utestSpherical.cpp 10.9 KB
Newer Older
COULAUD Olivier's avatar
COULAUD Olivier committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// ===================================================================================
// Copyright ScalFmm 2011 INRIA
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================

BRAMAS Berenger's avatar
BRAMAS Berenger committed
17
#include "Utils/FGlobal.hpp"
COULAUD Olivier's avatar
COULAUD Olivier committed
18

BRAMAS Berenger's avatar
BRAMAS Berenger committed
19
20
#include "Containers/FOctree.hpp"
#include "Containers/FVector.hpp"
COULAUD Olivier's avatar
COULAUD Olivier committed
21

BRAMAS Berenger's avatar
BRAMAS Berenger committed
22
23
#include "Kernels/Spherical/FSphericalCell.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
COULAUD Olivier's avatar
COULAUD Olivier committed
24

BRAMAS Berenger's avatar
BRAMAS Berenger committed
25
26
27
28
29
#include "Components/FSimpleLeaf.hpp"
#include "Kernels/Spherical/FSphericalKernel.hpp"
#include "Kernels/Spherical/FSphericalRotationKernel.hpp"
#include "Kernels/Spherical/FSphericalBlasKernel.hpp"
#include "Kernels/Spherical/FSphericalBlockBlasKernel.hpp"
COULAUD Olivier's avatar
COULAUD Olivier committed
30

BRAMAS Berenger's avatar
BRAMAS Berenger committed
31
#include "Files/FFmaGenericLoader.hpp"
COULAUD Olivier's avatar
COULAUD Olivier committed
32

BRAMAS Berenger's avatar
BRAMAS Berenger committed
33
#include "Core/FFmmAlgorithm.hpp"
COULAUD Olivier's avatar
COULAUD Olivier committed
34
35
36
37
38
39
40
41
42
43
44
45

#include "FUTester.hpp"

/*
  In this test we compare the spherical fmm results and the direct results.
 */

/** the test class
 *
 */
class TestSphericalDirect : public FUTester<TestSphericalDirect> {
	/** The test method to factorize all the test based on different kernels */
46
    template <class FReal, class CellClass, class ContainerClass, class KernelClass, class LeafClass,
COULAUD Olivier's avatar
COULAUD Olivier committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
	class OctreeClass, class FmmClass>
	void RunTest( const bool isBlasKernel){
		//
		const int DevP = 9;
		//
		// Load particles
		//
		if(sizeof(FReal) == sizeof(float) ) {
			std::cerr << "No input data available for Float "<< std::endl;
			exit(EXIT_FAILURE);
		}
		const std::string parFile( (sizeof(FReal) == sizeof(float))?
				"Test/DirectFloat.bfma":
				"UTest/DirectDouble.bfma");
		//
		std::string filename(SCALFMMDataPath+parFile);
		//
64
		FFmaGenericLoader<FReal> loader(filename);
COULAUD Olivier's avatar
COULAUD Olivier committed
65
66
67
68
69
70
71
72
73
74
75
76
		if(!loader.isOpen()){
			Print("Cannot open particles file.");
			uassert(false);
			return;
		}
		Print("Number of particles:");
		Print(loader.getNumberOfParticles());

		const int NbLevels      = 4;
		const int SizeSubLevels = 2;
		//
		FSize nbParticles = loader.getNumberOfParticles() ;
77
		FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
COULAUD Olivier's avatar
COULAUD Olivier committed
78
79
80
81
82

		loader.fillParticle(particles,nbParticles);
		//
		// Create octree
		//
83
		FSphericalCell<FReal>::Init(DevP);
COULAUD Olivier's avatar
COULAUD Olivier committed
84
85
86
87
		OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
		//   Insert particle in the tree
		//
		for(int idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
88
		    tree.insert(particles[idxPart].getPosition() , idxPart, particles[idxPart].getPhysicalValue() );
COULAUD Olivier's avatar
COULAUD Olivier committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
		}



		// Run FMM
		Print("Fmm...");
		//KernelClass kernels(NbLevels,loader.getBoxWidth());
		KernelClass kernels(DevP,NbLevels,loader.getBoxWidth(), loader.getCenterOfBox());
		FmmClass algo(&tree,&kernels);
		algo.execute();
		//
		FReal energy= 0.0 , energyD = 0.0 ;
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compute direct energy
		/////////////////////////////////////////////////////////////////////////////////////////////////

		for(int idx = 0 ; idx <  loader.getNumberOfParticles()  ; ++idx){
106
		    energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
COULAUD Olivier's avatar
COULAUD Olivier committed
107
108
109
110
111
		}
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compare
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Compute Diff...");
112
113
		FMath::FAccurater<FReal> potentialDiff;
		FMath::FAccurater<FReal> fx, fy, fz;
COULAUD Olivier's avatar
COULAUD Olivier committed
114
115
116
117
118
119
120
121
122
123
124
125
126
		{ // Check that each particle has been summed with all other

			tree.forEachLeaf([&](LeafClass* leaf){
				const FReal*const potentials        = leaf->getTargets()->getPotentials();
				const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
				const FReal*const forcesX            = leaf->getTargets()->getForcesX();
				const FReal*const forcesY            = leaf->getTargets()->getForcesY();
				const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
				const int nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
				const FVector<int>& indexes      = leaf->getTargets()->getIndexes();

				for(int idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
					const int indexPartOrig = indexes[idxPart];
127
128
129
130
					potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
					fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
					fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
					fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
COULAUD Olivier's avatar
COULAUD Olivier committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
					energy   += potentials[idxPart]*physicalValues[idxPart];
				}
			});
		}

		delete[] particles;

		// Print for information

		Print("Potential diff is = ");
		printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
		printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
		printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
		Print("Fx diff is = ");
		printf("         Fx L2Norm     %e\n",fx.getL2Norm());
		printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
		printf("         Fx RMSError   %e\n",fx.getRMSError());
		Print("Fy diff is = ");
		printf("        Fy L2Norm     %e\n",fy.getL2Norm());
		printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
		printf("        Fy RMSError   %e\n",fy.getRMSError());
		Print("Fz diff is = ");
		printf("        Fz L2Norm     %e\n",fz.getL2Norm());
		printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
		printf("        Fz RMSError   %e\n",fz.getRMSError());
		FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
		printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
		printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
		printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
		printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

		// Assert
		const FReal MaximumDiffPotential = FReal(9e-3);
		const FReal MaximumDiffForces     = FReal(9e-2);

		Print("Test1 - Error Relative L2 norm Potential ");
		uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
		Print("Test2 - Error RMS L2 norm Potential ");
		uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
		Print("Test3 - Error Relative L2 norm FX ");
		uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
		Print("Test4 - Error RMS L2 norm FX ");
		uassert(fx.getRMSError() < MaximumDiffForces);                      //4
		Print("Test5 - Error Relative L2 norm FY ");
		uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
		Print("Test6 - Error RMS L2 norm FY ");
		uassert(fy.getRMSError() < MaximumDiffForces);                      //6
		Print("Test7 - Error Relative L2 norm FZ ");
		uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
		Print("Test8 - Error RMS L2 norm FZ ");
		uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
		Print("Test9 - Error Relative L2 norm F ");
		uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
		Print("Test10 - Relative error Energy ");
		uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy

	}

	/** If memstas is running print the memory used */
	void PostTest() {
		if( FMemStats::controler.isUsed() ){
			std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated() << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
			std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated() << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
			std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated() << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
		}
	}

	///////////////////////////////////////////////////////////
	// The tests!
	///////////////////////////////////////////////////////////

	/** Classic */
	void TestSpherical(){
204
        typedef double FReal;
205
		typedef FSphericalCell<FReal>            CellClass;
206
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
207

208
		typedef FSphericalKernel< FReal, CellClass, ContainerClass >          KernelClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
209

210
211
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
212
213
214

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

215
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
COULAUD Olivier's avatar
COULAUD Olivier committed
216
217
218
219
220
221
222
223
		OctreeClass, FmmClass>(false);
	}



#ifdef ScalFMM_USE_BLAS
	/** Blas */
	void TestSphericalBlas(){
224
        typedef double FReal;
225
		typedef FSphericalCell<FReal>            CellClass;
226
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
227

228
		typedef FSphericalBlasKernel<FReal, CellClass, ContainerClass >          KernelClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
229

230
231
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
232
233
234

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

235
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
COULAUD Olivier's avatar
COULAUD Olivier committed
236
237
238
239
240
		OctreeClass, FmmClass>(true);
	}

	/** Block blas */
	void TestSphericalBlockBlas(){
241
        typedef double FReal;
242
		typedef FSphericalCell<FReal>            CellClass;
243
		typedef FP2PParticleContainerIndexed<FReal> ContainerClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
244

245
		typedef FSphericalBlockBlasKernel< FReal, CellClass, ContainerClass >          KernelClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
246

247
248
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
249
250
251

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

252
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
COULAUD Olivier's avatar
COULAUD Olivier committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
		OctreeClass, FmmClass>(true);
	}
#endif

	///////////////////////////////////////////////////////////
	// Set the tests!
	///////////////////////////////////////////////////////////

	/** set test */
	void SetTests(){
		AddTest(&TestSphericalDirect::TestSpherical,"Test Spherical Kernel");
#ifdef ScalFMM_USE_BLAS
		AddTest(&TestSphericalDirect::TestSphericalBlas,"Test Spherical Blas Kernel");
		AddTest(&TestSphericalDirect::TestSphericalBlockBlas,"Test Spherical Block Blas Kernel");
#endif
	}
};


// You must do this
TestClass(TestSphericalDirect)