utestSphericalBlasAlgorithm.cpp 10.1 KB
Newer Older
1
// See LICENCE file at project root
2

BRAMAS Berenger's avatar
BRAMAS Berenger committed
3
#include "Utils/FGlobal.hpp"
4

BRAMAS Berenger's avatar
BRAMAS Berenger committed
5
6
#include "Containers/FOctree.hpp"
#include "Containers/FVector.hpp"
7

BRAMAS Berenger's avatar
BRAMAS Berenger committed
8
9
#include "Kernels/Spherical/FSphericalCell.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
10

BRAMAS Berenger's avatar
BRAMAS Berenger committed
11
12
13
14
15
#include "Components/FSimpleLeaf.hpp"
#include "Kernels/Spherical/FSphericalKernel.hpp"
#include "Kernels/Spherical/FSphericalRotationKernel.hpp"
#include "Kernels/Spherical/FSphericalBlasKernel.hpp"
#include "Kernels/Spherical/FSphericalBlockBlasKernel.hpp"
16

BRAMAS Berenger's avatar
BRAMAS Berenger committed
17
#include "Files/FFmaGenericLoader.hpp"
18

BRAMAS Berenger's avatar
BRAMAS Berenger committed
19
#include "Core/FFmmAlgorithm.hpp"
20
21
22
23
24
25
26
27
28
29
30
31

#include "FUTester.hpp"

/*
  In this test we compare the spherical fmm results and the direct results.
 */

/** the test class
 *
 */
class TestSphericalDirect : public FUTester<TestSphericalDirect> {
	/** The test method to factorize all the test based on different kernels */
32
    template < class FReal, class CellClass, class ContainerClass, class KernelClass, class LeafClass,
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
	class OctreeClass, class FmmClass>
	void RunTest( const bool isBlasKernel){
		//
		const int DevP = 9;
		//
		// Load particles
		//
		if(sizeof(FReal) == sizeof(float) ) {
			std::cerr << "No input data available for Float "<< std::endl;
			exit(EXIT_FAILURE);
		}
		const std::string parFile( (sizeof(FReal) == sizeof(float))?
				"Test/DirectFloat.bfma":
				"UTest/DirectDouble.bfma");
		//
		std::string filename(SCALFMMDataPath+parFile);
		//
50
		FFmaGenericLoader<FReal> loader(filename);
51
52
53
54
55
56
57
58
59
60
61
62
		if(!loader.isOpen()){
			Print("Cannot open particles file.");
			uassert(false);
			return;
		}
		Print("Number of particles:");
		Print(loader.getNumberOfParticles());

		const int NbLevels      = 4;
		const int SizeSubLevels = 2;
		//
		FSize nbParticles = loader.getNumberOfParticles() ;
63
		FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
64
65
66
67
68

		loader.fillParticle(particles,nbParticles);
		//
		// Create octree
		//
69
		FSphericalCell<FReal>::Init(DevP);
70
71
72
		OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
		//   Insert particle in the tree
		//
73
		for(FSize idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
		    tree.insert(particles[idxPart].getPosition() , idxPart, particles[idxPart].getPhysicalValue() );
		}



		// Run FMM
		Print("Fmm...");
		//KernelClass kernels(NbLevels,loader.getBoxWidth());
		KernelClass kernels(DevP,NbLevels,loader.getBoxWidth(), loader.getCenterOfBox());
		FmmClass algo(&tree,&kernels);
		algo.execute();
		//
		FReal energy= 0.0 , energyD = 0.0 ;
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compute direct energy
		/////////////////////////////////////////////////////////////////////////////////////////////////

91
		for(FSize idx = 0 ; idx < loader.getNumberOfParticles()  ; ++idx){
92
93
94
95
96
97
		    energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
		}
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compare
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Compute Diff...");
98
99
		FMath::FAccurater<FReal> potentialDiff;
		FMath::FAccurater<FReal> fx, fy, fz;
100
101
102
103
104
105
106
107
		{ // Check that each particle has been summed with all other

			tree.forEachLeaf([&](LeafClass* leaf){
				const FReal*const potentials        = leaf->getTargets()->getPotentials();
				const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
				const FReal*const forcesX            = leaf->getTargets()->getForcesX();
				const FReal*const forcesY            = leaf->getTargets()->getForcesY();
				const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
108
109
				const FSize nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
				const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
110

111
112
				for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
					const FSize indexPartOrig = indexes[idxPart];
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
					potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
					fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
					fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
					fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
					energy   += potentials[idxPart]*physicalValues[idxPart];
				}
			});
		}

		delete[] particles;

		// Print for information

		Print("Potential diff is = ");
		printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
		printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
		printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
		Print("Fx diff is = ");
		printf("         Fx L2Norm     %e\n",fx.getL2Norm());
		printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
		printf("         Fx RMSError   %e\n",fx.getRMSError());
		Print("Fy diff is = ");
		printf("        Fy L2Norm     %e\n",fy.getL2Norm());
		printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
		printf("        Fy RMSError   %e\n",fy.getRMSError());
		Print("Fz diff is = ");
		printf("        Fz L2Norm     %e\n",fz.getL2Norm());
		printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
		printf("        Fz RMSError   %e\n",fz.getRMSError());
		FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
		printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
		printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
		printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
		printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

		// Assert
		const FReal MaximumDiffPotential = FReal(9e-3);
		const FReal MaximumDiffForces     = FReal(9e-2);

		Print("Test1 - Error Relative L2 norm Potential ");
		uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
		Print("Test2 - Error RMS L2 norm Potential ");
		uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
		Print("Test3 - Error Relative L2 norm FX ");
		uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
		Print("Test4 - Error RMS L2 norm FX ");
		uassert(fx.getRMSError() < MaximumDiffForces);                      //4
		Print("Test5 - Error Relative L2 norm FY ");
		uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
		Print("Test6 - Error RMS L2 norm FY ");
		uassert(fy.getRMSError() < MaximumDiffForces);                      //6
		Print("Test7 - Error Relative L2 norm FZ ");
		uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
		Print("Test8 - Error RMS L2 norm FZ ");
		uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
		Print("Test9 - Error Relative L2 norm F ");
		uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
		Print("Test10 - Relative error Energy ");
		uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy

	}

	/** If memstas is running print the memory used */
	void PostTest() {
		if( FMemStats::controler.isUsed() ){
			std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated() << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
			std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated() << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
			std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated() << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
		}
	}

	///////////////////////////////////////////////////////////
	// The tests!
	///////////////////////////////////////////////////////////

	/** Classic */
	void TestSpherical(){
190
        typedef double FReal;
191
		typedef FSphericalCell<FReal>            CellClass;
192
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
193

194
		typedef FSphericalKernel< FReal, CellClass, ContainerClass >          KernelClass;
195

196
197
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
198
199
200

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

201
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
202
203
204
205
206
		OctreeClass, FmmClass>(false);
	}



207
#ifdef SCALFMM_USE_BLAS
208
209
	/** Blas */
	void TestSphericalBlas(){
210
        typedef double FReal;
211
		typedef FSphericalCell<FReal>            CellClass;
212
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
213

214
		typedef FSphericalBlasKernel<FReal, CellClass, ContainerClass >          KernelClass;
215

216
217
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
218
219
220

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

221
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
222
223
224
225
226
		OctreeClass, FmmClass>(true);
	}

	/** Block blas */
	void TestSphericalBlockBlas(){
227
        typedef double FReal;
228
		typedef FSphericalCell<FReal>            CellClass;
229
		typedef FP2PParticleContainerIndexed<FReal> ContainerClass;
230

231
		typedef FSphericalBlockBlasKernel< FReal, CellClass, ContainerClass >          KernelClass;
232

233
234
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
235
236
237

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

238
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
239
240
241
242
243
244
245
246
247
248
249
		OctreeClass, FmmClass>(true);
	}
#endif

	///////////////////////////////////////////////////////////
	// Set the tests!
	///////////////////////////////////////////////////////////

	/** set test */
	void SetTests(){
		AddTest(&TestSphericalDirect::TestSpherical,"Test Spherical Kernel");
250
#ifdef SCALFMM_USE_BLAS
251
252
253
254
255
256
257
258
259
		AddTest(&TestSphericalDirect::TestSphericalBlas,"Test Spherical Blas Kernel");
		AddTest(&TestSphericalDirect::TestSphericalBlockBlas,"Test Spherical Block Blas Kernel");
#endif
	}
};


// You must do this
TestClass(TestSphericalDirect)