FChebSymM2LHandler.hpp 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#ifndef FCHEBSYMM2LHANDLER_HPP
#define FCHEBSYMM2LHANDLER_HPP

#include <climits>

#include "../../Utils/FBlas.hpp"

#include "./FChebTensor.hpp"
#include "./FChebSymmetries.hpp"
#include "./FChebM2LHandler.hpp"

/**
 * @author Matthias Messner (matthias.matthias@inria.fr)
 * Please read the license
 */


Matthias Messner's avatar
Matthias Messner committed
18 19
/*!  Choose either \a FULLY_PIVOTED_ACASVD or \a PARTIALLY_PIVOTED_ACASVD or
	\a ONLY_SVD.
Matthias Messner's avatar
Matthias Messner committed
20
*/
21
//#define ONLY_SVD
Matthias Messner's avatar
Matthias Messner committed
22
//#define FULLY_PIVOTED_ACASVD
23
#define PARTIALLY_PIVOTED_ACASVD
Matthias Messner's avatar
Matthias Messner committed
24 25


Matthias Messner's avatar
Matthias Messner committed
26 27


Matthias Messner's avatar
Matthias Messner committed
28 29 30 31
/*!  The fully pivoted adaptive cross approximation (fACA) compresses a
	far-field interaction as \f$K\sim UV^\top\f$. The fACA requires all entries
	to be computed beforehand, then the compression follows in
	\f$\mathcal{O}(2\ell^3k)\f$ operations based on the required accuracy
Matthias Messner's avatar
Matthias Messner committed
32
	\f$\varepsilon\f$. The matrix K will be destroyed as a result.
Matthias Messner's avatar
Matthias Messner committed
33 34

	@param[in] K far-field to be approximated
35 36
	@param[in] nx number of rows
	@param[in] ny number of cols
Matthias Messner's avatar
Matthias Messner committed
37 38 39 40 41
	@param[in] eps prescribed accuracy
	@param[out] U matrix containing \a k column vectors
	@param[out] V matrix containing \a k row vectors
	@param[out] k final low-rank depends on prescribed accuracy \a eps
*/
42 43 44
void fACA(FReal *const K,
					const unsigned int nx, const unsigned int ny,
					const double eps, FReal* &U, FReal* &V, unsigned int &k)
Matthias Messner's avatar
Matthias Messner committed
45 46
{
	// control vectors (true if not used, false if used)
47 48 49 50
	bool *const r = new bool[nx];
	bool *const c = new bool[ny];
	for (unsigned int i=0; i<nx; ++i) r[i] = true;
	for (unsigned int j=0; j<ny; ++j) c[j] = true;
Matthias Messner's avatar
Matthias Messner committed
51 52 53

	// compute Frobenius norm of original Matrix K
	FReal norm2K = 0;
54 55 56
	for (unsigned int j=0; j<ny; ++j) {
		const FReal *const colK = K + j*nx;
		norm2K += FBlas::scpr(nx, colK, colK);
Matthias Messner's avatar
Matthias Messner committed
57 58 59 60
	}

	// initialize rank k and UV'
	k = 0;
61 62 63 64 65
	const int maxk = (nx + ny) / 2;
	U = new FReal[nx * maxk];
	V = new FReal[ny * maxk];
	FBlas::setzero(nx*maxk, U);
	FBlas::setzero(ny*maxk, V);
Matthias Messner's avatar
Matthias Messner committed
66 67 68 69 70 71 72 73 74
	FReal norm2R;

	////////////////////////////////////////////////
	// start fully pivoted ACA
	do {
		
		// find max(K) and argmax(K)
		FReal maxK = 0.;
		int pi=0, pj=0;
75
		for (unsigned int j=0; j<ny; ++j)
Matthias Messner's avatar
Matthias Messner committed
76
			if (c[j]) {
77 78
				const FReal *const colK = K + j*nx;
				for (unsigned int i=0; i<nx; ++i)
Matthias Messner's avatar
Matthias Messner committed
79 80 81 82 83 84 85 86
					if (r[i] && maxK < FMath::Abs(colK[i])) {
						maxK = FMath::Abs(colK[i]);
						pi = i; 
						pj = j;
					}
			}

		// copy pivot cross into U and V
87 88 89 90 91
		FReal *const colU = U + k*nx;
		FReal *const colV = V + k*ny;
		const FReal pivot = K[pj*nx + pi];
		for (unsigned int i=0; i<nx; ++i) if (r[i]) colU[i] = K[pj*nx + i];
		for (unsigned int j=0; j<ny; ++j) if (c[j]) colV[j] = K[j *nx + pi] / pivot;
Matthias Messner's avatar
Matthias Messner committed
92 93 94 95 96 97
		
		// dont use these cols and rows anymore
		c[pj] = false;
		r[pi] = false;
		
		// subtract k-th outer product from K
98
		for (unsigned int j=0; j<ny; ++j)
Matthias Messner's avatar
Matthias Messner committed
99
			if (c[j]) {
100 101
				FReal *const colK = K + j*nx;
				FBlas::axpy(nx, FReal(-1. * colV[j]), colU, colK);
Matthias Messner's avatar
Matthias Messner committed
102 103 104 105
			}

		// compute Frobenius norm of updated K
		norm2R = 0.;
106
		for (unsigned int j=0; j<ny; ++j)
Matthias Messner's avatar
Matthias Messner committed
107
			if (c[j]) {
108 109
				const FReal *const colK = K + j*nx;
				norm2R += FBlas::scpr(nx, colK, colK);
Matthias Messner's avatar
Matthias Messner committed
110 111 112 113 114 115 116
			}

		// increment rank k
		k++;
		
	} while (norm2R > eps*eps * norm2K);
	////////////////////////////////////////////////
117 118 119

	delete [] r;
	delete [] c;
Matthias Messner's avatar
Matthias Messner committed
120 121 122
}


Matthias Messner's avatar
Matthias Messner committed
123 124 125 126




127 128 129 130 131





Matthias Messner's avatar
Matthias Messner committed
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*!  The partially pivoted adaptive cross approximation (pACA) compresses a
	far-field interaction as \f$K\sim UV^\top\f$. The pACA computes the matrix
	entries on the fly, as they are needed. The compression follows in
	\f$\mathcal{O}(2\ell^3k)\f$ operations based on the required accuracy
	\f$\varepsilon\f$. The matrix K will be destroyed as a result.

	@tparam ComputerType the functor type which allows to compute matrix entries
	
	@param[in] Computer the entry-computer functor
	@param[in] eps prescribed accuracy
	@param[in] nx number of rows
	@param[in] ny number of cols
	@param[out] U matrix containing \a k column vectors
	@param[out] V matrix containing \a k row vectors
	@param[out] k final low-rank depends on prescribed accuracy \a eps
*/
template <typename ComputerType>
149
void pACA(const ComputerType& Computer,
Matthias Messner's avatar
Matthias Messner committed
150
					const unsigned int nx, const unsigned int ny,
151
					const FReal eps, FReal* &U, FReal* &V, unsigned int &k)
Matthias Messner's avatar
Matthias Messner committed
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
{
	// control vectors (true if not used, false if used)
	bool *const r = new bool[nx];
	bool *const c = new bool[ny];
	for (unsigned int i=0; i<nx; ++i) r[i] = true;
	for (unsigned int j=0; j<ny; ++j) c[j] = true;
	
	// initialize rank k and UV'
	k = 0;
	const int maxk = (nx + ny) / 2;
	U = new FReal[nx * maxk];
	V = new FReal[ny * maxk];
	
	// initialize norm
	FReal norm2S(0.);
	FReal norm2uv(0.);
	
	////////////////////////////////////////////////
	// start partially pivoted ACA
	unsigned int J = 0, I = 0;
	
	do {
		FReal *const colU = U + nx*k;
		FReal *const colV = V + ny*k;
		
		////////////////////////////////////////////
		// compute row I and its residual
		Computer(I, I+1, 0, ny, colV);
		r[I] = false;
		for (unsigned int l=0; l<k; ++l) {
			FReal *const u = U + nx*l;
			FReal *const v = V + ny*l;
184
			FBlas::axpy(ny, FReal(-1. * u[I]), v, colV);
Matthias Messner's avatar
Matthias Messner committed
185 186 187 188 189 190 191 192 193 194
		}
		
		// find max of residual and argmax
		FReal maxval = 0.;
		for (unsigned int j=0; j<ny; ++j)
			if (c[j] && maxval < FMath::Abs(colV[j])) {
				maxval = FMath::Abs(colV[j]);
				J = j;
			}
		// scale pivot v
195 196
		const FReal pivot = FReal(1.) / colV[J];
		FBlas::scal(ny, pivot, colV);
Matthias Messner's avatar
Matthias Messner committed
197 198 199 200 201 202 203 204
		
		////////////////////////////////////////////
		// compute col J and its residual
		Computer(0, nx, J, J+1, colU);
		c[J] = false;
		for (unsigned int l=0; l<k; ++l) {
			FReal *const u = U + nx*l;
			FReal *const v = V + ny*l;
205
			FBlas::axpy(nx, FReal(-1. * v[J]), u, colU);
Matthias Messner's avatar
Matthias Messner committed
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
		}
		
		// find max of residual and argmax
		maxval = 0.;
		for (unsigned int i=0; i<nx; ++i)
			if (r[i] && maxval < FMath::Abs(colU[i])) {
				maxval = FMath::Abs(colU[i]);
				I = i;
			}
		
		////////////////////////////////////////////
			// increment Frobenius norm: |Sk|^2 += |uk|^2 |vk|^2 + 2 sumj ukuj vjvk
		FReal normuuvv(0.);
		for (unsigned int l=0; l<k; ++l)
			normuuvv += FBlas::scpr(nx, colU, U + nx*l) * FBlas::scpr(ny, V + ny*l, colV);
		norm2uv = FBlas::scpr(nx, colU, colU) * FBlas::scpr(ny, colV, colV);
		norm2S += norm2uv + 2*normuuvv;
		
		////////////////////////////////////////////
		// increment low-rank
		k++;

	} while (norm2uv > eps*eps * norm2S);
	
	delete [] r;
	delete [] c;
}



Matthias Messner's avatar
Matthias Messner committed
236 237 238 239 240
/*!  Precomputes the 16 far-field interactions (due to symmetries in their
  arrangement all 316 far-field interactions can be represented by
  permutations of the 16 we compute in this function). Depending on whether
  FACASVD is defined or not, either ACA+SVD or only SVD is used to compress
  them. */
241
template <int ORDER, typename MatrixKernelClass>
242
static void precompute(const MatrixKernelClass *const MatrixKernel, const FReal CellWidth,
243
											 const FReal Epsilon, FReal* K[343], int LowRank[343])
244
{
245 246
	std::cout << "\nComputing 16 far-field interactions (l=" << ORDER << ", eps=" << Epsilon
						<< ") for cells of width w = " << CellWidth << std::endl;
247

248
	static const unsigned int nnodes = ORDER*ORDER*ORDER;
249 250 251 252

	// interpolation points of source (Y) and target (X) cell
	FPoint X[nnodes], Y[nnodes];
	// set roots of target cell (X)
253
	FChebTensor<ORDER>::setRoots(FPoint(0.,0.,0.), CellWidth, X);
254 255 256 257
	// temporary matrix
	FReal* U = new FReal [nnodes*nnodes];

	// needed for the SVD
Matthias Messner's avatar
Matthias Messner committed
258
	unsigned int INFO;
259 260 261 262
	const unsigned int LWORK = 2 * (3*nnodes + nnodes);
	FReal *const WORK = new FReal [LWORK];
	FReal *const VT = new FReal [nnodes*nnodes];
	FReal *const S = new FReal [nnodes];
Matthias Messner's avatar
Matthias Messner committed
263 264 265 266


	// initialize timer
	FTic time;
267 268 269 270 271
	double overall_time(0.);
	double elapsed_time(0.);

	// initialize rank counter
	unsigned int overall_rank = 0;
Matthias Messner's avatar
Matthias Messner committed
272

273 274 275 276 277
	unsigned int counter = 0;
	for (int i=2; i<=3; ++i) {
		for (int j=0; j<=i; ++j) {
			for (int k=0; k<=j; ++k) {

Matthias Messner's avatar
Matthias Messner committed
278
				// assemble matrix and apply weighting matrices
279 280
				const FPoint cy(CellWidth*FReal(i), CellWidth*FReal(j), CellWidth*FReal(k));
				FChebTensor<ORDER>::setRoots(cy, CellWidth, Y);
Matthias Messner's avatar
Matthias Messner committed
281 282
				FReal weights[nnodes];
				FChebTensor<ORDER>::setRootOfWeights(weights);
283

Matthias Messner's avatar
Matthias Messner committed
284 285 286 287 288 289 290 291 292 293
				// now the entry-computer is responsible for weighting the matrix entries
				EntryComputer<MatrixKernelClass> Computer(nnodes, X, nnodes, Y, weights);

				// start timer
				time.tic();

#if (defined ONLY_SVD || defined FULLY_PIVOTED_ACASVD)
				Computer(0, nnodes, 0, nnodes, U);
#endif
				/*
294 295 296 297 298 299 300
				// applying weights ////////////////////////////////////////
				FReal weights[nnodes];
				FChebTensor<ORDER>::setRootOfWeights(weights);
				for (unsigned int n=0; n<nnodes; ++n) {
					FBlas::scal(nnodes, weights[n], U + n,  nnodes); // scale rows
					FBlas::scal(nnodes, weights[n], U + n * nnodes); // scale cols
				}
Matthias Messner's avatar
Matthias Messner committed
301 302 303 304 305 306 307 308 309 310
				*/

				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				// ALL PREPROC FLAGS ARE SET ON TOP OF THIS FILE !!! /////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////

311

Matthias Messner's avatar
Matthias Messner committed
312 313

				//////////////////////////////////////////////////////////////
Matthias Messner's avatar
Matthias Messner committed
314
#if (defined FULLY_PIVOTED_ACASVD || defined PARTIALLY_PIVOTED_ACASVD) ////////////
Matthias Messner's avatar
Matthias Messner committed
315 316
				FReal *UU, *VV;
				unsigned int rank;
Matthias Messner's avatar
Matthias Messner committed
317 318

#ifdef FULLY_PIVOTED_ACASVD
319
				fACA(U,        nnodes, nnodes, Epsilon, UU, VV, rank);
Matthias Messner's avatar
Matthias Messner committed
320
#else
321
				pACA(Computer, nnodes, nnodes, Epsilon, UU, VV, rank);
Matthias Messner's avatar
Matthias Messner committed
322
#endif 
Matthias Messner's avatar
Matthias Messner committed
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

				// QR decomposition
				FReal* phi = new FReal [rank*rank];
				{
					// QR of U and V
					FReal* tauU = new FReal [rank];
					INFO = FBlas::geqrf(nnodes, rank, UU, tauU, LWORK, WORK);
					assert(INFO==0);
					FReal* tauV = new FReal [rank];
					INFO = FBlas::geqrf(nnodes, rank, VV, tauV, LWORK, WORK);
					assert(INFO==0);
					// phi = Ru Rv'
					FReal* rU = new FReal [2 * rank*rank];
					FReal* rV = rU + rank*rank;
					FBlas::setzero(2 * rank*rank, rU);
					for (unsigned int l=0; l<rank; ++l) {
						FBlas::copy(l+1, UU + l*nnodes, rU + l*rank);
						FBlas::copy(l+1, VV + l*nnodes, rV + l*rank);
					}
					FBlas::gemmt(rank, rank, rank, FReal(1.), rU, rank, rV, rank, phi, rank);
					delete [] rU;
					// get Qu and Qv
					INFO = FBlas::orgqr(nnodes, rank, UU, tauU, LWORK, WORK);
					assert(INFO==0);
					INFO = FBlas::orgqr(nnodes, rank, VV, tauV, LWORK, WORK);
					assert(INFO==0);
					delete [] tauU;
					delete [] tauV;
				}
				
				const unsigned int aca_rank = rank;

				// SVD
				{
					INFO = FBlas::gesvd(aca_rank, aca_rank, phi, S, VT, aca_rank, LWORK, WORK);
					if (INFO!=0) throw std::runtime_error("SVD did not converge with " + INFO);
					rank = getRank(S, aca_rank, Epsilon);
				}					
				
				const unsigned int idx = (i+3)*7*7 + (j+3)*7 + (k+3);

				// store
				{
					// allocate
					assert(K[idx]==NULL);
					K[idx] = new FReal [2*rank*nnodes];
					
					// set low rank
					LowRank[idx] = rank;
					
					// (U Sigma)
					for (unsigned int r=0; r<rank; ++r)
						FBlas::scal(aca_rank, S[r], phi + r*aca_rank);

					// Qu (U Sigma) 
					FBlas::gemm(nnodes, aca_rank, rank, FReal(1.), UU, nnodes, phi, aca_rank, K[idx], nnodes);
					delete [] phi;

					// Vt -> V and then Qu V
					FReal *const V = new FReal [aca_rank * rank];
					for (unsigned int r=0; r<rank; ++r)
						FBlas::copy(aca_rank, VT + r, aca_rank, V + r*aca_rank, 1);
					FBlas::gemm(nnodes, aca_rank, rank, FReal(1.), VV, nnodes, V, aca_rank, K[idx] + rank*nnodes, nnodes);
					delete [] V;
				}

				//// store recompressed UV
				//const unsigned int idx = (i+3)*7*7 + (j+3)*7 + (k+3);
				//assert(K[idx]==NULL);
				//K[idx] = new FReal [2*rank*nnodes];
				//LowRank[idx] = rank;
				//FBlas::copy(rank*nnodes, UU,  K[idx]);
				//FBlas::copy(rank*nnodes, VV,  K[idx] + rank*nnodes);
			
				delete [] UU;
				delete [] VV;

Matthias Messner's avatar
Matthias Messner committed
400 401
				elapsed_time = time.tacAndElapsed(); 
				overall_time += elapsed_time;
402
				overall_rank += rank;
Matthias Messner's avatar
Matthias Messner committed
403
				std::cout << "(" << i << "," << j << "," << k << ") " << idx <<
Matthias Messner's avatar
Matthias Messner committed
404
					", low rank = " << rank << " (" << aca_rank << ") in " << elapsed_time << "s" << std::endl;
Matthias Messner's avatar
Matthias Messner committed
405

Matthias Messner's avatar
Matthias Messner committed
406 407 408 409 410 411 412 413 414
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				// ALL PREPROC FLAGS ARE SET ON TOP OF THIS FILE !!! /////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////

#elif defined ONLY_SVD
415
				// truncated singular value decomposition of matrix
Matthias Messner's avatar
Matthias Messner committed
416 417
				INFO = FBlas::gesvd(nnodes, nnodes, U, S, VT, nnodes, LWORK, WORK);
				if (INFO!=0) throw std::runtime_error("SVD did not converge with " + INFO);
418
				const unsigned int rank = getRank<ORDER>(S, Epsilon);
Matthias Messner's avatar
Matthias Messner committed
419
				
420 421 422 423 424 425 426 427 428 429 430
				// store 
				const unsigned int idx = (i+3)*7*7 + (j+3)*7 + (k+3);
				assert(K[idx]==NULL);
				K[idx] = new FReal [2*rank*nnodes];
				LowRank[idx] = rank;
				for (unsigned int r=0; r<rank; ++r)
					FBlas::scal(nnodes, S[r], U + r*nnodes);
				FBlas::copy(rank*nnodes, U,  K[idx]);
				for (unsigned int r=0; r<rank; ++r)
					FBlas::copy(nnodes, VT + r, nnodes, K[idx] + rank*nnodes + r*nnodes, 1);

Matthias Messner's avatar
Matthias Messner committed
431 432
				elapsed_time = time.tacAndElapsed(); 
				overall_time += elapsed_time;
433
				overall_rank += rank;
Matthias Messner's avatar
Matthias Messner committed
434
				std::cout << "(" << i << "," << j << "," << k << ") " << idx <<
Matthias Messner's avatar
Matthias Messner committed
435 436 437
					", low rank = " << rank << " in " << elapsed_time << "s" << std::endl;
#else
#error Either fully-, partially pivoted ACA or only SVD must be defined!
Matthias Messner's avatar
Matthias Messner committed
438 439 440
#endif ///////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////

Matthias Messner's avatar
Matthias Messner committed
441 442 443 444 445 446 447 448
				
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				// ALL PREPROC FLAGS ARE SET ON TOP OF THIS FILE !!! /////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
				//////////////////////////////////////////////////////////////
Matthias Messner's avatar
Matthias Messner committed
449 450


451 452 453 454 455 456 457 458 459 460 461
				// un-weighting ////////////////////////////////////////////
				for (unsigned int n=0; n<nnodes; ++n) {
					FBlas::scal(rank, FReal(1.) / weights[n], K[idx] + n,               nnodes); // scale rows
					FBlas::scal(rank, FReal(1.) / weights[n], K[idx] + rank*nnodes + n, nnodes); // scale rows
				}
				//////////////////////////////////////////////////////////		

				counter++;
			}
		}
	}
462 463
	std::cout << "The approximation of the " << counter
						<< " far-field interactions (overall rank " << overall_rank << ") took "
464
						<< overall_time << "s\n" << std::endl;
465 466 467 468 469 470 471 472 473 474 475 476 477 478
	delete [] U;
	delete [] WORK;
	delete [] VT;
	delete [] S;
}









Matthias Messner's avatar
Matthias Messner committed
479
/*!  \class SymmetryHandler 
480

Matthias Messner's avatar
Matthias Messner committed
481 482 483 484 485 486 487
	\brief Deals with all the symmetries in the arrangement of the far-field interactions

	Stores permutation indices and permutation vectors to reduce 316 (7^3-3^3)
  different far-field interactions to 16 only. We use the number 343 (7^3)
  because it allows us to use to associate the far-field interactions based on
  the index \f$t = 7^2(i+3) + 7(j+3) + (k+3)\f$ where \f$(i,j,k)\f$ denotes
  the relative position of the source cell to the target cell. */
488 489 490
template <int ORDER, KERNEL_FUNCTION_TYPE TYPE> class SymmetryHandler;

/*! Specialization for homogeneous kernel functions */
491
template <int ORDER>
492
class SymmetryHandler<ORDER, HOMOGENEOUS>
493 494 495 496 497 498
{
  static const unsigned int nnodes = ORDER*ORDER*ORDER;

	// M2L operators
	FReal*    K[343];
	int LowRank[343];
499 500

public:
501 502 503 504 505 506 507 508
	
	// permutation vectors and permutated indices
	unsigned int pvectors[343][nnodes];
	unsigned int pindices[343];


	/** Constructor: with 16 small SVDs */
	template <typename MatrixKernelClass>
509
	SymmetryHandler(const MatrixKernelClass *const MatrixKernel, const FReal Epsilon,
510
									const FReal, const unsigned int)
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	{
		// init all 343 item to zero, because effectively only 16 exist
		for (unsigned int t=0; t<343; ++t) {
			K[t] = NULL;
			LowRank[t] = 0;
		}
			
		// set permutation vector and indices
		const FChebSymmetries<ORDER> Symmetries;
		for (int i=-3; i<=3; ++i)
			for (int j=-3; j<=3; ++j)
				for (int k=-3; k<=3; ++k) {
					const unsigned int idx = ((i+3) * 7 + (j+3)) * 7 + (k+3);
					pindices[idx] = 0;
					if (abs(i)>1 || abs(j)>1 || abs(k)>1)
						pindices[idx] = Symmetries.getPermutationArrayAndIndex(i,j,k, pvectors[idx]);
				}

		// precompute 16 M2L operators
530 531
		const FReal ReferenceCellWidth = FReal(2.);
		precompute<ORDER>(MatrixKernel, ReferenceCellWidth, Epsilon, K, LowRank);
532 533 534 535 536 537 538 539 540 541
	}



	/** Destructor */
	~SymmetryHandler()
	{
		for (unsigned int t=0; t<343; ++t) if (K[t]!=NULL) delete [] K[t];
	}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

	/*! return the t-th approximated far-field interactions*/
	const FReal *const getK(const unsigned int, const unsigned int t) const
	{	return K[t]; }

	/*! return the t-th approximated far-field interactions*/
	const int getLowRank(const unsigned int, const unsigned int t) const
	{	return LowRank[t]; }

};






/*! Specialization for non-homogeneous kernel functions */
template <int ORDER>
class SymmetryHandler<ORDER, NON_HOMOGENEOUS>
{
  static const unsigned int nnodes = ORDER*ORDER*ORDER;

	// Height of octree; needed only in the case of non-homogeneous kernel functions
	const unsigned int TreeHeight;

	// M2L operators for all levels in the octree
	FReal***    K;
	int** LowRank;

public:
	
	// permutation vectors and permutated indices
	unsigned int pvectors[343][nnodes];
	unsigned int pindices[343];


	/** Constructor: with 16 small SVDs */
	template <typename MatrixKernelClass>
	SymmetryHandler(const MatrixKernelClass *const MatrixKernel, const double Epsilon,
									const FReal RootCellWidth, const unsigned int inTreeHeight)
		: TreeHeight(inTreeHeight)
	{
		// init all 343 item to zero, because effectively only 16 exist
		K       = new FReal** [TreeHeight];
		LowRank = new int*    [TreeHeight];
		K[0]       = NULL; K[1]       = NULL;
		LowRank[0] = NULL; LowRank[1] = NULL;
		for (unsigned int l=2; l<TreeHeight; ++l) {
			K[l]       = new FReal* [343];
			LowRank[l] = new int    [343];
			for (unsigned int t=0; t<343; ++t) {
				K[l][t]       = NULL;
				LowRank[l][t] = 0;
			}
		}
		

		// set permutation vector and indices
		const FChebSymmetries<ORDER> Symmetries;
		for (int i=-3; i<=3; ++i)
			for (int j=-3; j<=3; ++j)
				for (int k=-3; k<=3; ++k) {
					const unsigned int idx = ((i+3) * 7 + (j+3)) * 7 + (k+3);
					pindices[idx] = 0;
					if (abs(i)>1 || abs(j)>1 || abs(k)>1)
						pindices[idx] = Symmetries.getPermutationArrayAndIndex(i,j,k, pvectors[idx]);
				}

		// precompute 16 M2L operators at all levels having far-field interactions
		FReal CellWidth = RootCellWidth / FReal(2.); // at level 1
		CellWidth /= FReal(2.);                      // at level 2
		for (unsigned int l=2; l<TreeHeight; ++l) {
			precompute<ORDER>(MatrixKernel, CellWidth, Epsilon, K[l], LowRank[l]);
			CellWidth /= FReal(2.);                    // at level l+1 
		}
	}



	/** Destructor */
	~SymmetryHandler()
	{
		for (unsigned int l=0; l<TreeHeight; ++l) {
			if (K[l]!=NULL) {
				for (unsigned int t=0; t<343; ++t) if (K[l][t]!=NULL) delete [] K[l][t];
				delete [] K[l];
			}
			if (LowRank[l]!=NULL)	delete [] LowRank[l];
		}
		delete [] K;
		delete [] LowRank;
	}

	/*! return the t-th approximated far-field interactions*/
	const FReal *const getK(const unsigned int l, const unsigned int t) const
	{	return K[l][t]; }

	/*! return the t-th approximated far-field interactions*/
	const int getLowRank(const unsigned int l, const unsigned int t) const
	{	return LowRank[l][t]; }

643 644 645 646 647 648 649 650 651 652 653 654 655
};








#include <fstream>
#include <sstream>


Matthias Messner's avatar
Matthias Messner committed
656 657 658
/**
 * Computes, compresses and stores the 16 M2L kernels in a binary file.
 */
659 660 661 662 663 664 665 666 667
template <int ORDER, typename MatrixKernelClass>
static void ComputeAndCompressAndStoreInBinaryFile(const MatrixKernelClass *const MatrixKernel, const FReal Epsilon)
{
	static const unsigned int nnodes = ORDER*ORDER*ORDER;

	// compute and compress ////////////
	FReal* K[343];
	int LowRank[343];
	for (unsigned int idx=0; idx<343; ++idx) { K[idx] = NULL; LowRank[idx] = 0;	}
668
	precompute<ORDER>(MatrixKernel, FReal(2.), Epsilon, K, LowRank);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

	// write to binary file ////////////
	FTic time; time.tic();
	// start computing process
	const char precision = (typeid(FReal)==typeid(double) ? 'd' : 'f');
	std::stringstream sstream;
	sstream << "sym2l_" << precision << "_o" << ORDER << "_e" << Epsilon << ".bin";
	const std::string filename(sstream.str());
	std::ofstream stream(filename.c_str(),
											 std::ios::out | std::ios::binary | std::ios::trunc);
	if (stream.good()) {
		stream.seekp(0);
		for (unsigned int idx=0; idx<343; ++idx)
			if (K[idx]!=NULL) {
				// 1) write index
				stream.write(reinterpret_cast<char*>(&idx), sizeof(int));
				// 2) write low rank (int)
				int rank = LowRank[idx];
				stream.write(reinterpret_cast<char*>(&rank), sizeof(int));
				// 3) write U and V (both: rank*nnodes * FReal)
				FReal *const U = K[idx];
				FReal *const V = K[idx] + rank*nnodes;
				stream.write(reinterpret_cast<char*>(U), sizeof(FReal)*rank*nnodes);
				stream.write(reinterpret_cast<char*>(V), sizeof(FReal)*rank*nnodes);
			}
	} else throw std::runtime_error("File could not be opened to write");
	stream.close();
	// write info
	std::cout << "Compressed M2L operators stored in binary file " << filename
						<< " in " << time.tacAndElapsed() << "sec."	<< std::endl;

	// free memory /////////////////////
	for (unsigned int t=0; t<343; ++t) if (K[t]!=NULL) delete [] K[t];
}


Matthias Messner's avatar
Matthias Messner committed
705 706 707 708
/**
 * Reads the 16 compressed M2L kernels from the binary files and writes them
 * in K and the respective low-rank in LowRank.
 */
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
template <int ORDER>
void ReadFromBinaryFile(const FReal Epsilon, FReal* K[343], int LowRank[343])
{
	// compile time constants
	const unsigned int nnodes = ORDER*ORDER*ORDER;
	
	// find filename
	const char precision = (typeid(FReal)==typeid(double) ? 'd' : 'f');
	std::stringstream sstream;
	sstream << "sym2l_" << precision << "_o" << ORDER << "_e" << Epsilon << ".bin";
	const std::string filename(sstream.str());

	// read binary file
	std::ifstream istream(filename.c_str(),
												std::ios::in | std::ios::binary | std::ios::ate);
	const std::ifstream::pos_type size = istream.tellg();
	if (size<=0) throw std::runtime_error("The requested binary file does not yet exist. Exit.");
	
	if (istream.good()) {
		istream.seekg(0);
		// 1) read index (int)
		int _idx;
		istream.read(reinterpret_cast<char*>(&_idx), sizeof(int));
		// loop to find 16 compressed m2l operators
		for (int idx=0; idx<343; ++idx) {
			K[idx] = NULL;
			LowRank[idx] = 0;
			// if it exists
			if (idx == _idx) {
				// 2) read low rank (int)
				int rank;
				istream.read(reinterpret_cast<char*>(&rank), sizeof(int));
				LowRank[idx] = rank;
				// 3) read U and V (both: rank*nnodes * FReal)
				K[idx] = new FReal [2*rank*nnodes];
				FReal *const U = K[idx];
				FReal *const V = K[idx] + rank*nnodes;
				istream.read(reinterpret_cast<char*>(U), sizeof(FReal)*rank*nnodes);
				istream.read(reinterpret_cast<char*>(V), sizeof(FReal)*rank*nnodes);

				// 1) read next index
				istream.read(reinterpret_cast<char*>(&_idx), sizeof(int));
			}
		}
	}	else throw std::runtime_error("File could not be opened to read");
	istream.close();
}





#endif