FUnifDenseKernel.hpp 10 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Bérenger Bramas, Matthias Messner
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================
#ifndef FUNIFDENSEKERNEL_HPP
#define FUNIFDENSEKERNEL_HPP

#include "../../Utils/FGlobal.hpp"
#include "../../Utils/FTrace.hpp"
#include "../../Utils/FSmartPointer.hpp"

#include "./FAbstractUnifKernel.hpp"
#include "./FUnifM2LHandler.hpp"

class FTreeCoordinate;

/**
 * @author Pierre Blanchard (pierre.blanchard@inria.fr)
 * @class FUnifDenseKernel
 * @brief
 * Please read the license
 *
 * This kernels implement the Lagrange interpolation based FMM operators. It
 * implements all interfaces (P2P,P2M,M2M,M2L,L2L,L2P) which are required by
 * the FFmmAlgorithm and FFmmAlgorithmThread. 
 * This is the dense version of the kernel. The transfer are done in real space
 * and not in Fourier space. 
 *
 * @tparam CellClass Type of cell
 * @tparam ContainerClass Type of container to store particles
 * @tparam MatrixKernelClass Type of matrix kernel function
 * @tparam ORDER Lagrange interpolation order
 */
template < class CellClass,	class ContainerClass,	class MatrixKernelClass, int ORDER, int NVALS = 1>
class FUnifDenseKernel
  : public FAbstractUnifKernel< CellClass, ContainerClass, MatrixKernelClass, ORDER, NVALS>
{
  // private types
  typedef FUnifM2LHandler<ORDER,MatrixKernelClass::Type> M2LHandlerClass;

  // using from
  typedef FAbstractUnifKernel< CellClass, ContainerClass, MatrixKernelClass, ORDER, NVALS>
  AbstractBaseClass;

  /// Needed for P2P and M2L operators
  const MatrixKernelClass *const MatrixKernel;

  /// Needed for M2L operator
  const M2LHandlerClass M2LHandler;


public:
  /**
   * The constructor initializes all constant attributes and it reads the
   * precomputed and compressed M2L operators from a binary file (an
   * runtime_error is thrown if the required file is not valid).
   */
  FUnifDenseKernel(const int inTreeHeight,
              const FReal inBoxWidth,
              const FPoint& inBoxCenter,
              const MatrixKernelClass *const inMatrixKernel)
    : FAbstractUnifKernel< CellClass, ContainerClass, MatrixKernelClass, ORDER, NVALS>(inTreeHeight,inBoxWidth,inBoxCenter),
      MatrixKernel(inMatrixKernel),
      M2LHandler(MatrixKernel,
                 inTreeHeight,
                 inBoxWidth) 
  { }


  void P2M(CellClass* const LeafCell,
           const ContainerClass* const SourceParticles)
  {
    const FPoint LeafCellCenter(AbstractBaseClass::getLeafCellCenter(LeafCell->getCoordinate()));
    for(int idxRhs = 0 ; idxRhs < NVALS ; ++idxRhs){
      // 1) apply Sy
      AbstractBaseClass::Interpolator->applyP2M(LeafCellCenter, AbstractBaseClass::BoxWidthLeaf,
                                                LeafCell->getMultipole(idxRhs), SourceParticles);
//      // 2) apply Discrete Fourier Transform
//      M2LHandler.applyZeroPaddingAndDFT(LeafCell->getMultipole(idxRhs), 
//                                         LeafCell->getTransformedMultipole(idxRhs));

    }
  }


  void M2M(CellClass* const FRestrict ParentCell,
           const CellClass*const FRestrict *const FRestrict ChildCells,
           const int /*TreeLevel*/)
  {
    for(int idxRhs = 0 ; idxRhs < NVALS ; ++idxRhs){
      // 1) apply Sy

      // Do we need to reset multipole expansion when adaptive kernel used? 
      //FBlas::scal(AbstractBaseClass::nnodes, FReal(0.), ParentCell->getMultipole(idxRhs));


      for (unsigned int ChildIndex=0; ChildIndex < 8; ++ChildIndex){
        if (ChildCells[ChildIndex]){
          AbstractBaseClass::Interpolator->applyM2M(ChildIndex, ChildCells[ChildIndex]->getMultipole(idxRhs),
                                                    ParentCell->getMultipole(idxRhs));
        }
      }
//      // 2) Apply Discete Fourier Transform
//      M2LHandler.applyZeroPaddingAndDFT(ParentCell->getMultipole(idxRhs), 
//                                         ParentCell->getTransformedMultipole(idxRhs));
    }
  }


  //	void M2L(CellClass* const FRestrict TargetCell,
  //           const CellClass* SourceCells[343],
  //           const int NumSourceCells,
  //           const int TreeLevel) const
  //	{
  //		const FReal CellWidth(BoxWidth / FReal(FMath::pow(2, TreeLevel)));
  //		const FTreeCoordinate& cx = TargetCell->getCoordinate();
  //		for (int idx=0; idx<NumSourceCells; ++idx) {
  //			const FTreeCoordinate& cy = SourceCells[idx]->getCoordinate();
  //			const int transfer[3] = {cy.getX()-cx.getX(),
  //                               cy.getY()-cx.getY(),
  //                               cy.getZ()-cx.getZ()};
  //			M2LHandler->applyC(transfer, CellWidth,
  //												SourceCells[idx]->getMultipole() + AbstractBaseClass::nnodes,
  //												TargetCell->getLocal() + AbstractBaseClass::nnodes);
  //		}
  //	}

  void M2L(CellClass* const FRestrict TargetCell,
           const CellClass* SourceCells[343],
           const int /*NumSourceCells*/,
           const int TreeLevel)
  {
    const FReal CellWidth(AbstractBaseClass::BoxWidth / FReal(FMath::pow(2, TreeLevel)));
//    const FReal scale(MatrixKernel->getScaleFactor(CellWidth));

    // interpolation points of source (Y) and target (X) cell
    FPoint X[AbstractBaseClass::nnodes], Y[AbstractBaseClass::nnodes];
    FUnifTensor<ORDER>::setRoots(AbstractBaseClass::getCellCenter(TargetCell->getCoordinate(),TreeLevel), CellWidth, X);

    for(int idxRhs = 0 ; idxRhs < NVALS ; ++idxRhs){
152
//      FComplex *const TransformedLocalExpansion = TargetCell->getTransformedLocal(idxRhs);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

      for (int idx=0; idx<343; ++idx){
        if (SourceCells[idx]){

//          M2LHandler.applyFC(idx, TreeLevel, scale, 
//                              SourceCells[idx]->getTransformedMultipole(idxRhs),
//                              TransformedLocalExpansion);

          FUnifTensor<ORDER>::setRoots(AbstractBaseClass::getCellCenter(SourceCells[idx]->getCoordinate(),TreeLevel), CellWidth, Y);

          for (unsigned int m=0; m<AbstractBaseClass::nnodes; ++m)
            for (unsigned int n=0; n<AbstractBaseClass::nnodes; ++n){
              TargetCell->getLocal(idxRhs)[m]+=MatrixKernel->evaluate(X[m], Y[n]) * SourceCells[idx]->getMultipole(idxRhs)[n];
              }

        }
      }
    }
  }

  //	void M2L(CellClass* const FRestrict TargetCell,
  //           const CellClass* SourceCells[343],
  //           const int NumSourceCells,
  //           const int TreeLevel) const
  //	{
  //		const unsigned int rank = M2LHandler.getRank();
  //		FBlas::scal(343*rank, FReal(0.), MultipoleExpansion);
  //		const FReal CellWidth(BoxWidth / FReal(FMath::pow(2, TreeLevel)));
  //		for (int idx=0; idx<343; ++idx)
  //			if (SourceCells[idx])
  //				FBlas::copy(rank, const_cast<FReal *const>(SourceCells[idx]->getMultipole())+AbstractBaseClass::nnodes,
  //										MultipoleExpansion+idx*rank);
  //
  //		M2LHandler->applyC(CellWidth, MultipoleExpansion, TargetCell->getLocal() + AbstractBaseClass::nnodes);
  //	}


  void L2L(const CellClass* const FRestrict ParentCell,
           CellClass* FRestrict *const FRestrict ChildCells,
           const int /*TreeLevel*/)
  {
    for(int idxRhs = 0 ; idxRhs < NVALS ; ++idxRhs){
//      // 1) Apply Inverse Discete Fourier Transform
//      M2LHandler.unapplyZeroPaddingAndDFT(ParentCell->getTransformedLocal(idxRhs),
//                                           const_cast<CellClass*>(ParentCell)->getLocal(idxRhs));
      // 2) apply Sx
      for (unsigned int ChildIndex=0; ChildIndex < 8; ++ChildIndex){
        if (ChildCells[ChildIndex]){
          AbstractBaseClass::Interpolator->applyL2L(ChildIndex, ParentCell->getLocal(idxRhs), ChildCells[ChildIndex]->getLocal(idxRhs));
        }
      }
    }
  }

  void L2P(const CellClass* const LeafCell,
           ContainerClass* const TargetParticles)
  {
    const FPoint LeafCellCenter(AbstractBaseClass::getLeafCellCenter(LeafCell->getCoordinate()));

    for(int idxRhs = 0 ; idxRhs < NVALS ; ++idxRhs){

//      // 1)  Apply Inverse Discete Fourier Transform
//      M2LHandler.unapplyZeroPaddingAndDFT(LeafCell->getTransformedLocal(idxRhs), 
//                                           const_cast<CellClass*>(LeafCell)->getLocal(idxRhs));

      // 2.a) apply Sx
      AbstractBaseClass::Interpolator->applyL2P(LeafCellCenter, AbstractBaseClass::BoxWidthLeaf,
                                                LeafCell->getLocal(idxRhs), TargetParticles);

      // 2.b) apply Px (grad Sx)
      AbstractBaseClass::Interpolator->applyL2PGradient(LeafCellCenter, AbstractBaseClass::BoxWidthLeaf,
                                                        LeafCell->getLocal(idxRhs), TargetParticles);

    }
  }

  void P2P(const FTreeCoordinate& /* LeafCellCoordinate */, // needed for periodic boundary conditions
           ContainerClass* const FRestrict TargetParticles,
           const ContainerClass* const FRestrict /*SourceParticles*/,
           ContainerClass* const NeighborSourceParticles[27],
           const int /* size */)
  {
    DirectInteractionComputer<MatrixKernelClass::Identifier, NVALS>::P2P(TargetParticles,NeighborSourceParticles,MatrixKernel);
  }


  void P2PRemote(const FTreeCoordinate& /*inPosition*/,
                 ContainerClass* const FRestrict inTargets, const ContainerClass* const FRestrict /*inSources*/,
                 ContainerClass* const inNeighbors[27], const int /*inSize*/)
  {
    DirectInteractionComputer<MatrixKernelClass::Identifier, NVALS>::P2PRemote(inTargets,inNeighbors,27,MatrixKernel);
  }

};


#endif //FUNIFDENSEKERNEL_HPP

// [--END--]