FFmmAlgorithmPeriodic.hpp 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#ifndef FFMMALGORITHMPERIODIC_HPP
#define FFMMALGORITHMPERIODIC_HPP
// /!\ Please, you must read the license at the bottom of this page

#include "../Utils/FGlobal.hpp"
#include "../Utils/FAssertable.hpp"
#include "../Utils/FDebug.hpp"
#include "../Utils/FTrace.hpp"
#include "../Utils/FTic.hpp"

#include "../Containers/FOctree.hpp"
#include "../Containers/FVector.hpp"


/**
* @author Berenger Bramas (berenger.bramas@inria.fr)
* @class FFmmAlgorithmPeriodic
* @brief
* Please read the license
*
* This class is a basic FMM algorithm
* It just iterates on a tree and call the kernels with good arguments.
*
* Of course this class does not deallocate pointer given in arguements.
*/
template<class OctreeClass, class ParticleClass, class CellClass, class ContainerClass, class KernelClass, class LeafClass>
class FFmmAlgorithmPeriodic : protected FAssertable{

    OctreeClass* const tree;       //< The octree to work on
    KernelClass* const kernels;    //< The kernels

    const int OctreeHeight;

public:
    /** The constructor need the octree and the kernels used for computation
      * @param inTree the octree to work on
      * @param inKernels the kernels to call
      * An assert is launched if one of the arguments is null
      */
    FFmmAlgorithmPeriodic(OctreeClass* const inTree, KernelClass* const inKernels)
                      : tree(inTree) , kernels(inKernels), OctreeHeight(tree->getHeight()) {

        fassert(tree, "tree cannot be null", __LINE__, __FILE__);
        fassert(kernels, "kernels cannot be null", __LINE__, __FILE__);

        FDEBUG(FDebug::Controller << "FFmmAlgorithmPeriodic\n");
    }

    /** Default destructor */
    virtual ~FFmmAlgorithmPeriodic(){
    }

    /**
      * To execute the fmm algorithm
      * Call this function to run the complete algorithm
      */
    void execute(){
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );

        bottomPass();

        upwardPass();

        downardPass();

        directPass();
    }

private:
    /////////////////////////////////////////////////////////////////////////////
    // P2M
    /////////////////////////////////////////////////////////////////////////////

    /** P2M */
    void bottomPass(){
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );
        FDEBUG( FDebug::Controller.write("\tStart Bottom Pass\n").write(FDebug::Flush) );
        FDEBUG(FTic counterTime);
        FDEBUG(FTic computationCounter);

        typename OctreeClass::Iterator octreeIterator(tree);

        // Iterate on leafs
        octreeIterator.gotoBottomLeft();
        do{
            // We need the current cell that represent the leaf
            // and the list of particles
            FDEBUG(computationCounter.tic());
            kernels->P2M( octreeIterator.getCurrentCell() , octreeIterator.getCurrentListSrc());
            FDEBUG(computationCounter.tac());
        } while(octreeIterator.moveRight());

        FDEBUG( FDebug::Controller << "\tFinished (@Bottom Pass (P2M) = "  << counterTime.tacAndElapsed() << "s)\n" );
        FDEBUG( FDebug::Controller << "\t\t Computation : " << computationCounter.cumulated() << " s\n" );
    }

    /////////////////////////////////////////////////////////////////////////////
    // Upward
    /////////////////////////////////////////////////////////////////////////////

    /** M2M */
    void upwardPass(){
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );
        FDEBUG( FDebug::Controller.write("\tStart Upward Pass\n").write(FDebug::Flush); );
        FDEBUG(FTic counterTime);
        FDEBUG(FTic computationCounter);

        // Start from leal level - 1
        typename OctreeClass::Iterator octreeIterator(tree);
        octreeIterator.gotoBottomLeft();
        octreeIterator.moveUp();

        typename OctreeClass::Iterator avoidGotoLeftIterator(octreeIterator);

        // for each levels
        for(int idxLevel = OctreeHeight - 2 ; idxLevel > 0 ; --idxLevel ){
            // for each cells
            do{
                // We need the current cell and the child
                // child is an array (of 8 child) that may be null
                FDEBUG(computationCounter.tic());
                kernels->M2M( octreeIterator.getCurrentCell() , octreeIterator.getCurrentChild(), idxLevel);
                FDEBUG(computationCounter.tac());
            } while(octreeIterator.moveRight());

            avoidGotoLeftIterator.moveUp();
            octreeIterator = avoidGotoLeftIterator;// equal octreeIterator.moveUp(); octreeIterator.gotoLeft();
        }


        FDEBUG( FDebug::Controller << "\tFinished (@Upward Pass (M2M) = "  << counterTime.tacAndElapsed() << "s)\n" );
        FDEBUG( FDebug::Controller << "\t\t Computation : " << computationCounter.cumulated() << " s\n" );
    }

    /////////////////////////////////////////////////////////////////////////////
    // Downward
    /////////////////////////////////////////////////////////////////////////////

    /** M2L L2L */
    void downardPass(){
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );

        { // first M2L
            FDEBUG( FDebug::Controller.write("\tStart Downward Pass (M2L)\n").write(FDebug::Flush); );
            FDEBUG(FTic counterTime);
            FDEBUG(FTic computationCounter);

            typename OctreeClass::Iterator octreeIterator(tree);
            typename OctreeClass::Iterator avoidGotoLeftIterator(octreeIterator);

            const CellClass* neighbors[189];
            FTreeCoordinate relativePosition[189];

            // for each levels
            for(int idxLevel = 1 ; idxLevel < OctreeHeight ; ++idxLevel ){
                // for each cells
                do{
                    const int counter = tree->getDistantNeighbors(neighbors, relativePosition, octreeIterator.getCurrentGlobalCoordinate(), idxLevel);
                    FDEBUG(computationCounter.tic());
                    if(counter) kernels->M2L( octreeIterator.getCurrentCell() , neighbors, relativePosition, counter, idxLevel);
                    FDEBUG(computationCounter.tac());
                } while(octreeIterator.moveRight());
                avoidGotoLeftIterator.moveDown();
                octreeIterator = avoidGotoLeftIterator;
            }
            FDEBUG( FDebug::Controller << "\tFinished (@Downward Pass (M2L) = "  << counterTime.tacAndElapsed() << "s)\n" );
            FDEBUG( FDebug::Controller << "\t\t Computation : " << computationCounter.cumulated() << " s\n" );
        }

        processPeriodicLevels();

        { // second L2L
            FDEBUG( FDebug::Controller.write("\tStart Downward Pass (L2L)\n").write(FDebug::Flush); );
            FDEBUG(FTic counterTime);
            FDEBUG(FTic computationCounter );

            typename OctreeClass::Iterator octreeIterator(tree);
            typename OctreeClass::Iterator avoidGotoLeftIterator(octreeIterator);

            const int heightMinusOne = OctreeHeight - 1;
            // for each levels exepted leaf level
            for(int idxLevel = 1 ; idxLevel < heightMinusOne ; ++idxLevel ){
                // for each cells
                do{
                    FDEBUG(computationCounter.tic());
                    kernels->L2L( octreeIterator.getCurrentCell() , octreeIterator.getCurrentChild(), idxLevel);
                    FDEBUG(computationCounter.tac());
                } while(octreeIterator.moveRight());

                avoidGotoLeftIterator.moveDown();
                octreeIterator = avoidGotoLeftIterator;
            }

            FDEBUG( FDebug::Controller << "\tFinished (@Downward Pass (L2L) = "  << counterTime.tacAndElapsed() << "s)\n" );
            FDEBUG( FDebug::Controller << "\t\t Computation : " << computationCounter.cumulated() << " s\n" );
        }


    }

    /////////////////////////////////////////////////////////////////////////////
    // Direct
    /////////////////////////////////////////////////////////////////////////////

    /** P2P */
    void directPass(){
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );
        FDEBUG( FDebug::Controller.write("\tStart Direct Pass\n").write(FDebug::Flush); );
        FDEBUG(FTic counterTime);
        FDEBUG(FTic computationCounterL2P);
        FDEBUG(FTic computationCounterP2P);

        const int heightMinusOne = OctreeHeight - 1;

        typename OctreeClass::Iterator octreeIterator(tree);
        octreeIterator.gotoBottomLeft();
        // There is a maximum of 26 neighbors
        ContainerClass* neighbors[26];
        FTreeCoordinate neighborsPosition[26];
        // for each leafs
        do{
            FDEBUG(computationCounterL2P.tic());
            kernels->L2P(octreeIterator.getCurrentCell(), octreeIterator.getCurrentListTargets());
            FDEBUG(computationCounterL2P.tac());
            // need the current particles and neighbors particles
            const int counter = tree->getLeafsNeighborsWithIndex(neighbors, neighborsPosition, octreeIterator.getCurrentGlobalIndex(),heightMinusOne);
            FDEBUG(computationCounterP2P.tic());
            kernels->P2P(octreeIterator.getCurrentGlobalIndex(),octreeIterator.getCurrentListTargets(), octreeIterator.getCurrentListSrc() , neighbors, neighborsPosition, counter);
            FDEBUG(computationCounterP2P.tac());
        } while(octreeIterator.moveRight());


        FDEBUG( FDebug::Controller << "\tFinished (@Direct Pass (L2P + P2P) = "  << counterTime.tacAndElapsed() << "s)\n" );
        FDEBUG( FDebug::Controller << "\t\t Computation L2P : " << computationCounterL2P.cumulated() << " s\n" );
        FDEBUG( FDebug::Controller << "\t\t Computation P2P : " << computationCounterP2P.cumulated() << " s\n" );

    }

    /////////////////////////////////////////////////////////////////////////////
    // Periodic levels = levels <= 0
    /////////////////////////////////////////////////////////////////////////////

    /** Periodicity */
    void processPeriodicLevels(){
        const int PeriodicLimit = 10;
        CellClass upperCells[PeriodicLimit];

        // First M2M from level 1 to level 0
        {
            typename OctreeClass::Iterator octreeIterator(tree);
            octreeIterator.gotoLeft();
252
            kernels->M2M( &upperCells[0], octreeIterator.getCurrentBox(), 0);
253 254 255 256 257 258 259 260
        }
        // Then M2M from level 0 to level -LIMITE
        {
            CellClass* virtualChild[8];
            for(int idxLevel = 1 ; idxLevel < PeriodicLimit ; ++idxLevel){
                for(int idxChild = 0 ; idxChild < 8 ; ++idxChild){
                    virtualChild[idxChild] = &upperCells[idxLevel-1];
                }
261
                kernels->M2M( &upperCells[idxLevel], virtualChild, -idxLevel);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
            }
        }
        // Then M2L at all level
        {
            // We say that we are in the child index 0
            // So we can compute one time the relative indexes
            FTreeCoordinate relativePosition[189];
            {
                int counterPosition = 0;
                for(int idxX = -2 ; idxX <= 3 ; ++idxX){
                    for(int idxY = -2 ; idxY <= 3 ; ++idxY){
                        for(int idxZ = -2 ; idxZ <= 3 ; ++idxZ){
                            if( FMath::Abs(idxX) > 1 || FMath::Abs(idxY) > 1 || FMath::Abs(idxZ) > 1){
                                relativePosition[counterPosition++].setPosition( idxX, idxY, idxZ);
                            }
                        }
                    }
                }
            }

            const CellClass* neighbors[189];
            const int counter = 189;
284

285 286 287 288
            for(int idxLevel = 0 ; idxLevel < PeriodicLimit ; ++idxLevel ){
                for(int idxNeigh = 0 ; idxNeigh < 189 ; ++idxNeigh){
                    neighbors[idxNeigh] = &upperCells[idxLevel];
                }
289
                kernels->M2L( &upperCells[idxLevel] , neighbors, relativePosition, counter, -idxLevel);
290
            }
291

292 293 294 295 296 297 298 299
        }

        // Finally L2L until level 0
        {
            CellClass* virtualChild[8];
            memset(virtualChild, 0, sizeof(CellClass*) * 8);
            for(int idxLevel = PeriodicLimit - 1 ; idxLevel > 0  ; --idxLevel){
                virtualChild[0] = &upperCells[idxLevel-1];
300
                kernels->L2L( &upperCells[idxLevel], virtualChild, -idxLevel);
301 302 303 304 305 306 307
            }
        }

        // L2L from 0 to level 1
        {
            typename OctreeClass::Iterator octreeIterator(tree);
            octreeIterator.gotoLeft();
308
            kernels->L2L( &upperCells[0], octreeIterator.getCurrentBox(), 0);
309 310 311 312 313 314 315 316
        }

    }

};


#endif // FFMMALGORITHMPERIODIC_HPP