FChebInterpolator.hpp 54.5 KB
Newer Older
BRAMAS Berenger's avatar
BRAMAS Berenger committed
1 2 3 4 5 6 7 8 9 10
// ===================================================================================
// Logiciel initial: ScalFmm Version 0.5
// Co-auteurs : Olivier Coulaud, Matthias Messner.
// Propriétaires : INRIA.
// Copyright © 2011-2012, diffusé sous les termes et conditions d’une licence propriétaire.
// Initial software: ScalFmm Version 0.5
// Co-authors: Olivier Coulaud, Matthias Messner.
// Owners: INRIA.
// Copyright © 2011-2012, spread under the terms and conditions of a proprietary license.
// ===================================================================================
11 12 13 14 15 16 17 18
#ifndef FCHEBINTERPOLATOR_HPP
#define FCHEBINTERPOLATOR_HPP


#include "./FChebMapping.hpp"
#include "./FChebTensor.hpp"
#include "./FChebRoots.hpp"

19
#include "../../Utils/FBlas.hpp"
20

21 22 23 24 25 26 27 28 29


/**
 * @author Matthias Messner (matthias.matthias@inria.fr)
 * Please read the license
 */

/**
 * @class FChebInterpolator
30
 *
31
 * The class @p FChebInterpolator defines the anterpolation (M2M) and
32
 * interpolation (L2L) concerning operations.
33 34 35 36 37 38 39 40 41 42
 */
template <int ORDER>
class FChebInterpolator : FNoCopyable
{
  // compile time constants and types
  enum {nnodes = TensorTraits<ORDER>::nnodes};
  typedef FChebRoots< ORDER>  BasisType;
  typedef FChebTensor<ORDER> TensorType;

  FReal T_of_roots[ORDER][ORDER];
43
  FReal T[ORDER * (ORDER-1)];
44
	unsigned int node_ids[nnodes][3];
45 46
	FReal* ChildParentInterpolator[8];

47 48 49
	// permutations (only needed in the tensor product interpolation case)
	unsigned int perm[3][nnodes];

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	////////////////////////////////////////////////////////////////////
	// needed for P2M
	struct IMN2MNI {
		enum {size = ORDER * (ORDER-1) * (ORDER-1)};
		unsigned int imn[size], mni[size];
		IMN2MNI() {
			unsigned int counter = 0;
			for (unsigned int i=0; i<ORDER; ++i) {
				for (unsigned int m=0; m<ORDER-1; ++m) {
					for (unsigned int n=0; n<ORDER-1; ++n) {
						imn[counter] = n*(ORDER-1)*ORDER + m*ORDER + i;
						mni[counter] = i*(ORDER-1)*(ORDER-1) + n*(ORDER-1) + m;
						counter++;
					}
				}
			}
		}
	} perm0;
	
	struct JNI2NIJ {
		enum {size = ORDER * ORDER * (ORDER-1)};
		unsigned int jni[size], nij[size];
		JNI2NIJ() {
			unsigned int counter = 0;
			for (unsigned int i=0; i<ORDER; ++i) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int n=0; n<ORDER-1; ++n) {
						jni[counter] = i*(ORDER-1)*ORDER + n*ORDER + j;
						nij[counter] = j*ORDER*(ORDER-1) + i*(ORDER-1) + n;
						counter++;
					}
				}
			}
		}
	} perm1;

	struct KIJ2IJK {
		enum {size = ORDER * ORDER * ORDER};
		unsigned int kij[size], ijk[size];
		KIJ2IJK() {
			unsigned int counter = 0;
			for (unsigned int i=0; i<ORDER; ++i) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int k=0; k<ORDER; ++k) {
						kij[counter] = j*ORDER*ORDER + i*ORDER + k;
						ijk[counter] = k*ORDER*ORDER + j*ORDER + i;
						counter++;
					}
				}
			}
		}
	} perm2;
	////////////////////////////////////////////////////////////////////

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	////////////////////////////////////////////////////////////////////
	// needed for L2P
	struct IJK2JKI {
		enum {size = ORDER * ORDER * ORDER};
		unsigned int ijk[size], jki[size];
		IJK2JKI() {
			unsigned int counter = 0;
			for (unsigned int i=0; i<ORDER; ++i) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int k=0; k<ORDER; ++k) {
						ijk[counter] = k*ORDER*ORDER + j*ORDER + i;
						jki[counter] = i*ORDER*ORDER + k*ORDER + j;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[jki[i]] = IN[ijk[i]]; }
	} perm3;

	struct IJK2KIJ {
		enum {size = ORDER * ORDER * ORDER};
		unsigned int ijk[size], kij[size];
		IJK2KIJ() {
			unsigned int counter = 0;
			for (unsigned int i=0; i<ORDER; ++i) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int k=0; k<ORDER; ++k) {
						ijk[counter] = k*ORDER*ORDER + j*ORDER + i;
						kij[counter] = j*ORDER*ORDER + i*ORDER + k;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[kij[i]] = IN[ijk[i]]; }
	} perm4;

	struct LJK2JKL {
		enum {size = (ORDER-1) * ORDER * ORDER};
		unsigned int ljk[size], jkl[size];
		LJK2JKL() {
			unsigned int counter = 0;
			for (unsigned int l=0; l<ORDER-1; ++l) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int k=0; k<ORDER; ++k) {
						ljk[counter] = k*ORDER*(ORDER-1) + j*(ORDER-1) + l;
						jkl[counter] = l*ORDER*ORDER + k*ORDER + j;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[jkl[i]] = IN[ljk[i]]; }
	} perm5;

	struct LJK2KLJ {
		enum {size = (ORDER-1) * ORDER * ORDER};
		unsigned int ljk[size], klj[size];
		LJK2KLJ() {
			unsigned int counter = 0;
			for (unsigned int l=0; l<ORDER-1; ++l) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int k=0; k<ORDER; ++k) {
						ljk[counter] = k*ORDER*(ORDER-1) + j*(ORDER-1) + l;
						klj[counter] = j*(ORDER-1)*ORDER + l*ORDER + k;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[klj[i]] = IN[ljk[i]]; }
	} perm6;

	struct MKI2KIM {
		enum {size = (ORDER-1) * ORDER * ORDER};
		unsigned int mki[size], kim[size];
		MKI2KIM() {
			unsigned int counter = 0;
			for (unsigned int m=0; m<ORDER-1; ++m) {
				for (unsigned int k=0; k<ORDER; ++k) {
					for (unsigned int i=0; i<ORDER; ++i) {
						mki[counter] = i*ORDER*(ORDER-1) + k*(ORDER-1) + m;
						kim[counter] = m*ORDER*ORDER + i*ORDER + k;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[kim[i]] = IN[mki[i]]; }
	} perm7;

	struct MKL2KLM {
		enum {size = (ORDER-1) * ORDER * (ORDER-1)};
		unsigned int mkl[size], klm[size];
		MKL2KLM() {
			unsigned int counter = 0;
			for (unsigned int m=0; m<ORDER-1; ++m) {
				for (unsigned int k=0; k<ORDER; ++k) {
					for (unsigned int l=0; l<ORDER-1; ++l) {
						mkl[counter] = l*ORDER*(ORDER-1) + k*(ORDER-1) + m;
						klm[counter] = m*(ORDER-1)*ORDER + l*ORDER + k;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[klm[i]] = IN[mkl[i]]; }
	} perm8;

	struct NLM2LMN {
		enum {size = (ORDER-1) * (ORDER-1) * (ORDER-1)};
		unsigned int nlm[size], lmn[size];
		NLM2LMN() {
			unsigned int counter = 0;
			for (unsigned int n=0; n<ORDER-1; ++n) {
				for (unsigned int l=0; l<ORDER-1; ++l) {
					for (unsigned int m=0; m<ORDER-1; ++m) {
						nlm[counter] = m*(ORDER-1)*(ORDER-1) + l*(ORDER-1) + n;
						lmn[counter] = n*(ORDER-1)*(ORDER-1) + m*(ORDER-1) + l;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[lmn[i]] = IN[nlm[i]]; }
	} perm9;

	////////////////////////////////////////////////////////////////////


242

243 244 245 246 247
	/**
	 * Initialize the child - parent - interpolator, it is basically the matrix
	 * S which is precomputed and reused for all M2M and L2L operations, ie for
	 * all non leaf inter/anterpolations.
	 */
248
	void initM2MandL2L()
249
	{
COULAUD Olivier's avatar
COULAUD Olivier committed
250
		FPoint ParentRoots[nnodes], ChildRoots[nnodes];
251
		const FReal ParentWidth(2.);
COULAUD Olivier's avatar
COULAUD Olivier committed
252
		const FPoint ParentCenter(0., 0., 0.);
253 254
		FChebTensor<ORDER>::setRoots(ParentCenter, ParentWidth, ParentRoots);

COULAUD Olivier's avatar
COULAUD Olivier committed
255
		FPoint ChildCenter;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
		const FReal ChildWidth(1.);
		
		// loop: child cells
		for (unsigned int child=0; child<8; ++child) {

			// allocate memory
			ChildParentInterpolator[child] = new FReal [nnodes * nnodes];

			// set child info
			FChebTensor<ORDER>::setRelativeChildCenter(child, ChildCenter);
			FChebTensor<ORDER>::setRoots(ChildCenter, ChildWidth, ChildRoots);

			// assemble child - parent - interpolator
			assembleInterpolator(nnodes, ChildRoots, ChildParentInterpolator[child]);
		}
	}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	/**
	 * Initialize the child - parent - interpolator, it is basically the matrix
	 * S which is precomputed and reused for all M2M and L2L operations, ie for
	 * all non leaf inter/anterpolations.
	 */
	void initTensorM2MandL2L()
	{
		FPoint ParentRoots[nnodes];
		FReal ChildCoords[3][ORDER];
		const FReal ParentWidth(2.);
		const FPoint ParentCenter(0., 0., 0.);
		FChebTensor<ORDER>::setRoots(ParentCenter, ParentWidth, ParentRoots);

		FPoint ChildCenter;
		const FReal ChildWidth(1.);
		
		// loop: child cells
		for (unsigned int child=0; child<8; ++child) {

			// set child info
			FChebTensor<ORDER>::setRelativeChildCenter(child, ChildCenter);
			FChebTensor<ORDER>::setChebyshevRoots(ChildCenter, ChildWidth, ChildCoords);

			// allocate memory
			ChildParentInterpolator[child] = new FReal [3 * ORDER*ORDER];
			assembleInterpolator(ORDER, ChildCoords[0], ChildParentInterpolator[child]);
			assembleInterpolator(ORDER, ChildCoords[1], ChildParentInterpolator[child] + 1 * ORDER*ORDER);
			assembleInterpolator(ORDER, ChildCoords[2], ChildParentInterpolator[child] + 2 * ORDER*ORDER);
		}


		// init permutations
		for (unsigned int i=0; i<ORDER; ++i) {
			for (unsigned int j=0; j<ORDER; ++j) {
				for (unsigned int k=0; k<ORDER; ++k) {
					const unsigned int index = k*ORDER*ORDER + j*ORDER + i;
					perm[0][index] = k*ORDER*ORDER + j*ORDER + i;
					perm[1][index] = i*ORDER*ORDER + k*ORDER + j;
					perm[2][index] = j*ORDER*ORDER + i*ORDER + k;
				}
			}
		}
		
	}

318 319 320 321


public:
	/**
322
	 * Constructor: Initialize the Chebyshev polynomials at the Chebyshev
323 324 325 326 327 328 329
	 * roots/interpolation point
	 */
	explicit FChebInterpolator()
	{
		// initialize chebyshev polynomials of root nodes: T_o(x_j)
    for (unsigned int o=1; o<ORDER; ++o)
      for (unsigned int j=0; j<ORDER; ++j)
messner's avatar
messner committed
330
        T_of_roots[o][j] = FReal(BasisType::T(o, FReal(BasisType::roots[j])));
331

332 333 334 335 336 337
		// initialize chebyshev polynomials of root nodes: T_o(x_j)
    for (unsigned int o=1; o<ORDER; ++o)
      for (unsigned int j=0; j<ORDER; ++j)
        T[(o-1)*ORDER + j] = FReal(BasisType::T(o, FReal(BasisType::roots[j])));
		

338 339
		// initialize root node ids
		TensorType::setNodeIds(node_ids);
340 341 342

		// initialize interpolation operator for non M2M and L2L (non leaf
		// operations)
343 344
		//this -> initM2MandL2L();     // non tensor-product interpolation
		this -> initTensorM2MandL2L(); // tensor-product interpolation
345 346 347 348 349 350 351 352 353 354
	}

	
	/**
	 * Destructor: Delete dynamically allocated memory for M2M and L2L operator
	 */
	~FChebInterpolator()
	{
		for (unsigned int child=0; child<8; ++child)
			delete [] ChildParentInterpolator[child];
355 356 357
	}


358 359 360 361 362 363 364 365 366 367
	/**
	 * Assembles the interpolator \f$S_\ell\f$ of size \f$N\times
	 * \ell^3\f$. Here local points is meant as points whose global coordinates
	 * have already been mapped to the reference interval [-1,1].
	 *
	 * @param[in] NumberOfLocalPoints
	 * @param[in] LocalPoints
	 * @param[out] Interpolator
	 */
	void assembleInterpolator(const unsigned int NumberOfLocalPoints,
COULAUD Olivier's avatar
COULAUD Olivier committed
368
				  const FPoint *const LocalPoints,
369
				  FReal *const Interpolator) const
COULAUD Olivier's avatar
COULAUD Olivier committed
370
	{
371 372
		// values of chebyshev polynomials of source particle: T_o(x_i)
		FReal T_of_x[ORDER][3];
373 374
		// loop: local points (mapped in [-1,1])
		for (unsigned int m=0; m<NumberOfLocalPoints; ++m) {
375 376 377 378 379 380
			// evaluate chebyshev polynomials at local points
			for (unsigned int o=1; o<ORDER; ++o) {
				T_of_x[o][0] = BasisType::T(o, LocalPoints[m].getX());
				T_of_x[o][1] = BasisType::T(o, LocalPoints[m].getY());
				T_of_x[o][2] = BasisType::T(o, LocalPoints[m].getZ());
			}
381

382 383
			// assemble interpolator
			for (unsigned int n=0; n<nnodes; ++n) {
384 385
				//Interpolator[n*nnodes + m] = FReal(1.);
				Interpolator[n*NumberOfLocalPoints + m] = FReal(1.);
386 387
				for (unsigned int d=0; d<3; ++d) {
					const unsigned int j = node_ids[n][d];
388
					FReal S_d = FReal(1.) / ORDER;
389
					for (unsigned int o=1; o<ORDER; ++o)
390 391 392
					 	S_d += FReal(2.) / ORDER * T_of_x[o][d] * T_of_roots[o][j];
					//Interpolator[n*nnodes + m] *= S_d;
					Interpolator[n*NumberOfLocalPoints + m] *= S_d;
393
				}
394

395 396 397 398 399 400
			}
			
		}
		
	}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	void assembleInterpolator(const unsigned int M, const FReal *const x, FReal *const S) const
	{
		// values of chebyshev polynomials of source particle: T_o(x_i)
		FReal T_of_x[ORDER];

		// loop: local points (mapped in [-1,1])
		for (unsigned int m=0; m<M; ++m) {
			// evaluate chebyshev polynomials at local points
			for (unsigned int o=1; o<ORDER; ++o)
				T_of_x[o] = BasisType::T(o, x[m]);
			
			for (unsigned int n=0; n<ORDER; ++n) {
				S[n*M + m] = FReal(1.) / ORDER;
				for (unsigned int o=1; o<ORDER; ++o)
					S[n*M + m] += FReal(2.) / ORDER * T_of_x[o] * T_of_roots[o][n];
			}
			
		}
		
	}
422 423
	

424

425 426 427 428
	const FReal *const *const getChildParentInterpolator() const
	{ return ChildParentInterpolator; }
	const unsigned int *const getPermutationsM2ML2L(unsigned int i) const
	{ return perm[i]; }
429

430
	
431 432 433



434 435
	
	/**
436 437
	 * Particle to moment: application of \f$S_\ell(y,\bar y_n)\f$
	 * (anterpolation, it is the transposed interpolation)
438 439
	 */
	template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
440
	void applyP2M(const FPoint& center,
441 442
								const FReal width,
								FReal *const multipoleExpansion,
443
								const ContainerClass *const sourceParticles) const;
444 445 446 447


	
	/**
448
	 * Local to particle operation: application of \f$S_\ell(x,\bar x_m)\f$ (interpolation)
449 450
	 */
	template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
451
	void applyL2P(const FPoint& center,
452 453
								const FReal width,
								const FReal *const localExpansion,
454
								ContainerClass *const localParticles) const;
455

456 457 458 459 460

	/**
	 * Local to particle operation: application of \f$\nabla_x S_\ell(x,\bar x_m)\f$ (interpolation)
	 */
	template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
461
	void applyL2PGradient(const FPoint& center,
462 463
												const FReal width,
												const FReal *const localExpansion,
464
												ContainerClass *const localParticles) const;
465

466 467 468 469 470
	/**
	 * Local to particle operation: application of \f$S_\ell(x,\bar x_m)\f$ and
	 * \f$\nabla_x S_\ell(x,\bar x_m)\f$ (interpolation)
	 */
	template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
471
	void applyL2PTotal(const FPoint& center,
472 473 474 475
										 const FReal width,
										 const FReal *const localExpansion,
										 ContainerClass *const localParticles) const;
	
476
	
477
	/*
478 479 480 481 482 483
	void applyM2M(const unsigned int ChildIndex,
								const FReal *const ChildExpansion,
								FReal *const ParentExpansion) const
	{
		FBlas::gemtva(nnodes, nnodes, FReal(1.),
									ChildParentInterpolator[ChildIndex],
messner's avatar
messner committed
484
									const_cast<FReal*>(ChildExpansion), ParentExpansion);
485
	}
486

487 488 489 490 491 492
	void applyL2L(const unsigned int ChildIndex,
								const FReal *const ParentExpansion,
								FReal *const ChildExpansion) const
	{
		FBlas::gemva(nnodes, nnodes, FReal(1.),
								 ChildParentInterpolator[ChildIndex],
messner's avatar
messner committed
493
								 const_cast<FReal*>(ParentExpansion), ChildExpansion);
494
	}
495 496 497 498 499 500 501 502 503
	*/
	

	
	void applyM2M(const unsigned int ChildIndex,
								const FReal *const ChildExpansion,
								FReal *const ParentExpansion) const
	{
		FReal Exp[nnodes], PermExp[nnodes];
504
		// ORDER*ORDER*ORDER * (2*ORDER-1)
505 506 507 508 509
		FBlas::gemtm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								 ChildParentInterpolator[ChildIndex], ORDER,
								 const_cast<FReal*>(ChildExpansion), ORDER, PermExp, ORDER);
		
		for (unsigned int n=0; n<nnodes; ++n)	Exp[n] = PermExp[perm[1][n]];
510
		// ORDER*ORDER*ORDER * (2*ORDER-1)
511 512 513 514 515
		FBlas::gemtm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								 ChildParentInterpolator[ChildIndex] + 2 * ORDER*ORDER, ORDER,
								 Exp, ORDER, PermExp, ORDER);

		for (unsigned int n=0; n<nnodes; ++n)	Exp[perm[1][n]] = PermExp[perm[2][n]];
516
		// ORDER*ORDER*ORDER * (2*ORDER-1)
517 518 519 520 521 522 523 524 525 526 527 528 529
		FBlas::gemtm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								 ChildParentInterpolator[ChildIndex] + 1 * ORDER*ORDER, ORDER,
								 Exp, ORDER, PermExp, ORDER);

		for (unsigned int n=0; n<nnodes; ++n)	ParentExpansion[perm[2][n]] += PermExp[n];
	}


	void applyL2L(const unsigned int ChildIndex,
								const FReal *const ParentExpansion,
								FReal *const ChildExpansion) const
	{
		FReal Exp[nnodes], PermExp[nnodes];
530
		// ORDER*ORDER*ORDER * (2*ORDER-1)
531 532 533 534 535
		FBlas::gemm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								ChildParentInterpolator[ChildIndex], ORDER,
								const_cast<FReal*>(ParentExpansion), ORDER, PermExp, ORDER);
		
		for (unsigned int n=0; n<nnodes; ++n)	Exp[n] = PermExp[perm[1][n]];
536
		// ORDER*ORDER*ORDER * (2*ORDER-1)
537 538 539 540 541
		FBlas::gemm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								ChildParentInterpolator[ChildIndex] + 2 * ORDER*ORDER, ORDER,
								Exp, ORDER, PermExp, ORDER);
		
		for (unsigned int n=0; n<nnodes; ++n)	Exp[perm[1][n]] = PermExp[perm[2][n]];
542
		// ORDER*ORDER*ORDER * (2*ORDER-1)
543 544 545 546 547 548
		FBlas::gemm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								ChildParentInterpolator[ChildIndex] + 1 * ORDER*ORDER, ORDER,
								Exp, ORDER, PermExp, ORDER);

		for (unsigned int n=0; n<nnodes; ++n)	ChildExpansion[perm[2][n]] += PermExp[n];
	}
549
	// total flops count: 3 * ORDER*ORDER*ORDER * (2*ORDER-1)
550
};
551 552 553



554 555 556 557 558 559 560 561 562 563




/**
 * Particle to moment: application of \f$S_\ell(y,\bar y_n)\f$
 * (anterpolation, it is the transposed interpolation)
 */
template <int ORDER>
template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
564
inline void FChebInterpolator<ORDER>::applyP2M(const FPoint& center,
565 566 567 568 569 570 571 572 573
																							 const FReal width,
																							 FReal *const multipoleExpansion,
																							 const ContainerClass *const sourceParticles) const
{
	// set all multipole expansions to zero
	FBlas::setzero(nnodes, multipoleExpansion);

	// allocate stuff
	const map_glob_loc map(center, width);
COULAUD Olivier's avatar
COULAUD Olivier committed
574
	FPoint localPosition;
575 576 577 578 579 580 581 582 583

	FReal W1 = FReal(0.);
	FReal W2[3][ ORDER-1];
	FReal W4[3][(ORDER-1)*(ORDER-1)];
	FReal W8[   (ORDER-1)*(ORDER-1)*(ORDER-1)];
	for(unsigned int i=0; i<(ORDER-1); ++i) W2[0][i] = W2[1][i] = W2[2][i] = FReal(0.);
	for(unsigned int i=0; i<(ORDER-1)*(ORDER-1); ++i)	W4[0][i] = W4[1][i] = W4[2][i] = FReal(0.);
	for(unsigned int i=0; i<(ORDER-1)*(ORDER-1)*(ORDER-1); ++i)	W8[i] = FReal(0.);
	
584 585 586
	// loop over source particles
	typename ContainerClass::ConstBasicIterator iter(*sourceParticles);
	while(iter.hasNotFinished()){
587
		
588
		// map global position to [-1,1]
589
		map(iter.data().getPosition(), localPosition); // 15 flops
590
		
591 592 593 594 595 596 597 598 599 600 601
		FReal T_of_x[3][ORDER];
		T_of_x[0][0] = FReal(1.); T_of_x[0][1] = localPosition.getX();
		T_of_x[1][0] = FReal(1.); T_of_x[1][1] = localPosition.getY();
		T_of_x[2][0] = FReal(1.); T_of_x[2][1] = localPosition.getZ();
		const FReal x2 = FReal(2.) * T_of_x[0][1]; // 1 flop
		const FReal y2 = FReal(2.) * T_of_x[1][1]; // 1 flop
		const FReal z2 = FReal(2.) * T_of_x[2][1]; // 1 flop
		for (unsigned int j=2; j<ORDER; ++j) {
			T_of_x[0][j] = x2 * T_of_x[0][j-1] - T_of_x[0][j-2]; // 2 flops
			T_of_x[1][j] = y2 * T_of_x[1][j-1] - T_of_x[1][j-2]; // 2 flops
			T_of_x[2][j] = z2 * T_of_x[2][j-1] - T_of_x[2][j-2]; // 2 flops
602
		}
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		
		const FReal weight = iter.data().getPhysicalValue();
		W1 += weight; // 1 flop
		for (unsigned int i=1; i<ORDER; ++i) {
			const FReal wx = weight * T_of_x[0][i]; // 1 flop
			const FReal wy = weight * T_of_x[1][i]; // 1 flop
			const FReal wz = weight * T_of_x[2][i]; // 1 flop
			W2[0][i-1] += wx; // 1 flop
			W2[1][i-1] += wy; // 1 flop
			W2[2][i-1] += wz; // 1 flop
			for (unsigned int j=1; j<ORDER; ++j) {
				const FReal wxy = wx * T_of_x[1][j]; // 1 flop
				const FReal wxz = wx * T_of_x[2][j]; // 1 flop
				const FReal wyz = wy * T_of_x[2][j]; // 1 flop
				W4[0][(j-1)*(ORDER-1) + (i-1)] += wxy; // 1 flop
				W4[1][(j-1)*(ORDER-1) + (i-1)] += wxz; // 1 flop
				W4[2][(j-1)*(ORDER-1) + (i-1)] += wyz; // 1 flop
				for (unsigned int k=1; k<ORDER; ++k) {
					const FReal wxyz = wxy * T_of_x[2][k]; // 1 flop
					W8[(k-1)*(ORDER-1)*(ORDER-1) + (j-1)*(ORDER-1) + (i-1)] += wxyz; // 1 flop
				} // flops: (ORDER-1) * 2
			} // flops: (ORDER-1) * (6 + (ORDER-1) * 2) 
		} // flops: (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1) * 2))
		
		
628 629
		// increment source iterator
		iter.gotoNext();
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	} // flops: N * (18 + (ORDER-2) * 6 + (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1) * 2)))

	////////////////////////////////////////////////////////////////////

	// loop over interpolation points
	FReal F2[3][ORDER];
	FReal F4[3][ORDER*ORDER];
	FReal F8[   ORDER*ORDER*ORDER];
	{
		// compute W2: 3 * ORDER*(2*(ORDER-1)-1) flops
		FBlas::gemv(ORDER, ORDER-1, FReal(1.), const_cast<FReal*>(T), W2[0], F2[0]);
		FBlas::gemv(ORDER, ORDER-1, FReal(1.), const_cast<FReal*>(T), W2[1], F2[1]);
		FBlas::gemv(ORDER, ORDER-1, FReal(1.), const_cast<FReal*>(T), W2[2], F2[2]);

		// compute W4: 3 * [ORDER*(ORDER-1)*(2*(ORDER-1)-1) + ORDER*ORDER*(2*(ORDER-1)-1)]
		FReal C[ORDER * (ORDER-1)];
		FBlas::gemmt(ORDER, ORDER-1, ORDER-1, FReal(1.), const_cast<FReal*>(T), ORDER, W4[0], ORDER-1, C,     ORDER);
		FBlas::gemmt(ORDER, ORDER-1, ORDER,   FReal(1.), const_cast<FReal*>(T), ORDER, C,     ORDER,   F4[0], ORDER);
		FBlas::gemmt(ORDER, ORDER-1, ORDER-1, FReal(1.), const_cast<FReal*>(T), ORDER, W4[1], ORDER-1, C,     ORDER);
		FBlas::gemmt(ORDER, ORDER-1, ORDER,   FReal(1.), const_cast<FReal*>(T), ORDER, C,     ORDER,   F4[1], ORDER);
		FBlas::gemmt(ORDER, ORDER-1, ORDER-1, FReal(1.), const_cast<FReal*>(T), ORDER, W4[2], ORDER-1, C,     ORDER);
		FBlas::gemmt(ORDER, ORDER-1, ORDER,   FReal(1.), const_cast<FReal*>(T), ORDER, C,     ORDER,   F4[2], ORDER);
	
		// compute W8: 3 * (2*(ORDER-1)-1) * [ORDER*(ORDER-1)*(ORDER-1) + ORDER*ORDER*(ORDER-1) + ORDER*ORDER*ORDER]
		FReal D[ORDER * (ORDER-1) * (ORDER-1)];
		FBlas::gemm(ORDER, ORDER-1, (ORDER-1)*(ORDER-1), FReal(1.),	const_cast<FReal*>(T), ORDER, W8, ORDER-1, D, ORDER);
		FReal E[(ORDER-1) * (ORDER-1) * ORDER];
		for (unsigned int s=0; s<perm0.size; ++s)	E[perm0.mni[s]] = D[perm0.imn[s]];
		FReal F[ORDER * (ORDER-1) * ORDER];
		FBlas::gemm(ORDER, ORDER-1, ORDER*(ORDER-1), FReal(1.), const_cast<FReal*>(T), ORDER, E, ORDER-1, F, ORDER);
		FReal G[(ORDER-1) * ORDER * ORDER];
		for (unsigned int s=0; s<perm1.size; ++s)	G[perm1.nij[s]] = F[perm1.jni[s]];
		FReal H[ORDER * ORDER * ORDER];
		FBlas::gemm(ORDER, ORDER-1, ORDER*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER, G, ORDER-1, H, ORDER);
		for (unsigned int s=0; s<perm2.size; ++s)	F8[perm2.ijk[s]] = H[perm2.kij[s]];
665
	}
666 667 668 669 670 671 672 673 674 675 676 677 678 679
	
	// assemble multipole expansions
	for (unsigned int i=0; i<ORDER; ++i) {
		for (unsigned int j=0; j<ORDER; ++j) {
			for (unsigned int k=0; k<ORDER; ++k) {
				const unsigned int idx = k*ORDER*ORDER + j*ORDER + i;
				multipoleExpansion[idx] = (W1 + 
																	 FReal(2.) * (F2[0][i] + F2[1][j] + F2[2][k]) +
																	 FReal(4.) * (F4[0][j*ORDER+i] + F4[1][k*ORDER+i] + F4[2][k*ORDER+j]) +
																	 FReal(8.) *  F8[idx]) / nnodes; // 11 * ORDER*ORDER*ORDER flops
			}
		}
	}

680 681 682
}


683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
///**
// * Particle to moment: application of \f$S_\ell(y,\bar y_n)\f$
// * (anterpolation, it is the transposed interpolation)
// */
//template <int ORDER>
//template <class ContainerClass>
//inline void FChebInterpolator<ORDER>::applyP2M(const FPoint& center,
//																							 const FReal width,
//																							 FReal *const multipoleExpansion,
//																							 const ContainerClass *const sourceParticles) const
//{
//	// set all multipole expansions to zero
//	FBlas::setzero(nnodes, multipoleExpansion);
//
//	// allocate stuff
//	const map_glob_loc map(center, width);
//	FPoint localPosition;
//	FReal T_of_x[ORDER][3];
//	FReal S[3], c1;
//	//
//	FReal xpx,ypy,zpz ;
//	c1 = FReal(8.) / nnodes ; // 1 flop
//	// loop over source particles
//	typename ContainerClass::ConstBasicIterator iter(*sourceParticles);
//	while(iter.hasNotFinished()){
//
//		// map global position to [-1,1]
//		map(iter.data().getPosition(), localPosition); // 15 flops
//
//		// evaluate chebyshev polynomials of source particle: T_o(x_i)
//		T_of_x[0][0] = FReal(1.);	T_of_x[1][0] = localPosition.getX();
//		T_of_x[0][1] = FReal(1.);	T_of_x[1][1] = localPosition.getY();
//		T_of_x[0][2] = FReal(1.);	T_of_x[1][2] = localPosition.getZ();
//		xpx = FReal(2.) * localPosition.getX() ; // 1 flop
//		ypy = FReal(2.) * localPosition.getY() ; // 1 flop
//		zpz = FReal(2.) * localPosition.getZ() ; // 1 flop
//
//		for (unsigned int o=2; o<ORDER; ++o) {
//			T_of_x[o][0] = xpx * T_of_x[o-1][0] - T_of_x[o-2][0]; // 2 flops
//			T_of_x[o][1] = ypy * T_of_x[o-1][1] - T_of_x[o-2][1];	// 2 flops
//			T_of_x[o][2] = zpz * T_of_x[o-1][2] - T_of_x[o-2][2]; // 2 flops
//		} // flops: (ORDER-1) * 6
//		
//		// anterpolate
//		const FReal sourceValue = iter.data().getPhysicalValue();
//		for (unsigned int n=0; n<nnodes; ++n) {
//			const unsigned int j[3] = {node_ids[n][0], node_ids[n][1], node_ids[n][2]};
//			S[0] = FReal(0.5) + T_of_x[1][0] * T_of_roots[1][j[0]]; // 2 flops 
//			S[1] = FReal(0.5) + T_of_x[1][1] * T_of_roots[1][j[1]]; // 2 flops
//			S[2] = FReal(0.5) + T_of_x[1][2] * T_of_roots[1][j[2]]; // 2 flops
//			for (unsigned int o=2; o<ORDER; ++o) {
//				S[0] += T_of_x[o][0] * T_of_roots[o][j[0]]; // 2 flops
//				S[1] += T_of_x[o][1] * T_of_roots[o][j[1]]; // 2 flops
//				S[2] += T_of_x[o][2] * T_of_roots[o][j[2]]; // 2 flops
//			} // flops: (ORDER-2) * 6
//
//			// gather contributions
//			multipoleExpansion[n]	+= c1 *	S[0] * S[1] * S[2] *	sourceValue; // 4 flops
//		} // flops: ORDER*ORDER*ORDER * (10 + (ORDER-2) * 6)
//
//		// increment source iterator
//		iter.gotoNext();
//	} // flops: M * (18 + (ORDER-1) * 6 + ORDER*ORDER*ORDER * (10 + (ORDER-2) * 6))
//}



750 751 752 753 754
/**
 * Local to particle operation: application of \f$S_\ell(x,\bar x_m)\f$ (interpolation)
 */
template <int ORDER>
template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
755
inline void FChebInterpolator<ORDER>::applyL2P(const FPoint& center,
756 757 758 759
																							 const FReal width,
																							 const FReal *const localExpansion,
																							 ContainerClass *const localParticles) const
{
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	FReal f1;
	FReal W2[3][ ORDER-1];
	FReal W4[3][(ORDER-1)*(ORDER-1)];
	FReal W8[   (ORDER-1)*(ORDER-1)*(ORDER-1)];
	{ // sum over interpolation points
		f1 = FReal(0.);
		for(unsigned int i=0; i<ORDER-1; ++i)	                   W2[0][i] = W2[1][i] = W2[2][i] = FReal(0.);
		for(unsigned int i=0; i<(ORDER-1)*(ORDER-1); ++i)        W4[0][i] = W4[1][i] = W4[2][i] = FReal(0.);
		for(unsigned int i=0; i<(ORDER-1)*(ORDER-1)*(ORDER-1); ++i)	W8[i] = FReal(0.);
		
		for (unsigned int idx=0; idx<nnodes; ++idx) {
			const unsigned int i = node_ids[idx][0];
			const unsigned int j = node_ids[idx][1];
			const unsigned int k = node_ids[idx][2];
			
			f1 += localExpansion[idx]; // 1 flop

			for (unsigned int l=0; l<ORDER-1; ++l) {
				const FReal wx = T[l*ORDER+i] * localExpansion[idx]; // 1 flops
				const FReal wy = T[l*ORDER+j] * localExpansion[idx]; // 1 flops
				const FReal wz = T[l*ORDER+k] * localExpansion[idx]; // 1 flops
				W2[0][l] += wx; // 1 flops
				W2[1][l] += wy; // 1 flops
				W2[2][l] += wz; // 1 flops
				for (unsigned int m=0; m<ORDER-1; ++m) {
					const FReal wxy = wx * T[m*ORDER + j]; // 1 flops
					const FReal wxz = wx * T[m*ORDER + k]; // 1 flops
					const FReal wyz = wy * T[m*ORDER + k]; // 1 flops
					W4[0][m*(ORDER-1)+l] += wxy; // 1 flops
					W4[1][m*(ORDER-1)+l] += wxz; // 1 flops
					W4[2][m*(ORDER-1)+l] += wyz; // 1 flops
					for (unsigned int n=0; n<ORDER-1; ++n) {
						const FReal wxyz = wxy * T[n*ORDER + k]; // 1 flops
						W8[n*(ORDER-1)*(ORDER-1) + m*(ORDER-1) + l]	+= wxyz; // 1 flops
					} // (ORDER-1) * 2 flops
				} // (ORDER-1) * (6 + (ORDER-1)*2) flops
			} // (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1)*2)) flops
		} // ORDER*ORDER*ORDER * (1 + (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1)*2))) flops
		
	}


	// loop over particles
803
	const map_glob_loc map(center, width);
COULAUD Olivier's avatar
COULAUD Olivier committed
804
	FPoint localPosition;
805 806 807 808
	typename ContainerClass::BasicIterator iter(*localParticles);
	while(iter.hasNotFinished()){
			
		// map global position to [-1,1]
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		map(iter.data().getPosition(), localPosition); // 15 flops

		FReal T_of_x[3][ORDER];
		{
			T_of_x[0][0] = FReal(1.); T_of_x[0][1] = localPosition.getX();
			T_of_x[1][0] = FReal(1.); T_of_x[1][1] = localPosition.getY();
			T_of_x[2][0] = FReal(1.); T_of_x[2][1] = localPosition.getZ();
			const FReal x2 = FReal(2.) * T_of_x[0][1]; // 1 flop
			const FReal y2 = FReal(2.) * T_of_x[1][1]; // 1 flop
			const FReal z2 = FReal(2.) * T_of_x[2][1]; // 1 flop
			for (unsigned int j=2; j<ORDER; ++j) {
				T_of_x[0][j] = x2 * T_of_x[0][j-1] - T_of_x[0][j-2]; // 2 flops
				T_of_x[1][j] = y2 * T_of_x[1][j-1] - T_of_x[1][j-2]; // 2 flops
				T_of_x[2][j] = z2 * T_of_x[2][j-1] - T_of_x[2][j-2]; // 2 flops
			}
824 825 826 827
		}

		// interpolate and increment target value
		FReal targetValue = iter.data().getPotential();
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		{
			FReal f2, f4, f8;
			{
				f2 = f4 = f8 = FReal(0.);
				for (unsigned int l=1; l<ORDER; ++l) {
					f2 +=
						T_of_x[0][l] * W2[0][l-1] +
						T_of_x[1][l] * W2[1][l-1] +
						T_of_x[2][l] * W2[2][l-1]; // 6 flops
					for (unsigned int m=1; m<ORDER; ++m) {
						f4 +=
							T_of_x[0][l] * T_of_x[1][m] * W4[0][(m-1)*(ORDER-1)+(l-1)] +
							T_of_x[0][l] * T_of_x[2][m] * W4[1][(m-1)*(ORDER-1)+(l-1)] +
							T_of_x[1][l] * T_of_x[2][m] * W4[2][(m-1)*(ORDER-1)+(l-1)]; // 9 flops
						for (unsigned int n=1; n<ORDER; ++n) {
							f8 +=
								T_of_x[0][l] * T_of_x[1][m] * T_of_x[2][n] *
								W8[(n-1)*(ORDER-1)*(ORDER-1) + (m-1)*(ORDER-1) + (l-1)];
						} // ORDER * 4 flops
					} // ORDER * (9 + ORDER * 4) flops
				} // ORDER * (ORDER * (9 + ORDER * 4)) flops
849
			}
850 851
			targetValue = (f1 + FReal(2.)*f2 + FReal(4.)*f4 + FReal(8.)*f8) / nnodes; // 7 flops
		} // 7 + ORDER * (ORDER * (9 + ORDER * 4)) flops
852

853 854
		// set potential
		iter.data().setPotential(targetValue);
855

856 857
		// increment target iterator
		iter.gotoNext();
858
	} // N * (7 + ORDER * (ORDER * (9 + ORDER * 4))) flops
859 860 861
}


862 863 864 865 866 867 868
//	FReal F2[3][ORDER-1];
//	FBlas::gemtv(ORDER, ORDER-1, FReal(1.), const_cast<FReal*>(T), const_cast<FReal*>(localExpansion), F2[0]);
//	for (unsigned int i=1; i<ORDER*ORDER; ++i)
//		FBlas::gemtva(ORDER, ORDER-1, FReal(1.), const_cast<FReal*>(T),
//									const_cast<FReal*>(localExpansion) + ORDER*i, F2[0]);
//	for (unsigned int i=0; i<ORDER-1; ++i)
//		std::cout << W2[0][i] << "\t" << F2[0][i] << std::endl;
869

870 871 872 873 874 875 876 877
//	FReal F2[(ORDER-1) * ORDER*ORDER];
//	FBlas::gemtm(ORDER, ORDER-1, ORDER*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER,
//							 const_cast<FReal*>(localExpansion), ORDER, F2, ORDER-1);
//	FReal F[ORDER-1]; FBlas::setzero(ORDER-1, F);
//	for (unsigned int i=0; i<ORDER-1; ++i)
//		for (unsigned int j=0; j<ORDER*ORDER; ++j) F[i] += F2[j*(ORDER-1) + i];
//	for (unsigned int i=0; i<ORDER-1; ++i)
//		std::cout << W2[0][i] << "\t" << F[i] << std::endl;
878 879


880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
///**
// * Local to particle operation: application of \f$S_\ell(x,\bar x_m)\f$ (interpolation)
// */
//template <int ORDER>
//template <class ContainerClass>
//inline void FChebInterpolator<ORDER>::applyL2P(const FPoint& center,
//																							 const FReal width,
//																							 const FReal *const localExpansion,
//																							 ContainerClass *const localParticles) const
//{
//	// allocate stuff
//	const map_glob_loc map(center, width);
//	FPoint localPosition;
//	FReal T_of_x[ORDER][3];
//	FReal xpx,ypy,zpz ;
//	FReal S[3],c1;
//	//
//	c1 = FReal(8.) / nnodes ;
//	typename ContainerClass::BasicIterator iter(*localParticles);
//	while(iter.hasNotFinished()){
//			
//		// map global position to [-1,1]
//		map(iter.data().getPosition(), localPosition); // 15 flops
//
//		// evaluate chebyshev polynomials of source particle: T_o(x_i)
//		T_of_x[0][0] = FReal(1.);	T_of_x[1][0] = localPosition.getX();
//		T_of_x[0][1] = FReal(1.);	T_of_x[1][1] = localPosition.getY();
//		T_of_x[0][2] = FReal(1.);	T_of_x[1][2] = localPosition.getZ();
//		xpx = FReal(2.) * localPosition.getX() ; // 1 flop
//		ypy = FReal(2.) * localPosition.getY() ; // 1 flop
//		zpz = FReal(2.) * localPosition.getZ() ; // 1 flop
//		for (unsigned int o=2; o<ORDER; ++o) {
//			T_of_x[o][0] = xpx * T_of_x[o-1][0] - T_of_x[o-2][0]; // 2 flop
//			T_of_x[o][1] = ypy * T_of_x[o-1][1] - T_of_x[o-2][1]; // 2 flop
//			T_of_x[o][2] = zpz * T_of_x[o-1][2] - T_of_x[o-2][2]; // 2 flop
//		} // (ORDER-2) * 6 flops
//
//		// interpolate and increment target value
//		FReal targetValue = iter.data().getPotential();
//		for (unsigned int n=0; n<nnodes; ++n) {
//			const unsigned int j[3] = {node_ids[n][0], node_ids[n][1], node_ids[n][2]};
//			S[0] = T_of_x[1][0] * T_of_roots[1][j[0]]; // 1 flops
//			S[1] = T_of_x[1][1] * T_of_roots[1][j[1]]; // 1 flops
//			S[2] = T_of_x[1][2] * T_of_roots[1][j[2]]; // 1 flops
//			for (unsigned int o=2; o<ORDER; ++o) {
//				S[0] += T_of_x[o][0] * T_of_roots[o][j[0]]; // 2 flops
//				S[1] += T_of_x[o][1] * T_of_roots[o][j[1]]; // 2 flops
//				S[2] += T_of_x[o][2] * T_of_roots[o][j[2]]; // 2 flops
//			} // (ORDER-2) * 6 flops 
//			// gather contributions
//			S[0] += FReal(0.5); // 1 flops
//			S[1] += FReal(0.5); // 1 flops
//			S[2] += FReal(0.5); // 1 flops
//			targetValue	+= S[0] * S[1] * S[2] * localExpansion[n]; // 4 flops
//		} // ORDER*ORDER*ORDER * (10 + (ORDER-2) * 6) flops
//		// scale
//		targetValue *= c1; // 1 flops
//
//		// set potential
//		iter.data().setPotential(targetValue);
//
//		// increment target iterator
//		iter.gotoNext();
//	} // N * ORDER*ORDER*ORDER * (10 + (ORDER-2) * 6) flops
//}
945 946 947 948 949 950






Matthias Messner's avatar
Matthias Messner committed
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/**
 * Local to particle operation: application of \f$\nabla_x S_\ell(x,\bar x_m)\f$ (interpolation)
 */
template <int ORDER>
template <class ContainerClass>
inline void FChebInterpolator<ORDER>::applyL2PGradient(const FPoint& center,
																											 const FReal width,
																											 const FReal *const localExpansion,
																											 ContainerClass *const localParticles) const
{
	////////////////////////////////////////////////////////////////////
	// TENSOR-PRODUCT INTERPOLUTION NOT IMPLEMENTED YET HERE!!! ////////
	////////////////////////////////////////////////////////////////////

	// setup local to global mapping
	const map_glob_loc map(center, width);
	FPoint Jacobian;
	map.computeJacobian(Jacobian);
	const FReal jacobian[3] = {Jacobian.getX(), Jacobian.getY(), Jacobian.getZ()}; 
	FPoint localPosition;
	FReal T_of_x[ORDER][3];
	FReal U_of_x[ORDER][3];
	FReal P[3];

	typename ContainerClass::BasicIterator iter(*localParticles);
	while(iter.hasNotFinished()){
			
		// map global position to [-1,1]
		map(iter.data().getPosition(), localPosition);
			
		// evaluate chebyshev polynomials of source particle
		// T_0(x_i) and T_1(x_i)
		T_of_x[0][0] = FReal(1.);	T_of_x[1][0] = localPosition.getX();
		T_of_x[0][1] = FReal(1.);	T_of_x[1][1] = localPosition.getY();
		T_of_x[0][2] = FReal(1.);	T_of_x[1][2] = localPosition.getZ();
		// U_0(x_i) and U_1(x_i)
		U_of_x[0][0] = FReal(1.);	U_of_x[1][0] = localPosition.getX() * FReal(2.);
		U_of_x[0][1] = FReal(1.);	U_of_x[1][1] = localPosition.getY() * FReal(2.);
		U_of_x[0][2] = FReal(1.);	U_of_x[1][2] = localPosition.getZ() * FReal(2.);
		for (unsigned int o=2; o<ORDER; ++o) {
			// T_o(x_i)
			T_of_x[o][0] = FReal(2.)*localPosition.getX()*T_of_x[o-1][0] - T_of_x[o-2][0];
			T_of_x[o][1] = FReal(2.)*localPosition.getY()*T_of_x[o-1][1] - T_of_x[o-2][1];
			T_of_x[o][2] = FReal(2.)*localPosition.getZ()*T_of_x[o-1][2] - T_of_x[o-2][2];
			// U_o(x_i)
			U_of_x[o][0] = FReal(2.)*localPosition.getX()*U_of_x[o-1][0] - U_of_x[o-2][0];
			U_of_x[o][1] = FReal(2.)*localPosition.getY()*U_of_x[o-1][1] - U_of_x[o-2][1];
			U_of_x[o][2] = FReal(2.)*localPosition.getZ()*U_of_x[o-1][2] - U_of_x[o-2][2];
		}

		// scale, because dT_o/dx = oU_{o-1}
		for (unsigned int o=2; o<ORDER; ++o) {
			U_of_x[o-1][0] *= FReal(o);
			U_of_x[o-1][1] *= FReal(o);
			U_of_x[o-1][2] *= FReal(o);
		}

		// apply P and increment forces
		FReal forces[3] = {FReal(0.), FReal(0.), FReal(0.)};
		for (unsigned int n=0; n<nnodes; ++n) {
			
			// tensor indices of chebyshev nodes
			const unsigned int j[3] = {node_ids[n][0], node_ids[n][1], node_ids[n][2]};

			// f0 component //////////////////////////////////////
			P[0] = U_of_x[0][0] * T_of_roots[1][j[0]];
			P[1] = T_of_x[1][1] * T_of_roots[1][j[1]];
			P[2] = T_of_x[1][2] * T_of_roots[1][j[2]];
			for (unsigned int o=2; o<ORDER; ++o) {
				P[0] += U_of_x[o-1][0] * T_of_roots[o][j[0]];
				P[1] += T_of_x[o  ][1] * T_of_roots[o][j[1]];
				P[2] += T_of_x[o  ][2] * T_of_roots[o][j[2]];
			}
			P[0] *= FReal(2.);
			P[1] *= FReal(2.); P[1] += FReal(1.);
			P[2] *= FReal(2.); P[2] += FReal(1.);
			forces[0]	+= P[0] * P[1] * P[2] * localExpansion[n];

			// f1 component //////////////////////////////////////
			P[0] = T_of_x[1][0] * T_of_roots[1][j[0]];
			P[1] = U_of_x[0][1] * T_of_roots[1][j[1]];
			P[2] = T_of_x[1][2] * T_of_roots[1][j[2]];
			for (unsigned int o=2; o<ORDER; ++o) {
				P[0] += T_of_x[o  ][0] * T_of_roots[o][j[0]];
				P[1] += U_of_x[o-1][1] * T_of_roots[o][j[1]];
				P[2] += T_of_x[o  ][2] * T_of_roots[o][j[2]];
			}
			P[0] *= FReal(2.); P[0] += FReal(1.);
			P[1] *= FReal(2.); 
			P[2] *= FReal(2.); P[2] += FReal(1.);
			forces[1]	+= P[0] * P[1] * P[2] * localExpansion[n];

			// f2 component //////////////////////////////////////
			P[0] = T_of_x[1][0] * T_of_roots[1][j[0]];
			P[1] = T_of_x[1][1] * T_of_roots[1][j[1]];
			P[2] = U_of_x[0][2] * T_of_roots[1][j[2]];
			for (unsigned int o=2; o<ORDER; ++o) {
				P[0] += T_of_x[o  ][0] * T_of_roots[o][j[0]];
				P[1] += T_of_x[o  ][1] * T_of_roots[o][j[1]];
				P[2] += U_of_x[o-1][2] * T_of_roots[o][j[2]];
			}
			P[0] *= FReal(2.); P[0] += FReal(1.);
			P[1] *= FReal(2.); P[1] += FReal(1.);
			P[2] *= FReal(2.);
			forces[2]	+= P[0] * P[1] * P[2] * localExpansion[n];
		}

		// scale forces
		forces[0] *= jacobian[0] / nnodes;
		forces[1] *= jacobian[1] / nnodes;
		forces[2] *= jacobian[2] / nnodes;

		// set computed forces
		iter.data().incForces(forces[0] * iter.data().getPhysicalValue(),
													forces[1] * iter.data().getPhysicalValue(),
													forces[2] * iter.data().getPhysicalValue());

		// increment iterator
		iter.gotoNext();
	}
}
1072

1073 1074 1075 1076 1077 1078 1079

/**
 * Local to particle operation: application of \f$S_\ell(x,\bar x_m)\f$ and
 * \f$\nabla_x S_\ell(x,\bar x_m)\f$ (interpolation)
 */
template <int ORDER>
template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
1080
inline void FChebInterpolator<ORDER>::applyL2PTotal(const FPoint& center,
1081 1082 1083 1084
																										const FReal width,
																										const FReal *const localExpansion,
																										ContainerClass *const localParticles) const
{
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	FReal f1;
	FReal W2[3][ ORDER-1];
	FReal W4[3][(ORDER-1)*(ORDER-1)];
	FReal W8[   (ORDER-1)*(ORDER-1)*(ORDER-1)];

	//{ // sum over interpolation points
	//	f1 = FReal(0.);
	//	for(unsigned int i=0; i<ORDER-1; ++i)	                   W2[0][i] = W2[1][i] = W2[2][i] = FReal(0.);
	//	for(unsigned int i=0; i<(ORDER-1)*(ORDER-1); ++i)        W4[0][i] = W4[1][i] = W4[2][i] = FReal(0.);
	//	for(unsigned int i=0; i<(ORDER-1)*(ORDER-1)*(ORDER-1); ++i)	W8[i] = FReal(0.);
	//	
	//	for (unsigned int idx=0; idx<nnodes; ++idx) {
	//		const unsigned int i = node_ids[idx][0];
	//		const unsigned int j = node_ids[idx][1];
	//		const unsigned int k = node_ids[idx][2];
	//		
	//		f1 += localExpansion[idx]; // 1 flop
	//		
	//		for (unsigned int l=0; l<ORDER-1; ++l) {
	//			const FReal wx = T[l*ORDER+i] * localExpansion[idx]; // 1 flops
	//			const FReal wy = T[l*ORDER+j] * localExpansion[idx]; // 1 flops
	//			const FReal wz = T[l*ORDER+k] * localExpansion[idx]; // 1 flops
	//			W2[0][l] += wx; // 1 flops
	//			W2[1][l] += wy; // 1 flops
	//			W2[2][l] += wz; // 1 flops
	//			for (unsigned int m=0; m<ORDER-1; ++m) {
	//				const FReal wxy = wx * T[m*ORDER + j]; // 1 flops
	//				const FReal wxz = wx * T[m*ORDER + k]; // 1 flops
	//				const FReal wyz = wy * T[m*ORDER + k]; // 1 flops
	//				W4[0][m*(ORDER-1)+l] += wxy; // 1 flops
	//				W4[1][m*(ORDER-1)+l] += wxz; // 1 flops
	//				W4[2][m*(ORDER-1)+l] += wyz; // 1 flops
	//				for (unsigned int n=0; n<ORDER-1; ++n) {
	//					const FReal wxyz = wxy * T[n*ORDER + k]; // 1 flops
	//					W8[n*(ORDER-1)*(ORDER-1) + m*(ORDER-1) + l]	+= wxyz; // 1 flops
	//				} // (ORDER-1) * 2 flops
	//			} // (ORDER-1) * (6 + (ORDER-1)*2) flops
	//		} // (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1)*2)) flops
	//
	//	} // ORDER*ORDER*ORDER * (1 + (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1)*2))) flops
	//	
	//}

	{
		// for W2
		FReal lE[nnodes];
		FReal F2[(ORDER-1) * ORDER*ORDER];
		// for W4
		FReal F4[ORDER * ORDER*(ORDER-1)];
		FReal G4[(ORDER-1) * ORDER*(ORDER-1)];
		// for W8
		FReal G8[ORDER * (ORDER-1)*(ORDER-1)];

		// sum local expansions
		f1 = FReal(0.);
		for (unsigned int idx=0; idx<nnodes; ++idx)	f1 += localExpansion[idx]; // 1 flop

		//////////////////////////////////////////////////////////////////
		// IMPORTANT: NOT CHANGE ORDER OF COMPUTATIONS!!! ////////////////
		//////////////////////////////////////////////////////////////////

1146
		// W2[0] ///////////////// (ORDER-1)*ORDER*ORDER * 2*ORDER
1147 1148 1149 1150
		FBlas::gemtm(ORDER, ORDER-1, ORDER*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER,
								 const_cast<FReal*>(localExpansion), ORDER, F2, ORDER-1);
		for (unsigned int l=0; l<ORDER-1; ++l) { W2[0][l] = F2[l];
			for (unsigned int j=1; j<ORDER*ORDER; ++j) W2[0][l] += F2[j*(ORDER-1) + l];	}
1151
		// W4[0] ///////////////// ORDER*(ORDER-1)*(ORDER-1) + 2*ORDER
1152 1153 1154 1155 1156
		perm5.permute(F2, F4);
		FBlas::gemtm(ORDER, ORDER-1, ORDER*(ORDER-1), FReal(1.), const_cast<FReal*>(T), ORDER, F4, ORDER, G4, ORDER-1);
		for (unsigned int l=0; l<ORDER-1; ++l)
			for (unsigned int m=0; m<ORDER-1; ++m) { W4[0][m*(ORDER-1)+l] = G4[l*ORDER*(ORDER-1) + m];
				for (unsigned int k=1; k<ORDER; ++k) W4[0][m*(ORDER-1)+l] += G4[l*ORDER*(ORDER-1) + k*(ORDER-1) + m];	}
1157
		// W8 //////////////////// (ORDER-1)*(ORDER-1)*(ORDER-1) * (2*ORDER-1)
1158 1159 1160 1161
		perm8.permute(G4, G8);
		FReal F8[(ORDER-1)*(ORDER-1)*(ORDER-1)];
		FBlas::gemtm(ORDER, ORDER-1, (ORDER-1)*(ORDER-1), FReal(1.), const_cast<FReal*>(T), ORDER, G8, ORDER, F8, ORDER-1);
		perm9.permute(F8, W8);
1162
		// W4[1] ///////////////// ORDER*(ORDER-1)*(ORDER-1) + 2*ORDER
1163 1164 1165 1166 1167
		perm6.permute(F2, F4);
		FBlas::gemtm(ORDER, ORDER-1, (ORDER-1)*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER, F4, ORDER, G4, ORDER-1);
		for (unsigned int l=0; l<ORDER-1; ++l)
			for (unsigned int n=0; n<ORDER-1; ++n) { W4[1][n*(ORDER-1)+l] = G4[l*(ORDER-1) + n];
				for (unsigned int j=1; j<ORDER; ++j) W4[1][n*(ORDER-1)+l] += G4[j*(ORDER-1)*(ORDER-1) + l*(ORDER-1) + n];	}
1168
		// W2[1] ///////////////// (ORDER-1)*ORDER*ORDER * 2*ORDER
1169 1170 1171 1172
		perm3.permute(localExpansion, lE);
		FBlas::gemtm(ORDER, ORDER-1, ORDER*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER, lE, ORDER, F2, ORDER-1);
		for (unsigned int i=0; i<ORDER-1; ++i) { W2[1][i] = F2[i];
			for (unsigned int j=1; j<ORDER*ORDER; ++j) W2[1][i] += F2[j*(ORDER-1) + i]; }
1173
		// W4[2] ///////////////// ORDER*(ORDER-1)*(ORDER-1) + 2*ORDER
1174 1175 1176 1177 1178
		perm7.permute(F2, F4);
		FBlas::gemtm(ORDER, ORDER-1, (ORDER-1)*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER, F4, ORDER, G4, ORDER-1);
		for (unsigned int m=0; m<ORDER-1; ++m)
			for (unsigned int n=0; n<ORDER-1; ++n) { W4[2][n*(ORDER-1)+m] = G4[m*ORDER*(ORDER-1) + n];
				for (unsigned int i=1; i<ORDER; ++i) W4[2][n*(ORDER-1)+m] += G4[m*ORDER*(ORDER-1) + i*(ORDER-1) + n];	}
1179
		// W2[2] ///////////////// (ORDER-1)*ORDER*ORDER * 2*ORDER
1180 1181 1182 1183 1184 1185 1186 1187
		perm4.permute(localExpansion, lE);
		FBlas::gemtm(ORDER, ORDER-1, ORDER*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER, lE, ORDER, F2, ORDER-1);
		for (unsigned int i=0; i<ORDER-1; ++i) { W2[2][i] = F2[i];
			for (unsigned int j=1; j<ORDER*ORDER; ++j) W2[2][i] += F2[j*(ORDER-1) + i]; }
	}

	
	// loop over particles
1188
	const map_glob_loc map(center, width);
COULAUD Olivier's avatar
COULAUD Olivier committed
1189
	FPoint Jacobian;
1190
	map.computeJacobian(Jacobian); // 6 flops
1191
	const FReal jacobian[3] = {Jacobian.getX(), Jacobian.getY(), Jacobian.getZ()}; 
COULAUD Olivier's avatar
COULAUD Olivier committed
1192
	FPoint localPosition;
1193

1194 1195 1196 1197
	typename ContainerClass::BasicIterator iter(*localParticles);
	while(iter.hasNotFinished()){
			
		// map global position to [-1,1]
1198
		map(iter.data().getPosition(), localPosition); // 15 flops
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

		FReal U_of_x[3][ORDER];
		FReal T_of_x[3][ORDER];
		{
			T_of_x[0][0] = FReal(1.); T_of_x[0][1] = localPosition.getX();
			T_of_x[1][0] = FReal(1.); T_of_x[1][1] = localPosition.getY();
			T_of_x[2][0] = FReal(1.); T_of_x[2][1] = localPosition.getZ();
			const FReal x2 = FReal(2.) * T_of_x[0][1]; // 1 flop
			const FReal y2 = FReal(2.) * T_of_x[1][1]; // 1 flop
			const FReal z2 = FReal(2.) * T_of_x[2][1]; // 1 flop
			U_of_x[0][0] = FReal(1.);	U_of_x[0][1] = x2;
			U_of_x[1][0] = FReal(1.);	U_of_x[1][1] = y2;
			U_of_x[2][0] = FReal(1.);	U_of_x[2][1] = z2;
			for (unsigned int j=2; j<ORDER; ++j) {
				T_of_x[0][j] = x2 * T_of_x[0][j-1] - T_of_x[0][j-2]; // 2 flops
				T_of_x[1][j] = y2 * T_of_x[1][j-1] - T_of_x[1][j-2]; // 2 flops
				T_of_x[2][j] = z2 * T_of_x[2][j-1] - T_of_x[2][j-2]; // 2 flops
				U_of_x[0][j] = x2 * U_of_x[0][j-1] - U_of_x[0][j-2]; // 2 flops
				U_of_x[1][j] = y2 * U_of_x[1][j-1] - U_of_x[1][j-2]; // 2 flops
				U_of_x[2][j] = z2 * U_of_x[2][j-1] - U_of_x[2][j-2]; // 2 flops
			}
			// scale, because dT_j/dx = jU_{j-1}
			for (unsigned int j=2; j<ORDER; ++j) {
				U_of_x[0][j-1] *= FReal(j); // 1 flops
				U_of_x[1][j-1] *= FReal(j); // 1 flops
				U_of_x[2][j-1] *= FReal(j); // 1 flops
			}
1226
		} // 3 + (ORDER-2)*15
1227 1228 1229 1230

		// apply P and increment forces
		FReal potential = FReal(0.);
		FReal forces[3] = {FReal(0.), FReal(0.), FReal(0.)};
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		{
			FReal f2[4], f4[4], f8[4];
			for (unsigned int i=0; i<4; ++i) f2[i] = f4[i] = f8[i] = FReal(0.);
			{
				for (unsigned int l=1; l<ORDER; ++l) {
					const FReal w2[3] = {W2[0][l-1], W2[1][l-1], W2[2][l-1]};
					f2[0] += T_of_x[0][l  ] * w2[0] + T_of_x[1][l] * w2[1] + T_of_x[2][l] * w2[2]; // 6 flops
					f2[1] += U_of_x[0][l-1] * w2[0]; // 2 flops
					f2[2] += U_of_x[1][l-1] * w2[1]; // 2 flops
					f2[3] += U_of_x[2][l-1] * w2[2]; // 2 flops
					for (unsigned int m=1; m<ORDER; ++m) {
						const unsigned int w4idx = (m-1)*(ORDER-1)+(l-1);
						const FReal w4[3] = {W4[0][w4idx], W4[1][w4idx], W4[2][w4idx]};
						f4[0] +=
							T_of_x[0][l] * T_of_x[1][m] * w4[0] +
							T_of_x[0][l] * T_of_x[2][m] * w4[1] +
							T_of_x[1][l] * T_of_x[2][m] * w4[2]; // 9 flops
						f4[1] += U_of_x[0][l-1] * T_of_x[1][m]   * w4[0] + U_of_x[0][l-1] * T_of_x[2][m]   * w4[1]; // 6 flops
						f4[2] += T_of_x[0][l]   * U_of_x[1][m-1] * w4[0] + U_of_x[1][l-1] * T_of_x[2][m]   * w4[2]; // 6 flops
						f4[3] += T_of_x[0][l]   * U_of_x[2][m-1] * w4[1] + T_of_x[1][l]   * U_of_x[2][m-1] * w4[2]; // 6 flops
						for (unsigned int n=1; n<ORDER; ++n) {
							const FReal w8 = W8[(n-