Maj terminée. Pour consulter la release notes associée voici le lien :
https://about.gitlab.com/releases/2021/07/07/critical-security-release-gitlab-14-0-4-released/

utestInterpolationMultiRhs.cpp 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Berenger Bramas, Matthias Messner
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================

// ==== CMAKE =====
// @FUSE_BLAS
COULAUD Olivier's avatar
COULAUD Olivier committed
19
// @FUSE_FFT
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
// ==============
#include <array>

#include "ScalFmmConfig.h"
#include "Utils/FGlobal.hpp"

#include "Containers/FOctree.hpp"

#include "Files/FFmaGenericLoader.hpp"

#include "Core/FFmmAlgorithmThread.hpp"
#include "Core/FFmmAlgorithm.hpp"

#include "FUTester.hpp"

#include "Components/FSimpleLeaf.hpp"


#include "Kernels/Chebyshev/FChebCell.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Chebyshev/FChebSymKernel.hpp"
41
#include "Kernels/Chebyshev/FChebKernel.hpp"
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

#include "Kernels/Uniform/FUnifCell.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Uniform/FUnifKernel.hpp"


#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
/*
  In this test we compare the spherical FMM results and the direct results.
 */


/** the test class
 *
 */
class TestInterpolationKernel : public FUTester<TestInterpolationKernel> {

BRAMAS Berenger's avatar
BRAMAS Berenger committed
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    ///////////////////////////////////////////////////////////
    // The tests!
    ///////////////////////////////////////////////////////////

    template <class CellClass, class ContainerClass, class KernelClass, class MatrixKernelClass,
              class LeafClass, class OctreeClass, class FmmClass, const int NVals>
    void RunTest()	{
        // Warning in make test the exec dir it Build/UTests
        // Load particles
        //
        // Load particles
        //
        if(sizeof(FReal) == sizeof(float) ) {
            std::cerr << "No input data available for Float "<< std::endl;
            exit(EXIT_FAILURE);
        }
        const std::string parFile( (sizeof(FReal) == sizeof(float))?
                                       "Test/DirectFloat.bfma":
                                       "UTest/DirectDouble.bfma");
        //
        std::string filename(SCALFMMDataPath+parFile);
        //
        FFmaGenericLoader loader(filename);
        if(!loader.isOpen()){
            Print("Cannot open particles file.");
            uassert(false);
            return;
        }
        Print("Number of particles:");
        Print(loader.getNumberOfParticles());

        const int NbLevels        = 4;
        const int SizeSubLevels = 2;

93
        // std::cout << "\nInterpolation FMM (ORDER="<< ORDER << ") ... " << std::endl;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
94 95 96 97 98 99 100 101

        // Create Matrix Kernel
        const MatrixKernelClass MatrixKernel; // FUKernelTester is only designed to work with 1/R, i.e. matrix kernel ctor takes no argument.
        //
        FSize nbParticles = loader.getNumberOfParticles() ;
        FmaRWParticle<8,8>* const particles = new FmaRWParticle<8,8>[nbParticles];

        loader.fillParticle(particles,nbParticles);
102

BRAMAS Berenger's avatar
BRAMAS Berenger committed
103 104
        // Create octree
        OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
105
        // Insert particle in the tree
106 107 108 109 110 111 112 113 114
        for(int idxPart = 0 ; idxPart < nbParticles ; ++idxPart){
            // Convert FReal[NVALS] to std::array<FReal,NVALS>
            std::array<FReal, (1+4*1)*NVals> physicalState;
            for(int idxVals = 0 ; idxVals < NVals ; ++idxVals){
                physicalState[0*NVals+idxVals]= particles[idxPart].getPhysicalValue();
                physicalState[1*NVals+idxVals]=0.0;
                physicalState[2*NVals+idxVals]=0.0;
                physicalState[3*NVals+idxVals]=0.0;
                physicalState[4*NVals+idxVals]=0.0;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
115
            }
116 117 118 119
            // put in tree
            tree.insert(particles[idxPart].getPosition(), idxPart, physicalState);
        }

BRAMAS Berenger's avatar
BRAMAS Berenger committed
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

        // Run FMM
        Print("Fmm...");
        KernelClass kernels(NbLevels, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel);
        FmmClass algo(&tree,&kernels);
        algo.execute();
        //
        FReal energy= 0.0 , energyD = 0.0 ;
        for(int idx = 0 ; idx <  loader.getNumberOfParticles()  ; ++idx){
            energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
        }
        //
        // Compare
        Print("Compute Diff...");
        FMath::FAccurater potentialDiff[NVals];
        FMath::FAccurater fx, fy, fz;
        {
            tree.forEachLeaf([&](LeafClass* leaf){
                //
                for(int idxVals = 0 ; idxVals < NVals ; ++idxVals){
                    const FReal* const physicalValues = leaf->getTargets()->getPhysicalValues(idxVals);
                    const FReal*const potentials = leaf->getTargets()->getPotentials(idxVals);
                    const FReal*const forcesX = leaf->getTargets()->getForcesX(idxVals);
                    const FReal*const forcesY = leaf->getTargets()->getForcesY(idxVals);
                    const FReal*const forcesZ = leaf->getTargets()->getForcesZ(idxVals);
                    const int nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
                    const FVector<int>& indexes = leaf->getTargets()->getIndexes();

                    for(int idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){

                        const int indexPartOrig = indexes[idxPart];
                        //					std::cout << " index "<< indexPartOrig << "   "  << particles[indexPartOrig].getPotential() << "   " << potentials[idxPart] << std::endl;
                        potentialDiff[idxVals].add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
                        //
                        fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
                        fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
                        fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
                        //

                        energy   += potentials[idxPart]*physicalValues[idxPart];
                    }

                }
            });

        }
        delete[] particles;
        energy /=NVals;
        // Print for information
        double errorPotRL2=0.0, errorPotRMS=0.0;
        Print("Potential diff is = ");
        for(int idxVals = 0 ; idxVals < NVals ; ++idxVals){
            printf("   Charge: %d\n",		idxVals);
            printf("         Pot L2Norm     %e\n",potentialDiff[idxVals].getL2Norm());
            printf("         Pot RL2Norm   %e\n",potentialDiff[idxVals].getRelativeL2Norm());
            printf("         Pot RMSError   %e\n",potentialDiff[idxVals].getRMSError());
            errorPotRL2 = std::max(errorPotRL2, potentialDiff[idxVals].getRelativeL2Norm());
            errorPotRMS = std::max(errorPotRMS, potentialDiff[idxVals].getRMSError());
        }
        Print("Fx diff is = ");
        printf("         Fx L2Norm     %e\n",fx.getL2Norm());
        printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
        printf("         Fx RMSError   %e\n",fx.getRMSError());
        Print("Fy diff is = ");
        printf("        Fy L2Norm     %e\n",fy.getL2Norm());
        printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
        printf("        Fy RMSError   %e\n",fy.getRMSError());
        Print("Fz diff is = ");
        printf("        Fz L2Norm     %e\n",fz.getL2Norm());
        printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
        printf("        Fz RMSError   %e\n",fz.getRMSError());
        FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
        printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
        printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
        printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
        printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

        // Assert
        const FReal MaximumDiffPotential = FReal(9e-3);
        const FReal MaximumDiffForces     = FReal(9e-2);

        Print("Test1 - Error Relative L2 norm Potential ");
        uassert(errorPotRL2 < MaximumDiffPotential);    //1
        Print("Test2 - Error RMS L2 norm Potential ");
        uassert(errorPotRMS< MaximumDiffPotential);  //2
        Print("Test3 - Error Relative L2 norm FX ");
        uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
        Print("Test4 - Error RMS L2 norm FX ");
        uassert(fx.getRMSError() < MaximumDiffForces);                      //4
        Print("Test5 - Error Relative L2 norm FY ");
        uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
        Print("Test6 - Error RMS L2 norm FY ");
        uassert(fy.getRMSError() < MaximumDiffForces);                      //6
        Print("Test7 - Error Relative L2 norm FZ ");
        uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
        Print("Test8 - Error RMS L2 norm FZ ");
        uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
        Print("Test9 - Error Relative L2 norm F ");
        uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
        Print("Test10 - Relative error Energy ");
        uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy


        // Compute multipole local rhs diff
        FMath::FAccurater localDiff;
        FMath::FAccurater multiPoleDiff;
        tree.forEachCell([&](CellClass* cell){
            for( int idxRhs = 1 ; idxRhs < NVals ; ++idxRhs){
                localDiff.add(cell->getLocal(0), cell->getLocal(idxRhs), cell->getVectorSize());
                multiPoleDiff.add(cell->getMultipole(0), cell->getMultipole(idxRhs), cell->getVectorSize());
            }
        });
        Print("Local diff is = ");
        Print(localDiff.getL2Norm());
        Print(localDiff.getInfNorm());
        Print("Multipole diff is = ");
        Print(multiPoleDiff.getL2Norm());
        Print(multiPoleDiff.getInfNorm());

        uassert(localDiff.getL2Norm()  < 1e-10);
        uassert(localDiff.getInfNorm() < 1e-10);
        uassert(multiPoleDiff.getL2Norm()  < 1e-10);
        uassert(multiPoleDiff.getInfNorm() < 1e-10);
    }

    /** If memstas is running print the memory used */
    void PostTest() {
        if( FMemStats::controler.isUsed() ){
            std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated()
                      << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
            std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated()
                      << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
            std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated()
                      << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
        }
    }


    ///////////////////////////////////////////////////////////
    // Set the tests!
    ///////////////////////////////////////////////////////////


    /** TestUnifKernel */
    void TestUnifKernel(){
COULAUD Olivier's avatar
COULAUD Olivier committed
265
        const int NVals = 3;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        const unsigned int ORDER = 6 ;
        // run test
        typedef FInterpMatrixKernelR MatrixKernelClass;


        typedef FP2PParticleContainerIndexed<1,1,NVals> ContainerClass;
        typedef FSimpleLeaf< ContainerClass >  LeafClass;
        typedef FUnifCell<ORDER,1,1,NVals> CellClass;
        typedef FOctree<CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FUnifKernel<CellClass,ContainerClass,MatrixKernelClass,ORDER,NVals> KernelClass;
        typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;

        RunTest<CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass, NVals>();
    }

    /** TestChebSymKernel */
    void TestChebSymKernel(){
COULAUD Olivier's avatar
COULAUD Olivier committed
283
        const int NVals = 3;
BRAMAS Berenger's avatar
BRAMAS Berenger committed
284 285 286 287 288 289 290 291 292 293 294 295
        const unsigned int ORDER = 6;
        typedef FP2PParticleContainerIndexed<1,1,NVals> ContainerClass;
        typedef FSimpleLeaf<ContainerClass> LeafClass;
        typedef FInterpMatrixKernelR MatrixKernelClass;
        typedef FChebCell<ORDER, 1, 1, NVals> CellClass;
        typedef FOctree<CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FChebSymKernel<CellClass,ContainerClass,MatrixKernelClass,ORDER, NVals> KernelClass;
        typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
        // run test
        RunTest<CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass, NVals>();
    }

296 297 298 299 300 301 302 303 304 305 306 307 308 309
    /** TestChebKernel */
    void TestChebKernel(){
        const int NVals = 3;
        const unsigned int ORDER = 6;
        typedef FP2PParticleContainerIndexed<1,1,NVals> ContainerClass;
        typedef FSimpleLeaf<ContainerClass> LeafClass;
        typedef FInterpMatrixKernelR MatrixKernelClass;
        typedef FChebCell<ORDER, 1, 1, NVals> CellClass;
        typedef FOctree<CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FChebKernel<CellClass,ContainerClass,MatrixKernelClass,ORDER, NVals> KernelClass;
        typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
        // run test
        RunTest<CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass, NVals>();
    }
BRAMAS Berenger's avatar
BRAMAS Berenger committed
310 311 312 313 314 315 316 317 318 319

    ///////////////////////////////////////////////////////////
    // Set the tests!
    ///////////////////////////////////////////////////////////

    /** set test */
    void SetTests(){

        AddTest(&TestInterpolationKernel::TestUnifKernel,"Test Lagrange/Uniform grid FMM");
        AddTest(&TestInterpolationKernel::TestChebSymKernel,"Test Symmetric Chebyshev Kernel with 16 small SVDs and symmetries");
320 321
        AddTest(&TestInterpolationKernel::TestChebKernel,"Test Chebyshev Kernel with 1 large SVD");
        
BRAMAS Berenger's avatar
BRAMAS Berenger committed
322
    }
323 324 325 326 327 328 329 330 331 332
};


// You must do this
TestClass(TestInterpolationKernel)