utestInterpolationMultiRhs.cpp 14.9 KB
Newer Older
1
// ===================================================================================
2 3 4 5
// Copyright ScalFmm 2016 INRIA, Olivier Coulaud, Bérenger Bramas,
// Matthias Messner olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the
// FMM.
6
//
7
// This software is governed by the CeCILL-C and LGPL licenses and
8
// abiding by the rules of distribution of free software.
9 10 11
// An extension to the license is given to allow static linking of scalfmm
// inside a proprietary application (no matter its license).
// See the main license file for more details.
12 13 14 15
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 17 18
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
19 20 21 22
// ===================================================================================

// ==== CMAKE =====
// @FUSE_BLAS
COULAUD Olivier's avatar
COULAUD Olivier committed
23
// @FUSE_FFT
BRAMAS Berenger's avatar
BRAMAS Berenger committed
24
// @SCALFMM_PRIVATE
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
// ==============
#include <array>

#include "ScalFmmConfig.h"
#include "Utils/FGlobal.hpp"

#include "Containers/FOctree.hpp"

#include "Files/FFmaGenericLoader.hpp"

#include "Core/FFmmAlgorithmThread.hpp"
#include "Core/FFmmAlgorithm.hpp"

#include "FUTester.hpp"

#include "Components/FSimpleLeaf.hpp"


#include "Kernels/Chebyshev/FChebCell.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
45
#include "Kernels/Chebyshev/FChebKernel.hpp"
46
#include "Kernels/Chebyshev/FChebSymKernel.hpp"
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

#include "Kernels/Uniform/FUnifCell.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Uniform/FUnifKernel.hpp"


#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
/*
  In this test we compare the spherical FMM results and the direct results.
 */


/** the test class
 *
 */
class TestInterpolationKernel : public FUTester<TestInterpolationKernel> {

BRAMAS Berenger's avatar
BRAMAS Berenger committed
64 65 66 67
    ///////////////////////////////////////////////////////////
    // The tests!
    ///////////////////////////////////////////////////////////

68
    template <class FReal, class CellClass, class ContainerClass, class KernelClass, class MatrixKernelClass,
BRAMAS Berenger's avatar
BRAMAS Berenger committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
              class LeafClass, class OctreeClass, class FmmClass, const int NVals>
    void RunTest()	{
        // Warning in make test the exec dir it Build/UTests
        // Load particles
        //
        // Load particles
        //
        if(sizeof(FReal) == sizeof(float) ) {
            std::cerr << "No input data available for Float "<< std::endl;
            exit(EXIT_FAILURE);
        }
        const std::string parFile( (sizeof(FReal) == sizeof(float))?
                                       "Test/DirectFloat.bfma":
                                       "UTest/DirectDouble.bfma");
        //
        std::string filename(SCALFMMDataPath+parFile);
        //
86
        FFmaGenericLoader<FReal> loader(filename);
BRAMAS Berenger's avatar
BRAMAS Berenger committed
87 88 89 90 91 92 93 94 95 96 97
        if(!loader.isOpen()){
            Print("Cannot open particles file.");
            uassert(false);
            return;
        }
        Print("Number of particles:");
        Print(loader.getNumberOfParticles());

        const int NbLevels        = 4;
        const int SizeSubLevels = 2;

98
        // std::cout << "\nInterpolation FMM (ORDER="<< ORDER << ") ... " << std::endl;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
99 100 101 102 103

        // Create Matrix Kernel
        const MatrixKernelClass MatrixKernel; // FUKernelTester is only designed to work with 1/R, i.e. matrix kernel ctor takes no argument.
        //
        FSize nbParticles = loader.getNumberOfParticles() ;
104
        FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
BRAMAS Berenger's avatar
BRAMAS Berenger committed
105 106

        loader.fillParticle(particles,nbParticles);
107

BRAMAS Berenger's avatar
BRAMAS Berenger committed
108 109
        // Create octree
        OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
110
        // Insert particle in the tree
111
        for(FSize idxPart = 0 ; idxPart < nbParticles ; ++idxPart){
112 113 114 115 116 117 118 119
            // Convert FReal[NVALS] to std::array<FReal,NVALS>
            std::array<FReal, (1+4*1)*NVals> physicalState;
            for(int idxVals = 0 ; idxVals < NVals ; ++idxVals){
                physicalState[0*NVals+idxVals]= particles[idxPart].getPhysicalValue();
                physicalState[1*NVals+idxVals]=0.0;
                physicalState[2*NVals+idxVals]=0.0;
                physicalState[3*NVals+idxVals]=0.0;
                physicalState[4*NVals+idxVals]=0.0;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
120
            }
121 122 123 124
            // put in tree
            tree.insert(particles[idxPart].getPosition(), idxPart, physicalState);
        }

BRAMAS Berenger's avatar
BRAMAS Berenger committed
125 126 127 128 129 130 131 132

        // Run FMM
        Print("Fmm...");
        KernelClass kernels(NbLevels, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel);
        FmmClass algo(&tree,&kernels);
        algo.execute();
        //
        FReal energy= 0.0 , energyD = 0.0 ;
133
        for(FSize idx = 0 ; idx < loader.getNumberOfParticles()  ; ++idx){
BRAMAS Berenger's avatar
BRAMAS Berenger committed
134 135 136 137 138
            energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
        }
        //
        // Compare
        Print("Compute Diff...");
139 140
        FMath::FAccurater<FReal> potentialDiff[NVals];
        FMath::FAccurater<FReal> fx, fy, fz;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
141 142 143 144 145 146 147 148 149
        {
            tree.forEachLeaf([&](LeafClass* leaf){
                //
                for(int idxVals = 0 ; idxVals < NVals ; ++idxVals){
                    const FReal* const physicalValues = leaf->getTargets()->getPhysicalValues(idxVals);
                    const FReal*const potentials = leaf->getTargets()->getPotentials(idxVals);
                    const FReal*const forcesX = leaf->getTargets()->getForcesX(idxVals);
                    const FReal*const forcesY = leaf->getTargets()->getForcesY(idxVals);
                    const FReal*const forcesZ = leaf->getTargets()->getForcesZ(idxVals);
150 151
                    const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
                    const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
BRAMAS Berenger's avatar
BRAMAS Berenger committed
152

153
                    for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
BRAMAS Berenger's avatar
BRAMAS Berenger committed
154

155
                        const FSize indexPartOrig = indexes[idxPart];
BRAMAS Berenger's avatar
BRAMAS Berenger committed
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
                        //					std::cout << " index "<< indexPartOrig << "   "  << particles[indexPartOrig].getPotential() << "   " << potentials[idxPart] << std::endl;
                        potentialDiff[idxVals].add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
                        //
                        fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
                        fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
                        fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
                        //

                        energy   += potentials[idxPart]*physicalValues[idxPart];
                    }

                }
            });

        }
        delete[] particles;
        energy /=NVals;
        // Print for information
        double errorPotRL2=0.0, errorPotRMS=0.0;
        Print("Potential diff is = ");
        for(int idxVals = 0 ; idxVals < NVals ; ++idxVals){
            printf("   Charge: %d\n",		idxVals);
            printf("         Pot L2Norm     %e\n",potentialDiff[idxVals].getL2Norm());
            printf("         Pot RL2Norm   %e\n",potentialDiff[idxVals].getRelativeL2Norm());
            printf("         Pot RMSError   %e\n",potentialDiff[idxVals].getRMSError());
            errorPotRL2 = std::max(errorPotRL2, potentialDiff[idxVals].getRelativeL2Norm());
            errorPotRMS = std::max(errorPotRMS, potentialDiff[idxVals].getRMSError());
        }
        Print("Fx diff is = ");
        printf("         Fx L2Norm     %e\n",fx.getL2Norm());
        printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
        printf("         Fx RMSError   %e\n",fx.getRMSError());
        Print("Fy diff is = ");
        printf("        Fy L2Norm     %e\n",fy.getL2Norm());
        printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
        printf("        Fy RMSError   %e\n",fy.getRMSError());
        Print("Fz diff is = ");
        printf("        Fz L2Norm     %e\n",fz.getL2Norm());
        printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
        printf("        Fz RMSError   %e\n",fz.getRMSError());
        FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
        printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
        printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
        printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
        printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

        // Assert
        const FReal MaximumDiffPotential = FReal(9e-3);
        const FReal MaximumDiffForces     = FReal(9e-2);

        Print("Test1 - Error Relative L2 norm Potential ");
        uassert(errorPotRL2 < MaximumDiffPotential);    //1
        Print("Test2 - Error RMS L2 norm Potential ");
        uassert(errorPotRMS< MaximumDiffPotential);  //2
        Print("Test3 - Error Relative L2 norm FX ");
        uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
        Print("Test4 - Error RMS L2 norm FX ");
        uassert(fx.getRMSError() < MaximumDiffForces);                      //4
        Print("Test5 - Error Relative L2 norm FY ");
        uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
        Print("Test6 - Error RMS L2 norm FY ");
        uassert(fy.getRMSError() < MaximumDiffForces);                      //6
        Print("Test7 - Error Relative L2 norm FZ ");
        uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
        Print("Test8 - Error RMS L2 norm FZ ");
        uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
        Print("Test9 - Error Relative L2 norm F ");
        uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
        Print("Test10 - Relative error Energy ");
        uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy


        // Compute multipole local rhs diff
229 230
        FMath::FAccurater<FReal> localDiff;
        FMath::FAccurater<FReal> multiPoleDiff;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        tree.forEachCell([&](CellClass* cell){
            for( int idxRhs = 1 ; idxRhs < NVals ; ++idxRhs){
                localDiff.add(cell->getLocal(0), cell->getLocal(idxRhs), cell->getVectorSize());
                multiPoleDiff.add(cell->getMultipole(0), cell->getMultipole(idxRhs), cell->getVectorSize());
            }
        });
        Print("Local diff is = ");
        Print(localDiff.getL2Norm());
        Print(localDiff.getInfNorm());
        Print("Multipole diff is = ");
        Print(multiPoleDiff.getL2Norm());
        Print(multiPoleDiff.getInfNorm());

        uassert(localDiff.getL2Norm()  < 1e-10);
        uassert(localDiff.getInfNorm() < 1e-10);
        uassert(multiPoleDiff.getL2Norm()  < 1e-10);
        uassert(multiPoleDiff.getInfNorm() < 1e-10);
    }

    /** If memstas is running print the memory used */
    void PostTest() {
        if( FMemStats::controler.isUsed() ){
            std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated()
                      << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
            std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated()
                      << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
            std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated()
                      << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
        }
    }


    ///////////////////////////////////////////////////////////
    // Set the tests!
    ///////////////////////////////////////////////////////////


    /** TestUnifKernel */
    void TestUnifKernel(){
270
        typedef double FReal;
COULAUD Olivier's avatar
COULAUD Olivier committed
271
        const int NVals = 3;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
272 273
        const unsigned int ORDER = 6 ;
        // run test
274
        typedef FInterpMatrixKernelR<FReal> MatrixKernelClass;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
275 276


277
        typedef FP2PParticleContainerIndexed<FReal,1,1,NVals> ContainerClass;
278
        typedef FSimpleLeaf<FReal, ContainerClass >  LeafClass;
279
        typedef FUnifCell<FReal,ORDER,1,1,NVals> CellClass;
280 281
        typedef FOctree<FReal, CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FUnifKernel<FReal,CellClass,ContainerClass,MatrixKernelClass,ORDER,NVals> KernelClass;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
282 283
        typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;

284
        RunTest<FReal,CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass, NVals>();
BRAMAS Berenger's avatar
BRAMAS Berenger committed
285 286 287 288
    }

    /** TestChebSymKernel */
    void TestChebSymKernel(){
289
        typedef double FReal;
COULAUD Olivier's avatar
COULAUD Olivier committed
290
        const int NVals = 3;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
291
        const unsigned int ORDER = 6;
292
        typedef FP2PParticleContainerIndexed<FReal,1,1,NVals> ContainerClass;
293 294
        typedef FSimpleLeaf<FReal, ContainerClass> LeafClass;
        typedef FInterpMatrixKernelR<FReal> MatrixKernelClass;
295
        typedef FChebCell<FReal,ORDER, 1, 1, NVals> CellClass;
296 297
        typedef FOctree<FReal, CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FChebSymKernel<FReal,CellClass,ContainerClass,MatrixKernelClass,ORDER, NVals> KernelClass;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
298 299
        typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
        // run test
300
        RunTest<FReal,CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass, NVals>();
BRAMAS Berenger's avatar
BRAMAS Berenger committed
301 302
    }

303 304
    /** TestChebKernel */
    void TestChebKernel(){
305
        typedef double FReal;
306 307
        const int NVals = 3;
        const unsigned int ORDER = 6;
308
        typedef FP2PParticleContainerIndexed<FReal,1,1,NVals> ContainerClass;
309 310
        typedef FSimpleLeaf<FReal, ContainerClass> LeafClass;
        typedef FInterpMatrixKernelR<FReal> MatrixKernelClass;
311
        typedef FChebCell<FReal,ORDER, 1, 1, NVals> CellClass;
312 313
        typedef FOctree<FReal, CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FChebKernel<FReal,CellClass,ContainerClass,MatrixKernelClass,ORDER, NVals> KernelClass;
314 315
        typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
        // run test
316
        RunTest<FReal,CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass, NVals>();
317
    }
BRAMAS Berenger's avatar
BRAMAS Berenger committed
318 319 320 321 322 323 324 325 326 327

    ///////////////////////////////////////////////////////////
    // Set the tests!
    ///////////////////////////////////////////////////////////

    /** set test */
    void SetTests(){

        AddTest(&TestInterpolationKernel::TestUnifKernel,"Test Lagrange/Uniform grid FMM");
        AddTest(&TestInterpolationKernel::TestChebSymKernel,"Test Symmetric Chebyshev Kernel with 16 small SVDs and symmetries");
328 329
        AddTest(&TestInterpolationKernel::TestChebKernel,"Test Chebyshev Kernel with 1 large SVD");
        
BRAMAS Berenger's avatar
BRAMAS Berenger committed
330
    }
331 332 333 334 335 336 337 338 339 340
};


// You must do this
TestClass(TestInterpolationKernel)