCellsAtBottom) << "\n";
			std::cout << "[STAT] >> Total Nb M2L interactions per cell = " << totalM2L << "\n";
			std::cout << "[STAT] >> Total Average M2L interactions per cell = " << FReal(totalM2L)/FReal(totalCells) << "\n";

			std::cout << "nbCellsAtTop " << nbCellsAtTop <<std::endl;
			//		idCell = totalCells ;
		}

	}
	//
	//  Set Global id for tulip export
	//
	long int idCell  = setGlobalID(tree);
	//
	//
	std::cout << " start export tulip " <<std::endl;

	//
	// Set Global indexes to save the octree in tulip format
	//
	// -----------------------------------------------------
	std::ofstream tlp("aa.tlp", std::ofstream::out );

	TulipExport( tlp, idCell, tree);

	std::cout << " NVCells " << idCell <<  std::endl ;


	octreeIterator.gotoTop() ;
	for(int idxLevel = 1 ; idxLevel < NbLevels ;  ++idxLevel){
		std::cout << "idxLevel: "<<idxLevel << "  Iterator Level    " << octreeIterator.level()<<  "  is leaves level: " << octreeIterator.isAtLeafLevel()	<<std::endl;
		octreeIterator.moveDown() ;octreeIterator.gotoLeft();
	}
	std::cout << "Level max " <<  NbLevels <<std::endl;



	std::ofstream file("aa.tree", std::ofstream::out );
	//
	octreeIterator.gotoTop() ;  // here we are at level 1 (first child)
	//
	////////////////////////////////////////////////////////////////////
	//              Export adaptive tree in our format
	////////////////////////////////////////////////////////////////////
	//
	// -----------------------------------------------------
	//
	std::cout << "Top of the octree " << octreeIterator.level() << std::endl ;
	for(int idxLevel = 1 ; idxLevel < NbLevels ;  ++idxLevel){
		file << std::endl << "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$"<< std::endl;
		file << "  Level " << idxLevel <<" OLevel  "<<  octreeIterator.level()<<  "  -- leave level " <<   std::boolalpha <<  octreeIterator.isAtLeafLevel() << std::endl;
		do{
			file << *(octreeIterator.getCurrentCell())<< std::endl ;
		} while(octreeIterator.moveRight());
		octreeIterator.moveDown() ;
		octreeIterator.gotoLeft();
	}
	std::cout << "   END    " << std::endl;

	// Check
	octreeIterator.gotoBottomLeft();
	do {
		std::cout << " Level " <<octreeIterator.level() <<std::endl;
	}while(octreeIterator.moveUp() );
	//
	return 0;
}