testAdaptiveUnifFMM.cpp 12.6 KB
Newer Older
COULAUD Olivier's avatar
COULAUD Olivier committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Berenger Bramas, Matthias Messner
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================

// ==== CMAKE =====
// @FUSE_BLAS
// @FUSE_FFT
// ================
21
22
23
// Keep in private GIT
// @SCALFMM_PRIVATE

COULAUD Olivier's avatar
COULAUD Olivier committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

#include <iostream>
#include <cstdio>


#include "Utils/FParameters.hpp"
#include "Utils/FTic.hpp"

#include "Containers/FOctree.hpp"
//#include "Containers/FVector.hpp"

//#include "Components/FSimpleLeaf.hpp"

#include "Utils/FPoint.hpp"

#include "Files/FFmaGenericLoader.hpp"
#include "Files/FRandomLoader.hpp"

#include "Components/FBasicKernels.hpp"
#include "Components/FSimpleIndexedLeaf.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"

#include "Adaptive/FAdaptiveCell.hpp"
#include "Adaptive/FAdaptiveKernelWrapper.hpp"
#include "Adaptive/FAbstractAdaptiveKernel.hpp"
//
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Uniform/FUnifCell.hpp"
#include "Adaptive/FAdaptUnifKernel.hpp"
#include "Adaptive/FAdaptTools.hpp"
//
//
#include "Core/FFmmAlgorithm.hpp"
//#include "Core/FFmmAlgorithmThread.hpp"
//#include "Core/FFmmAlgorithmTask.hpp"


#include "Utils/FParameterNames.hpp"

/** This program show an example of use of the fmm basic algo
 * it also check that each particles is impacted each other particles
 */

void usage() {
	std::cout << "Driver to obtain statistics on the octree" << std::endl;
	std::cout <<	 "Options  "<< std::endl
			<<     "      -help       to see the parameters    " << std::endl
			<<	     "      -depth        the depth of the octree   "<< std::endl
			<<	     "      -subdepth   specifies the size of the sub octree   " << std::endl
			<<     "      -fin name specifies the name of the particle distribution" << std::endl
			<<     "      -sM    s_min^M threshold for Multipole (l+1)^2 for Spherical harmonics"<<std::endl
			<<     "      -sL    s_min^L threshold for Local  (l+1)^2 for Spherical harmonics"<<std::endl;
}
// Simply create particles and try the kernels
int main(int argc, char ** argv){
    const FParameterNames LocalOptionMinMultipoleThreshod {
        {"-sM"},
        " s_min^M threshold for Multipole (l+1)^2 for Spherical harmonic."
    };
    const FParameterNames LocalOptionMinLocalThreshod {
        {"-SL"},
        " s_min^L threshold for Local  (l+1)^2 for Spherical harmonics."
    };

	FHelpDescribeAndExit(argc, argv,
COULAUD Olivier's avatar
COULAUD Olivier committed
89
			"Test Adaptive kernel and compare it with the direct computation.",
COULAUD Olivier's avatar
COULAUD Olivier committed
90
91
92
93
			FParameterDefinitions::OctreeHeight,FParameterDefinitions::NbThreads,
			FParameterDefinitions::OctreeSubHeight, FParameterDefinitions::InputFile,
			LocalOptionMinMultipoleThreshod,LocalOptionMinLocalThreshod);

COULAUD Olivier's avatar
COULAUD Olivier committed
94
95
96
97
98
	for (int i = 0 ; i< argc ; ++i){
		std::cout << argv[i] << "  " ;
	}
	std::cout << std::endl<< std::endl;
	// ---------------------------------------------
COULAUD Olivier's avatar
COULAUD Olivier committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
	const std::string fileName(FParameters::getStr(argc,argv,FParameterDefinitions::InputFile.options,   "../Data/noDistprolate50.out.fma"));
	const unsigned int TreeHeight      = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeHeight.options, 3);
	const unsigned int SubTreeHeight = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeSubHeight.options, 2);
//	const unsigned int NbThreads      = FParameters::getValue(argc, argv, FParameterDefinitions::NbThreads.options, 1);
	//
	// accuracy
	const unsigned int P = 5 ;


	const int sminM    = FParameters::getValue(argc,argv,LocalOptionMinMultipoleThreshod.options, P*P*P);
	const int sminL     = FParameters::getValue(argc,argv,LocalOptionMinLocalThreshod.options, P*P*P);


	//    typedef FTestCell                   CellClass;
	//    typedef FAdaptiveTestKernel< CellClass, ContainerClass >         KernelClass;
	typedef FUnifCell<P>                                        CellClass;
	typedef FP2PParticleContainerIndexed<>            ContainerClass;
	typedef FSimpleIndexedLeaf<ContainerClass>    LeafClass;
	typedef FInterpMatrixKernelR                               MatrixKernelClass;
	//
	typedef FAdaptiveUnifKernel<CellClass,ContainerClass,MatrixKernelClass,P> KernelClass;
	//
	//
	typedef FAdaptiveCell< CellClass, ContainerClass >                                        CellWrapperClass;
	typedef FAdaptiveKernelWrapper< KernelClass, CellClass, ContainerClass >   KernelWrapperClass;
	typedef FOctree< CellWrapperClass, ContainerClass , LeafClass >                  OctreeClass;

	// FFmmAlgorithmTask FFmmAlgorithmThread
	typedef FFmmAlgorithm<OctreeClass, CellWrapperClass, ContainerClass, KernelWrapperClass, LeafClass >     FmmClass;

	///////////////////////What we do/////////////////////////////
	std::cout << ">> This executable has to be used to test the FMM algorithm.\n";
	//////////////////////////////////////////////////////////////
	//

	//


	FTic counter;

	//////////////////////////////////////////////////////////////////////////////////
	// Not Random Loader
	//////////////////////////////////////////////////////////////////////////////////

	FFmaGenericLoader loader(fileName);
	const long int NbPart  = loader.getNumberOfParticles() ;
	// Random Loader
	//const int NbPart       = FParameters::getValue(argc,argv,"-nb", 2000000);
	//	FRandomLoader loader(NbPart, 1, FPoint(0.5,0.5,0.5), 1);
	//////////////////////////////////////////////////////////////////////////////////

	OctreeClass tree(TreeHeight, SubTreeHeight, loader.getBoxWidth(), loader.getCenterOfBox());

	//////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////

	std::cout << "Creating & Inserting " << NbPart << " particles ..." << std::endl;
	std::cout << "\tHeight : " << TreeHeight << " \t sub-height : " << SubTreeHeight << std::endl;
	std::cout 		<< "         criteria SM:  "<< sminM     <<std::endl
			<< "         criteria SL:  "<< sminL     <<std::endl <<std::endl;
	//

	counter.tic();
	FReal L= loader.getBoxWidth();
	//FmaRParticle* particles=  new FmaRParticle[NbPart];
	FmaRWParticle<8,8>* const particles = new FmaRWParticle<8,8>[NbPart];

	FPoint minPos(L,L,L), maxPos(-L,-L,-L);
	//
	loader.fillParticle(particles,NbPart);

	for(int idxPart = 0 ; idxPart < NbPart; ++idxPart){
		const FPoint PP(particles[idxPart].getPosition() ) ;
		//
		minPos.setX(FMath::Min(minPos.getX(),PP.getX())) ;
		minPos.setY(FMath::Min(minPos.getY(),PP.getY())) ;
		minPos.setZ(FMath::Min(minPos.getZ(),PP.getZ())) ;
		maxPos.setX(FMath::Max(maxPos.getX(),PP.getX())) ;
		maxPos.setY(FMath::Max(maxPos.getY(),PP.getY())) ;
		maxPos.setZ(FMath::Max(maxPos.getZ(),PP.getZ())) ;
		//
		tree.insert(PP, idxPart, particles[idxPart].getPhysicalValue());

	}
	counter.tac();
	std::cout << "Data are inside the box delimited by "<<std::endl
			<< "         Min corner:  "<< minPos<<std::endl
			<< "         Max corner:  "<< maxPos<<std::endl <<std::endl;
	std::cout << "Done  " << "(@Creating and Inserting Particles = " << counter.elapsed() << " s)." << std::endl;
	//////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////

	std::cout << "Working on particles ..." << std::endl;
	counter.tic();
	const MatrixKernelClass MatrixKernel;
	KernelWrapperClass kernels(TreeHeight, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel,sminM,sminL);            // FTestKernels FBasicKernels
	FmmClass algo(&tree,&kernels);  //FFmmAlgorithm FFmmAlgorithmThread

	// For debug purpose
	//  Set Global id
	//
	long int idCell  = setGlobalID(tree);
	//
	algo.execute();

	counter.tac();
	std::cout << "Done  " << "(@Algorithm = " << counter.elapsed() << " s)." << std::endl;
	//
	FReal energy= 0.0 , energyD = 0.0 ;
	/////////////////////////////////////////////////////////////////////////////////////////////////
	// Compute direct energy
	/////////////////////////////////////////////////////////////////////////////////////////////////

	for(int idx = 0 ; idx <  loader.getNumberOfParticles()  ; ++idx){
		energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
	}
	/////////////////////////////////////////////////////////////////////////////////////////////////
	// Compare
	/////////////////////////////////////////////////////////////////////////////////////////////////
	FMath::FAccurater potentialDiff;
	FMath::FAccurater fx, fy, fz;
	{ // Check that each particle has been summed with all other

		//    std::cout << "indexPartOrig || DIRECT V fx || FMM V fx" << std::endl;

		tree.forEachLeaf([&](LeafClass* leaf){
			const FReal*const potentials        = leaf->getTargets()->getPotentials();
			const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
			const FReal*const forcesX            = leaf->getTargets()->getForcesX();
			const FReal*const forcesY            = leaf->getTargets()->getForcesY();
			const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
			const int nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
			const FVector<int>& indexes      = leaf->getTargets()->getIndexes();

			for(int idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
				const int indexPartOrig = indexes[idxPart];
				potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
				fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
				fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
				fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
				energy   += potentials[idxPart]*physicalValues[idxPart];

				//          std::cout << indexPartOrig
						//                    << " " << particles[indexPartOrig].getPotential() << " " << particles[indexPartOrig].getForces()[0]
				//                    << " " << potentials[idxPart] << " " << forcesX[idxPart]
				//                    << std::endl;

			}
		});
	}

	delete[] particles;

	// Print for information
	std::cout << "Energy [relative L2 error] "  << FMath::Abs(energy-energyD) /energyD << std::endl;
	std::cout << "Potential " << potentialDiff << std::endl;
	std::cout << "Fx " << fx << std::endl;
	std::cout << "Fy " << fy << std::endl;
	std::cout << "Fz " << fz << std::endl;


	OctreeClass::Iterator octreeIterator(&tree);
	std::ofstream file("aa.tree", std::ofstream::out );

	//
	////////////////////////////////////////////////////////////////////
	//              Export adaptive tree in our format
	////////////////////////////////////////////////////////////////////
	//
	// -----------------------------------------------------
	//
	//
	//  Set Global id
	//
	//long int idCell  = setGlobalID(tree);
	//////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////

	tree.forEachCellLeaf([&](CellWrapperClass* cell, LeafClass* leaf){
		file << "Cell Id " << cell->getGlobalId( ) << " Nb particles "<<  leaf->getSrc()->getNbParticles()<<std::endl;
	});

	octreeIterator.gotoTop() ;  // here we are at level 1 (first child)
	//	octreeIterator.moveDown() ;
	octreeIterator.gotoLeft();
	//	octreeIterator.moveDown() ; // We are at the levell 2
	std::cout << " Number of Cells: " << idCell <<std::endl;
	//
	std::cout << "Top of the octree " << octreeIterator.level() << std::endl ;
	for(int idxLevel = 1; idxLevel < static_cast<int>(TreeHeight) ;  ++idxLevel){
		file << std::endl << "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$"<< std::endl;
		file << "  Level " << idxLevel <<"  Level  "<<  octreeIterator.level()<<  "  -- leave level " <<   std::boolalpha <<  octreeIterator.isAtLeafLevel() << std::endl;
		do{
			if(octreeIterator.getCurrentCell()->hasDevelopment()){
				file <<"Cell id  "<< octreeIterator.getCurrentCell()->getGlobalId( ) << "   "<<*(octreeIterator.getCurrentCell())<< std::endl ;
			}
		} while(octreeIterator.moveRight());
		octreeIterator.moveDown() ;
		octreeIterator.gotoLeft();
	}
	std::cout << "   END    " << std::endl;

	// Check
	octreeIterator.gotoBottomLeft();
	do {
		std::cout << " Level " <<octreeIterator.level() <<std::endl;
	}while(octreeIterator.moveUp() );
	std::cout << "   RETURN 0  " << std::endl;

	return 0;
}