LagrangeInterpolationFMM.cpp 9.97 KB
Newer Older
COULAUD Olivier's avatar
COULAUD Olivier committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Berenger Bramas
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================

// ==== CMAKE =====
// @FUSE_FFT
//  ==== Git =====
// @SCALFMM_PRIVATE
// ================

#include <iostream>

#include <cstdio>
#include <cstdlib>
#include <string>

#include "ScalFmmConfig.h"

#include "Files/FFmaGenericLoader.hpp"

#include "Kernels/Uniform/FUnifCell.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Uniform/FUnifKernel.hpp"

#include "Components/FSimpleLeaf.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"

#include "Utils/FParameters.hpp"

#include "Containers/FOctree.hpp"

#ifdef _OPENMP
#include "Core/FFmmAlgorithmThread.hpp"
#else
#include "Core/FFmmAlgorithm.hpp"
#endif

#include "Utils/FParameterNames.hpp"

/**
 * This program runs the FMM Algorithm with the uniform interpolation kernel and compares the results with a direct computation.
 */
/// \file  LagrangeInterpolationFMM.cpp
//!
//! \brief This program runs the FMM Algorithm with the interpolation kernel based on uniform (grid points) interpolation (1/r kernel)
//!  \authors B. Bramas, O. Coulaud
//!
//!  This code is a short example to use the  Interpolation approach for the 1/r kernel


// Simply create particles and try the kernels
int main(int argc, char* argv[])
{
    FHelpDescribeAndExit(argc, argv,
                         "Driver for Lagrange interpolation kernel  (1/r kernel).",
                         FParameterDefinitions::InputFile, FParameterDefinitions::OctreeHeight,
                         FParameterDefinitions::OctreeSubHeight, FParameterDefinitions::InputFile,
                         FParameterDefinitions::NbThreads);


    const std::string defaultFile(/*SCALFMMDataPath+*/"Data/unitCubeXYZQ100.bfma" );
    const std::string filename                = FParameters::getStr(argc,argv,FParameterDefinitions::InputFile.options, defaultFile.c_str());
    const unsigned int TreeHeight        = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeHeight.options, 5);
    const unsigned int SubTreeHeight  = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeSubHeight.options, 2);
    const unsigned int NbThreads        = FParameters::getValue(argc, argv, FParameterDefinitions::NbThreads.options, 1);


#ifdef _OPENMP
        omp_set_num_threads(NbThreads);
        std::cout << "\n>> Using " << omp_get_max_threads() << " threads.\n" << std::endl;
#else
        std::cout << "\n>> Sequential version.\n" << std::endl;
#endif
        //
        std::cout <<     "Parameters  "<< std::endl
                        <<     "      Octree Depth      "<< TreeHeight <<std::endl
                        <<        "      SubOctree depth " << SubTreeHeight <<std::endl
                        <<     "      Input file  name: " <<filename <<std::endl
                        <<     "      Thread number:  " << NbThreads <<std::endl
                        <<std::endl;
        //
        // init timer
        FTic time;

        // open particle file
        ////////////////////////////////////////////////////////////////////
        //
        FFmaGenericLoader loader(filename);
        //
        ////////////////////////////////////////////////////////////////////
        // begin Lagrange kernel

        // accuracy
        const unsigned int ORDER = 7;
        // typedefs
        typedef FP2PParticleContainerIndexed<>                     ContainerClass;
        typedef FSimpleLeaf< ContainerClass >                        LeafClass;
        typedef FUnifCell<ORDER>                                            CellClass;
        typedef FOctree<CellClass,ContainerClass,LeafClass>  OctreeClass;
        //
        typedef FInterpMatrixKernelR                                                                              MatrixKernelClass;
        const MatrixKernelClass MatrixKernel;
        typedef FUnifKernel<CellClass,ContainerClass,MatrixKernelClass,ORDER>  KernelClass;
        //
#ifdef _OPENMP
        typedef FFmmAlgorithmThread<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
#else
        typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
#endif
        // init oct-tree
        OctreeClass tree(TreeHeight, SubTreeHeight, loader.getBoxWidth(), loader.getCenterOfBox());


        { // -----------------------------------------------------
                std::cout << "Creating & Inserting " << loader.getNumberOfParticles()
                                                                                                                                                        << " particles ..." << std::endl;
                std::cout << "\tHeight : " << TreeHeight << " \t sub-height : " << SubTreeHeight << std::endl;
                time.tic();
                //
                FPoint position;
                FReal physicalValue = 0.0;
                //
                for(int idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
                        //
                        // Read particle per particle from file
                        loader.fillParticle(&position,&physicalValue);
                        //
                        // put particle in octree
                        tree.insert(position, idxPart, physicalValue);
                }

                time.tac();
                std::cout << "Done  " << "(@Creating and Inserting Particles = "
                                << time.elapsed() << " s) ." << std::endl;
        } // -----------------------------------------------------

        { // -----------------------------------------------------
                std::cout << "\nLagrange FMM (ORDER="<< ORDER << ") ... " << std::endl;

                time.tic();
                //
                KernelClass kernels(TreeHeight, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel);
                //
                FmmClass algo(&tree, &kernels);
                //
                algo.execute();   // Here the call of the FMM algorithm
                //
                time.tac();
                std::cout << "Timers Far Field \n"
                          << "P2M " << algo.getTime(FAlgorithmTimers::P2MTimer) << " seconds\n"
                          << "M2M " << algo.getTime(FAlgorithmTimers::M2MTimer) << " seconds\n"
                          << "M2L " << algo.getTime(FAlgorithmTimers::M2LTimer) << " seconds\n"
                          << "L2L " << algo.getTime(FAlgorithmTimers::L2LTimer) << " seconds\n"
                          << "P2P and L2P " << algo.getTime(FAlgorithmTimers::NearTimer) << " seconds\n"
                          << std::endl;


                std::cout << "Done  " << "(@Algorithm = " << time.elapsed() << " s) ." << std::endl;
        }
        // -----------------------------------------------------
        //
        // Some output
        //
        //
        { // -----------------------------------------------------
                long int N1=0, N2= loader.getNumberOfParticles()/2, N3= loader.getNumberOfParticles() -1; ;
                FReal energy =0.0 ;
                //
                //   Loop over all leaves
                //
                std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl;
                std::cout << std::scientific;
                std::cout.precision(10) ;

                tree.forEachLeaf([&](LeafClass* leaf){
                    const FReal*const posX = leaf->getTargets()->getPositions()[0];
                    const FReal*const posY = leaf->getTargets()->getPositions()[1];
                    const FReal*const posZ = leaf->getTargets()->getPositions()[2];

                        const FReal*const potentials = leaf->getTargets()->getPotentials();
                        const FReal*const forcesX = leaf->getTargets()->getForcesX();
                        const FReal*const forcesY = leaf->getTargets()->getForcesY();
                        const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
                        const int nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
                        const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();

                        const FVector<int>& indexes = leaf->getTargets()->getIndexes();

                        for(int idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
                                const int indexPartOrig = indexes[idxPart];
                                if ((indexPartOrig == N1) || (indexPartOrig == N2) || (indexPartOrig == N3)  ) {
                                        std::cout << "Index "<< indexPartOrig <<"  potential  " << potentials[idxPart]
                                                  << " Pos "<<posX[idxPart]<<" "<<posY[idxPart]<<" "<<posZ[idxPart]
                                                  << "   Forces: " << forcesX[idxPart] << " " << forcesY[idxPart] << " "<< forcesZ[idxPart] <<std::endl;
                                }
                                energy += potentials[idxPart]*physicalValues[idxPart] ;
                        }
                });
                std::cout <<std::endl<<"Energy: "<< energy<<std::endl;
                std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl<<std::endl;

        }
        // -----------------------------------------------------


        return 0;
}