Nous avons procédé ce jeudi matin 08 avril 2021 à une MAJ de sécurité urgente. Nous sommes passé de la version 13.9.3 à la version 13.9.5 les releases notes correspondantes sont ici:
https://about.gitlab.com/releases/2021/03/17/security-release-gitlab-13-9-4-released/
https://about.gitlab.com/releases/2021/03/31/security-release-gitlab-13-10-1-released/

FUnifTensorialKernel.hpp 12.9 KB
Newer Older
1
// See LICENCE file at project root
2 3
// Keep in private GIT

4 5 6 7
#ifndef FUNIFTENSORIALKERNEL_HPP
#define FUNIFTENSORIALKERNEL_HPP

#include "../../Utils/FGlobal.hpp"
8

9 10 11
#include "../../Utils/FSmartPointer.hpp"

#include "./FAbstractUnifKernel.hpp"
12 13
#include "./FUnifM2LHandler.hpp"
#include "./FUnifTensorialM2LHandler.hpp" //PB: temporary version
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

class FTreeCoordinate;

/**
 * @author Pierre Blanchard (pierre.blanchard@inria.fr)
 * @class FUnifTensorialKernel
 * @brief
 * Please read the license
 *
 * This kernels implement the Lagrange interpolation based FMM operators. It
 * implements all interfaces (P2P,P2M,M2M,M2L,L2L,L2P) which are required by
 * the FFmmAlgorithm and FFmmAlgorithmThread.
 *
 * PB: 3 IMPORTANT remarks !!!
 *
29 30
 * 1) Handling tensorial kernels (DIM,NRHS,NLHS) and having multiple rhs 
 * (NVALS) are considered 2 distinct features and are currently combined.
31
 *
32 33 34 35 36 37
 * 2) When it comes to applying M2L it is NOT much faster to loop over 
 * NRHSxNLHS inside applyM2L (at least for the Lagrange case).
 * 2-bis) During precomputation the tensorial matrix kernels are evaluated 
 * blockwise, but this is not always possible. 
 * In fact, in the ChebyshevSym variant the matrix kernel needs to be 
 * evaluated compo-by-compo since we currently use a scalar ACA.
38
 *
39 40 41
 * 3) We currently use multiple 1D FFT instead of multidim FFT since embedding
 * is circulant. Multidim FFT could be used if embedding were block circulant.
 * TODO investigate possibility of block circulant embedding
42 43 44 45 46 47
 *
 * @tparam CellClass Type of cell
 * @tparam ContainerClass Type of container to store particles
 * @tparam MatrixKernelClass Type of matrix kernel function
 * @tparam ORDER Lagrange interpolation order
 */
48
template < class FReal, class CellClass, class ContainerClass,   class MatrixKernelClass, int ORDER, int NVALS = 1>
49
class FUnifTensorialKernel
50
    : public FAbstractUnifKernel<FReal, CellClass, ContainerClass, MatrixKernelClass, ORDER, NVALS>
51
{
52 53 54 55
    enum {nRhs = MatrixKernelClass::NRHS,
          nLhs = MatrixKernelClass::NLHS,
          nPot = MatrixKernelClass::NPOT,
          nPV = MatrixKernelClass::NPV};
56 57 58

protected://PB: for OptiDis

59
    // private types
60
    typedef FUnifTensorialM2LHandler<FReal, ORDER,MatrixKernelClass,MatrixKernelClass::Type> M2LHandlerClass;
61

62
    // using from
63
    typedef FAbstractUnifKernel< FReal, CellClass, ContainerClass, MatrixKernelClass, ORDER, NVALS>
64
    AbstractBaseClass;
65

66 67
    /// Needed for P2P and M2L operators
    const MatrixKernelClass *const MatrixKernel;
68

69 70
    /// Needed for M2L operator
    const M2LHandlerClass M2LHandler;
71

72 73 74
    /// Leaf level separation criterion
    const int LeafLevelSeparationCriterion;

75
public:
76 77 78 79 80 81 82
    /**
     * The constructor initializes all constant attributes and it reads the
     * precomputed and compressed M2L operators from a binary file (an
     * runtime_error is thrown if the required file is not valid).
     */
    FUnifTensorialKernel(const int inTreeHeight,
                         const FReal inBoxWidth,
83
                         const FPoint<FReal>& inBoxCenter,
84
                         const MatrixKernelClass *const inMatrixKernel,
85 86
                         const FReal inBoxWidthExtension,
                         const int inLeafLevelSeparationCriterion = 1)
87
    : FAbstractUnifKernel< FReal, CellClass, ContainerClass, MatrixKernelClass, ORDER, NVALS>(inTreeHeight,inBoxWidth,inBoxCenter,inBoxWidthExtension),
88 89
      MatrixKernel(inMatrixKernel),
      M2LHandler(MatrixKernel,
90
                 inTreeHeight,
91
                 inBoxWidth,
92 93 94
                 inBoxWidthExtension,
                 inLeafLevelSeparationCriterion), 
      LeafLevelSeparationCriterion(inLeafLevelSeparationCriterion)
95 96 97 98 99 100
    { }


    void P2M(CellClass* const LeafCell,
             const ContainerClass* const SourceParticles)
    {
101
        const FPoint<FReal> LeafCellCenter(AbstractBaseClass::getLeafCellCenter(LeafCell->getCoordinate()));
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        const FReal ExtendedLeafCellWidth(AbstractBaseClass::BoxWidthLeaf 
                                          + AbstractBaseClass::BoxWidthExtension);

        for(int idxV = 0 ; idxV < NVALS ; ++idxV){

            // 1) apply Sy
            AbstractBaseClass::Interpolator->applyP2M(LeafCellCenter, ExtendedLeafCellWidth,
                                                      LeafCell->getMultipole(idxV*nRhs), SourceParticles);

            for(int idxRhs = 0 ; idxRhs < nRhs ; ++idxRhs){
                // update multipole index
                int idxMul = idxV*nRhs + idxRhs;

                // 2) apply Discrete Fourier Transform
                M2LHandler.applyZeroPaddingAndDFT(LeafCell->getMultipole(idxMul), 
                                                  LeafCell->getTransformedMultipole(idxMul));
118

119
            }
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        }// NVALS
    }


    void M2M(CellClass* const FRestrict ParentCell,
             const CellClass*const FRestrict *const FRestrict ChildCells,
             const int TreeLevel)
    {
        for(int idxV = 0 ; idxV < NVALS ; ++idxV){
            for(int idxRhs = 0 ; idxRhs < nRhs ; ++idxRhs){
                // update multipole index
                int idxMul = idxV*nRhs + idxRhs;

                // 1) apply Sy
                FBlas::scal(AbstractBaseClass::nnodes, FReal(0.), ParentCell->getMultipole(idxMul));
                for (unsigned int ChildIndex=0; ChildIndex < 8; ++ChildIndex){
                    if (ChildCells[ChildIndex]){
                        AbstractBaseClass::Interpolator->applyM2M(ChildIndex, 
                                                                  ChildCells[ChildIndex]->getMultipole(idxMul),
                                                                  ParentCell->getMultipole(idxMul), 
                                                                  TreeLevel/*Cell width extension specific*/);
                    }
                }
                // 2) Apply Discete Fourier Transform
                M2LHandler.applyZeroPaddingAndDFT(ParentCell->getMultipole(idxMul), 
                                                  ParentCell->getTransformedMultipole(idxMul));
            }
        }// NVALS
    }


151 152
    void M2L(CellClass* const FRestrict TargetCell, const CellClass* SourceCells[],
             const int neighborPositions[], const int inSize, const int TreeLevel)  override {
153 154 155 156 157 158 159 160 161 162 163
        const FReal CellWidth(AbstractBaseClass::BoxWidth / FReal(FMath::pow(2, TreeLevel)));
        const FReal ExtendedCellWidth(CellWidth + AbstractBaseClass::BoxWidthExtension);
        const FReal scale(MatrixKernel->getScaleFactor(ExtendedCellWidth));

        for(int idxV = 0 ; idxV < NVALS ; ++idxV){
            for (int idxLhs=0; idxLhs < nLhs; ++idxLhs){

                // update local index
                const int idxLoc = idxV*nLhs + idxLhs;

                // load transformed local expansion
164
                FComplex<FReal> *const TransformedLocalExpansion = TargetCell->getTransformedLocal(idxLoc);
165 166 167 168 169 170 171 172 173 174

                // update idxRhs
                const int idxRhs = idxLhs % nPV; 

                // update multipole index
                const int idxMul = idxV*nRhs + idxRhs;

                // get index in matrix kernel
                const unsigned int d = MatrixKernel->getPosition(idxLhs);

175 176
                for(int idxExistingNeigh = 0 ; idxExistingNeigh < inSize ; ++idxExistingNeigh){
                    const int idx = neighborPositions[idxExistingNeigh];
177

178 179 180
                    M2LHandler.applyFC(idx, TreeLevel, scale, d,
                                       SourceCells[idxExistingNeigh]->getTransformedMultipole(idxMul),
                                       TransformedLocalExpansion);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

                }
            }// NLHS=NPOT*NPV
        }// NVALS
    }


    void L2L(const CellClass* const FRestrict ParentCell,
             CellClass* FRestrict *const FRestrict ChildCells,
             const int TreeLevel)
    {
        for(int idxV = 0 ; idxV < NVALS ; ++idxV){
            for(int idxLhs = 0 ; idxLhs < nLhs ; ++idxLhs){
                int idxLoc = idxV*nLhs + idxLhs;
                // 1) Apply Inverse Discete Fourier Transform
                M2LHandler.unapplyZeroPaddingAndDFT(ParentCell->getTransformedLocal(idxLoc),
                                                    const_cast<CellClass*>(ParentCell)->getLocal(idxLoc));
                // 2) apply Sx
                for (unsigned int ChildIndex=0; ChildIndex < 8; ++ChildIndex){
                    if (ChildCells[ChildIndex]){
                        AbstractBaseClass::Interpolator->applyL2L(ChildIndex, 
                                                                  ParentCell->getLocal(idxLoc), 
                                                                  ChildCells[ChildIndex]->getLocal(idxLoc),
                                                                  TreeLevel/*Cell width extension specific*/);
                    }
                }
            }
        }// NVALS
    }

    void L2P(const CellClass* const LeafCell,
             ContainerClass* const TargetParticles)
    {
214
        const FPoint<FReal> LeafCellCenter(AbstractBaseClass::getLeafCellCenter(LeafCell->getCoordinate()));
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        const FReal ExtendedLeafCellWidth(AbstractBaseClass::BoxWidthLeaf 
                                          + AbstractBaseClass::BoxWidthExtension);

        for(int idxV = 0 ; idxV < NVALS ; ++idxV){
            for(int idxLhs = 0 ; idxLhs < nLhs ; ++idxLhs){
                int idxLoc = idxV*nLhs + idxLhs;
                // 1)  Apply Inverse Discete Fourier Transform
                M2LHandler.unapplyZeroPaddingAndDFT(LeafCell->getTransformedLocal(idxLoc), 
                                                    const_cast<CellClass*>(LeafCell)->getLocal(idxLoc));

            }

            // 2.a) apply Sx
            AbstractBaseClass::Interpolator->applyL2P(LeafCellCenter, ExtendedLeafCellWidth,
                                                      LeafCell->getLocal(idxV*nLhs), TargetParticles);

            // 2.b) apply Px (grad Sx)
            AbstractBaseClass::Interpolator->applyL2PGradient(LeafCellCenter, ExtendedLeafCellWidth,
                                                              LeafCell->getLocal(idxV*nLhs), TargetParticles);

        }// NVALS
    }

238
    void P2P(const FTreeCoordinate& inPosition,
239
             ContainerClass* const FRestrict inTargets, const ContainerClass* const FRestrict inSources,
240 241
             ContainerClass* const inNeighbors[], const int neighborPositions[],
             const int inSize) override {
242 243 244 245 246 247 248 249 250 251 252
        // Standard FMM separation criterion, i.e. max 27 neighbor clusters per leaf
        if(LeafLevelSeparationCriterion==1) {
            if(inTargets == inSources){
                P2POuter(inPosition, inTargets, inNeighbors, neighborPositions, inSize);
                DirectInteractionComputer<FReal, MatrixKernelClass::NCMP, NVALS>::P2PInner(inTargets,MatrixKernel);
            }
            else{
                const ContainerClass* const srcPtr[1] = {inSources};
                DirectInteractionComputer<FReal, MatrixKernelClass::NCMP, NVALS>::P2PRemote(inTargets,srcPtr,1,MatrixKernel);
                DirectInteractionComputer<FReal, MatrixKernelClass::NCMP, NVALS>::P2PRemote(inTargets,inNeighbors,inSize,MatrixKernel);
            }
253
        }
254 255 256
        // Nearfield interactions are only computed within the target leaf
        else if(LeafLevelSeparationCriterion==0){
            DirectInteractionComputer<FReal,MatrixKernelClass::NCMP, NVALS>::P2PRemote(inTargets,inNeighbors,inSize,MatrixKernel);
257
        }
258
        // If criterion equals -1 then no P2P need to be performed.
259 260 261 262 263 264
    }

    void P2POuter(const FTreeCoordinate& /*inLeafPosition*/,
             ContainerClass* const FRestrict inTargets,
             ContainerClass* const inNeighbors[], const int neighborPositions[],
             const int inSize) override {
265 266 267 268 269 270
        int nbNeighborsToCompute = 0;
        while(nbNeighborsToCompute < inSize
              && neighborPositions[nbNeighborsToCompute] < 14){
            nbNeighborsToCompute += 1;
        }
        DirectInteractionComputer<FReal, MatrixKernelClass::NCMP, NVALS>::P2P(inTargets,inNeighbors,nbNeighborsToCompute,MatrixKernel);
271 272 273 274 275
    }


    void P2PRemote(const FTreeCoordinate& /*inPosition*/,
                   ContainerClass* const FRestrict inTargets, const ContainerClass* const FRestrict /*inSources*/,
276
                   const ContainerClass* const inNeighbors[], const int /*neighborPositions*/[],
277
                   const int inSize) override {
278 279 280 281 282 283 284
        // Standard FMM separation criterion, i.e. max 27 neighbor clusters per leaf
        if(LeafLevelSeparationCriterion==1) 
            DirectInteractionComputer<FReal, MatrixKernelClass::NCMP, NVALS>::P2PRemote(inTargets,inNeighbors,inSize,MatrixKernel);
        // Nearfield interactions are only computed within the target leaf
        if(LeafLevelSeparationCriterion==0) 
            DirectInteractionComputer<FReal, MatrixKernelClass::NCMP, NVALS>::P2PRemote(inTargets,inNeighbors,0,MatrixKernel);
        // If criterion equals -1 then no P2P need to be performed.        
285
    }
286 287 288 289

};


290
#endif //FUNIFTENSORIALKERNEL_HPP
291 292

// [--END--]