utestSphericalBlasAlgorithm.cpp 11.1 KB
Newer Older
1
// ===================================================================================
2
3
4
5
// Copyright ScalFmm 2016 INRIA, Olivier Coulaud, Bérenger Bramas,
// Matthias Messner olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the
// FMM.
6
//
7
// This software is governed by the CeCILL-C and LGPL licenses and
8
// abiding by the rules of distribution of free software.
9
10
11
// An extension to the license is given to allow static linking of scalfmm
// inside a proprietary application (no matter its license).
// See the main license file for more details.
12
13
14
15
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
17
18
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
19
20
// ===================================================================================

BRAMAS Berenger's avatar
BRAMAS Berenger committed
21
#include "Utils/FGlobal.hpp"
22

BRAMAS Berenger's avatar
BRAMAS Berenger committed
23
24
#include "Containers/FOctree.hpp"
#include "Containers/FVector.hpp"
25

BRAMAS Berenger's avatar
BRAMAS Berenger committed
26
27
#include "Kernels/Spherical/FSphericalCell.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
28

BRAMAS Berenger's avatar
BRAMAS Berenger committed
29
30
31
32
33
#include "Components/FSimpleLeaf.hpp"
#include "Kernels/Spherical/FSphericalKernel.hpp"
#include "Kernels/Spherical/FSphericalRotationKernel.hpp"
#include "Kernels/Spherical/FSphericalBlasKernel.hpp"
#include "Kernels/Spherical/FSphericalBlockBlasKernel.hpp"
34

BRAMAS Berenger's avatar
BRAMAS Berenger committed
35
#include "Files/FFmaGenericLoader.hpp"
36

BRAMAS Berenger's avatar
BRAMAS Berenger committed
37
#include "Core/FFmmAlgorithm.hpp"
38
39
40
41
42
43
44
45
46
47
48
49

#include "FUTester.hpp"

/*
  In this test we compare the spherical fmm results and the direct results.
 */

/** the test class
 *
 */
class TestSphericalDirect : public FUTester<TestSphericalDirect> {
	/** The test method to factorize all the test based on different kernels */
50
    template < class FReal, class CellClass, class ContainerClass, class KernelClass, class LeafClass,
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
	class OctreeClass, class FmmClass>
	void RunTest( const bool isBlasKernel){
		//
		const int DevP = 9;
		//
		// Load particles
		//
		if(sizeof(FReal) == sizeof(float) ) {
			std::cerr << "No input data available for Float "<< std::endl;
			exit(EXIT_FAILURE);
		}
		const std::string parFile( (sizeof(FReal) == sizeof(float))?
				"Test/DirectFloat.bfma":
				"UTest/DirectDouble.bfma");
		//
		std::string filename(SCALFMMDataPath+parFile);
		//
68
		FFmaGenericLoader<FReal> loader(filename);
69
70
71
72
73
74
75
76
77
78
79
80
		if(!loader.isOpen()){
			Print("Cannot open particles file.");
			uassert(false);
			return;
		}
		Print("Number of particles:");
		Print(loader.getNumberOfParticles());

		const int NbLevels      = 4;
		const int SizeSubLevels = 2;
		//
		FSize nbParticles = loader.getNumberOfParticles() ;
81
		FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
82
83
84
85
86

		loader.fillParticle(particles,nbParticles);
		//
		// Create octree
		//
87
		FSphericalCell<FReal>::Init(DevP);
88
89
90
		OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
		//   Insert particle in the tree
		//
91
		for(FSize idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
		    tree.insert(particles[idxPart].getPosition() , idxPart, particles[idxPart].getPhysicalValue() );
		}



		// Run FMM
		Print("Fmm...");
		//KernelClass kernels(NbLevels,loader.getBoxWidth());
		KernelClass kernels(DevP,NbLevels,loader.getBoxWidth(), loader.getCenterOfBox());
		FmmClass algo(&tree,&kernels);
		algo.execute();
		//
		FReal energy= 0.0 , energyD = 0.0 ;
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compute direct energy
		/////////////////////////////////////////////////////////////////////////////////////////////////

109
		for(FSize idx = 0 ; idx < loader.getNumberOfParticles()  ; ++idx){
110
111
112
113
114
115
		    energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
		}
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compare
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Compute Diff...");
116
117
		FMath::FAccurater<FReal> potentialDiff;
		FMath::FAccurater<FReal> fx, fy, fz;
118
119
120
121
122
123
124
125
		{ // Check that each particle has been summed with all other

			tree.forEachLeaf([&](LeafClass* leaf){
				const FReal*const potentials        = leaf->getTargets()->getPotentials();
				const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
				const FReal*const forcesX            = leaf->getTargets()->getForcesX();
				const FReal*const forcesY            = leaf->getTargets()->getForcesY();
				const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
126
127
				const FSize nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
				const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
128

129
130
				for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
					const FSize indexPartOrig = indexes[idxPart];
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
					potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
					fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
					fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
					fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
					energy   += potentials[idxPart]*physicalValues[idxPart];
				}
			});
		}

		delete[] particles;

		// Print for information

		Print("Potential diff is = ");
		printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
		printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
		printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
		Print("Fx diff is = ");
		printf("         Fx L2Norm     %e\n",fx.getL2Norm());
		printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
		printf("         Fx RMSError   %e\n",fx.getRMSError());
		Print("Fy diff is = ");
		printf("        Fy L2Norm     %e\n",fy.getL2Norm());
		printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
		printf("        Fy RMSError   %e\n",fy.getRMSError());
		Print("Fz diff is = ");
		printf("        Fz L2Norm     %e\n",fz.getL2Norm());
		printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
		printf("        Fz RMSError   %e\n",fz.getRMSError());
		FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
		printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
		printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
		printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
		printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

		// Assert
		const FReal MaximumDiffPotential = FReal(9e-3);
		const FReal MaximumDiffForces     = FReal(9e-2);

		Print("Test1 - Error Relative L2 norm Potential ");
		uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
		Print("Test2 - Error RMS L2 norm Potential ");
		uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
		Print("Test3 - Error Relative L2 norm FX ");
		uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
		Print("Test4 - Error RMS L2 norm FX ");
		uassert(fx.getRMSError() < MaximumDiffForces);                      //4
		Print("Test5 - Error Relative L2 norm FY ");
		uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
		Print("Test6 - Error RMS L2 norm FY ");
		uassert(fy.getRMSError() < MaximumDiffForces);                      //6
		Print("Test7 - Error Relative L2 norm FZ ");
		uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
		Print("Test8 - Error RMS L2 norm FZ ");
		uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
		Print("Test9 - Error Relative L2 norm F ");
		uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
		Print("Test10 - Relative error Energy ");
		uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy

	}

	/** If memstas is running print the memory used */
	void PostTest() {
		if( FMemStats::controler.isUsed() ){
			std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated() << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
			std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated() << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
			std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated() << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
		}
	}

	///////////////////////////////////////////////////////////
	// The tests!
	///////////////////////////////////////////////////////////

	/** Classic */
	void TestSpherical(){
208
        typedef double FReal;
209
		typedef FSphericalCell<FReal>            CellClass;
210
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
211

212
		typedef FSphericalKernel< FReal, CellClass, ContainerClass >          KernelClass;
213

214
215
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
216
217
218

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

219
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
220
221
222
223
224
		OctreeClass, FmmClass>(false);
	}



225
#ifdef SCALFMM_USE_BLAS
226
227
	/** Blas */
	void TestSphericalBlas(){
228
        typedef double FReal;
229
		typedef FSphericalCell<FReal>            CellClass;
230
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
231

232
		typedef FSphericalBlasKernel<FReal, CellClass, ContainerClass >          KernelClass;
233

234
235
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
236
237
238

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

239
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
240
241
242
243
244
		OctreeClass, FmmClass>(true);
	}

	/** Block blas */
	void TestSphericalBlockBlas(){
245
        typedef double FReal;
246
		typedef FSphericalCell<FReal>            CellClass;
247
		typedef FP2PParticleContainerIndexed<FReal> ContainerClass;
248

249
		typedef FSphericalBlockBlasKernel< FReal, CellClass, ContainerClass >          KernelClass;
250

251
252
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
253
254
255

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

256
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
257
258
259
260
261
262
263
264
265
266
267
		OctreeClass, FmmClass>(true);
	}
#endif

	///////////////////////////////////////////////////////////
	// Set the tests!
	///////////////////////////////////////////////////////////

	/** set test */
	void SetTests(){
		AddTest(&TestSphericalDirect::TestSpherical,"Test Spherical Kernel");
268
#ifdef SCALFMM_USE_BLAS
269
270
271
272
273
274
275
276
277
		AddTest(&TestSphericalDirect::TestSphericalBlas,"Test Spherical Blas Kernel");
		AddTest(&TestSphericalDirect::TestSphericalBlockBlas,"Test Spherical Block Blas Kernel");
#endif
	}
};


// You must do this
TestClass(TestSphericalDirect)