FChebInterpolator.hpp 54.8 KB
Newer Older
BRAMAS Berenger's avatar
BRAMAS Berenger committed
1
// ===================================================================================
2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Bérenger Bramas, Matthias Messner
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.  
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info". 
// "http://www.gnu.org/licenses".
BRAMAS Berenger's avatar
BRAMAS Berenger committed
15
// ===================================================================================
16 17 18 19 20 21 22 23
#ifndef FCHEBINTERPOLATOR_HPP
#define FCHEBINTERPOLATOR_HPP


#include "./FChebMapping.hpp"
#include "./FChebTensor.hpp"
#include "./FChebRoots.hpp"

24
#include "../../Utils/FBlas.hpp"
25

26 27 28 29 30 31 32 33 34


/**
 * @author Matthias Messner (matthias.matthias@inria.fr)
 * Please read the license
 */

/**
 * @class FChebInterpolator
35
 *
36
 * The class @p FChebInterpolator defines the anterpolation (M2M) and
37
 * interpolation (L2L) concerning operations.
38 39 40 41 42 43 44 45 46 47
 */
template <int ORDER>
class FChebInterpolator : FNoCopyable
{
  // compile time constants and types
  enum {nnodes = TensorTraits<ORDER>::nnodes};
  typedef FChebRoots< ORDER>  BasisType;
  typedef FChebTensor<ORDER> TensorType;

  FReal T_of_roots[ORDER][ORDER];
48
  FReal T[ORDER * (ORDER-1)];
49
	unsigned int node_ids[nnodes][3];
50 51
	FReal* ChildParentInterpolator[8];

52 53 54
	// permutations (only needed in the tensor product interpolation case)
	unsigned int perm[3][nnodes];

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	////////////////////////////////////////////////////////////////////
	// needed for P2M
	struct IMN2MNI {
		enum {size = ORDER * (ORDER-1) * (ORDER-1)};
		unsigned int imn[size], mni[size];
		IMN2MNI() {
			unsigned int counter = 0;
			for (unsigned int i=0; i<ORDER; ++i) {
				for (unsigned int m=0; m<ORDER-1; ++m) {
					for (unsigned int n=0; n<ORDER-1; ++n) {
						imn[counter] = n*(ORDER-1)*ORDER + m*ORDER + i;
						mni[counter] = i*(ORDER-1)*(ORDER-1) + n*(ORDER-1) + m;
						counter++;
					}
				}
			}
		}
	} perm0;
	
	struct JNI2NIJ {
		enum {size = ORDER * ORDER * (ORDER-1)};
		unsigned int jni[size], nij[size];
		JNI2NIJ() {
			unsigned int counter = 0;
			for (unsigned int i=0; i<ORDER; ++i) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int n=0; n<ORDER-1; ++n) {
						jni[counter] = i*(ORDER-1)*ORDER + n*ORDER + j;
						nij[counter] = j*ORDER*(ORDER-1) + i*(ORDER-1) + n;
						counter++;
					}
				}
			}
		}
	} perm1;

	struct KIJ2IJK {
		enum {size = ORDER * ORDER * ORDER};
		unsigned int kij[size], ijk[size];
		KIJ2IJK() {
			unsigned int counter = 0;
			for (unsigned int i=0; i<ORDER; ++i) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int k=0; k<ORDER; ++k) {
						kij[counter] = j*ORDER*ORDER + i*ORDER + k;
						ijk[counter] = k*ORDER*ORDER + j*ORDER + i;
						counter++;
					}
				}
			}
		}
	} perm2;
	////////////////////////////////////////////////////////////////////

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	////////////////////////////////////////////////////////////////////
	// needed for L2P
	struct IJK2JKI {
		enum {size = ORDER * ORDER * ORDER};
		unsigned int ijk[size], jki[size];
		IJK2JKI() {
			unsigned int counter = 0;
			for (unsigned int i=0; i<ORDER; ++i) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int k=0; k<ORDER; ++k) {
						ijk[counter] = k*ORDER*ORDER + j*ORDER + i;
						jki[counter] = i*ORDER*ORDER + k*ORDER + j;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[jki[i]] = IN[ijk[i]]; }
	} perm3;

	struct IJK2KIJ {
		enum {size = ORDER * ORDER * ORDER};
		unsigned int ijk[size], kij[size];
		IJK2KIJ() {
			unsigned int counter = 0;
			for (unsigned int i=0; i<ORDER; ++i) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int k=0; k<ORDER; ++k) {
						ijk[counter] = k*ORDER*ORDER + j*ORDER + i;
						kij[counter] = j*ORDER*ORDER + i*ORDER + k;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[kij[i]] = IN[ijk[i]]; }
	} perm4;

	struct LJK2JKL {
		enum {size = (ORDER-1) * ORDER * ORDER};
		unsigned int ljk[size], jkl[size];
		LJK2JKL() {
			unsigned int counter = 0;
			for (unsigned int l=0; l<ORDER-1; ++l) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int k=0; k<ORDER; ++k) {
						ljk[counter] = k*ORDER*(ORDER-1) + j*(ORDER-1) + l;
						jkl[counter] = l*ORDER*ORDER + k*ORDER + j;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[jkl[i]] = IN[ljk[i]]; }
	} perm5;

	struct LJK2KLJ {
		enum {size = (ORDER-1) * ORDER * ORDER};
		unsigned int ljk[size], klj[size];
		LJK2KLJ() {
			unsigned int counter = 0;
			for (unsigned int l=0; l<ORDER-1; ++l) {
				for (unsigned int j=0; j<ORDER; ++j) {
					for (unsigned int k=0; k<ORDER; ++k) {
						ljk[counter] = k*ORDER*(ORDER-1) + j*(ORDER-1) + l;
						klj[counter] = j*(ORDER-1)*ORDER + l*ORDER + k;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[klj[i]] = IN[ljk[i]]; }
	} perm6;

	struct MKI2KIM {
		enum {size = (ORDER-1) * ORDER * ORDER};
		unsigned int mki[size], kim[size];
		MKI2KIM() {
			unsigned int counter = 0;
			for (unsigned int m=0; m<ORDER-1; ++m) {
				for (unsigned int k=0; k<ORDER; ++k) {
					for (unsigned int i=0; i<ORDER; ++i) {
						mki[counter] = i*ORDER*(ORDER-1) + k*(ORDER-1) + m;
						kim[counter] = m*ORDER*ORDER + i*ORDER + k;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[kim[i]] = IN[mki[i]]; }
	} perm7;

	struct MKL2KLM {
		enum {size = (ORDER-1) * ORDER * (ORDER-1)};
		unsigned int mkl[size], klm[size];
		MKL2KLM() {
			unsigned int counter = 0;
			for (unsigned int m=0; m<ORDER-1; ++m) {
				for (unsigned int k=0; k<ORDER; ++k) {
					for (unsigned int l=0; l<ORDER-1; ++l) {
						mkl[counter] = l*ORDER*(ORDER-1) + k*(ORDER-1) + m;
						klm[counter] = m*(ORDER-1)*ORDER + l*ORDER + k;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[klm[i]] = IN[mkl[i]]; }
	} perm8;

	struct NLM2LMN {
		enum {size = (ORDER-1) * (ORDER-1) * (ORDER-1)};
		unsigned int nlm[size], lmn[size];
		NLM2LMN() {
			unsigned int counter = 0;
			for (unsigned int n=0; n<ORDER-1; ++n) {
				for (unsigned int l=0; l<ORDER-1; ++l) {
					for (unsigned int m=0; m<ORDER-1; ++m) {
						nlm[counter] = m*(ORDER-1)*(ORDER-1) + l*(ORDER-1) + n;
						lmn[counter] = n*(ORDER-1)*(ORDER-1) + m*(ORDER-1) + l;
						counter++;
					}
				}
			}
		}
		void permute(const FReal *const IN, FReal *const OUT) const
		{ for (unsigned int i=0; i<size; ++i) OUT[lmn[i]] = IN[nlm[i]]; }
	} perm9;

	////////////////////////////////////////////////////////////////////


247

248 249 250 251 252
	/**
	 * Initialize the child - parent - interpolator, it is basically the matrix
	 * S which is precomputed and reused for all M2M and L2L operations, ie for
	 * all non leaf inter/anterpolations.
	 */
253
	void initM2MandL2L()
254
	{
COULAUD Olivier's avatar
COULAUD Olivier committed
255
		FPoint ParentRoots[nnodes], ChildRoots[nnodes];
256
		const FReal ParentWidth(2.);
COULAUD Olivier's avatar
COULAUD Olivier committed
257
		const FPoint ParentCenter(0., 0., 0.);
258 259
		FChebTensor<ORDER>::setRoots(ParentCenter, ParentWidth, ParentRoots);

COULAUD Olivier's avatar
COULAUD Olivier committed
260
		FPoint ChildCenter;
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
		const FReal ChildWidth(1.);
		
		// loop: child cells
		for (unsigned int child=0; child<8; ++child) {

			// allocate memory
			ChildParentInterpolator[child] = new FReal [nnodes * nnodes];

			// set child info
			FChebTensor<ORDER>::setRelativeChildCenter(child, ChildCenter);
			FChebTensor<ORDER>::setRoots(ChildCenter, ChildWidth, ChildRoots);

			// assemble child - parent - interpolator
			assembleInterpolator(nnodes, ChildRoots, ChildParentInterpolator[child]);
		}
	}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	/**
	 * Initialize the child - parent - interpolator, it is basically the matrix
	 * S which is precomputed and reused for all M2M and L2L operations, ie for
	 * all non leaf inter/anterpolations.
	 */
	void initTensorM2MandL2L()
	{
		FPoint ParentRoots[nnodes];
		FReal ChildCoords[3][ORDER];
		const FReal ParentWidth(2.);
		const FPoint ParentCenter(0., 0., 0.);
		FChebTensor<ORDER>::setRoots(ParentCenter, ParentWidth, ParentRoots);

		FPoint ChildCenter;
		const FReal ChildWidth(1.);
		
		// loop: child cells
		for (unsigned int child=0; child<8; ++child) {

			// set child info
			FChebTensor<ORDER>::setRelativeChildCenter(child, ChildCenter);
			FChebTensor<ORDER>::setChebyshevRoots(ChildCenter, ChildWidth, ChildCoords);

			// allocate memory
			ChildParentInterpolator[child] = new FReal [3 * ORDER*ORDER];
			assembleInterpolator(ORDER, ChildCoords[0], ChildParentInterpolator[child]);
			assembleInterpolator(ORDER, ChildCoords[1], ChildParentInterpolator[child] + 1 * ORDER*ORDER);
			assembleInterpolator(ORDER, ChildCoords[2], ChildParentInterpolator[child] + 2 * ORDER*ORDER);
		}


		// init permutations
		for (unsigned int i=0; i<ORDER; ++i) {
			for (unsigned int j=0; j<ORDER; ++j) {
				for (unsigned int k=0; k<ORDER; ++k) {
					const unsigned int index = k*ORDER*ORDER + j*ORDER + i;
					perm[0][index] = k*ORDER*ORDER + j*ORDER + i;
					perm[1][index] = i*ORDER*ORDER + k*ORDER + j;
					perm[2][index] = j*ORDER*ORDER + i*ORDER + k;
				}
			}
		}
		
	}

323 324 325 326


public:
	/**
327
	 * Constructor: Initialize the Chebyshev polynomials at the Chebyshev
328 329 330 331 332 333 334
	 * roots/interpolation point
	 */
	explicit FChebInterpolator()
	{
		// initialize chebyshev polynomials of root nodes: T_o(x_j)
    for (unsigned int o=1; o<ORDER; ++o)
      for (unsigned int j=0; j<ORDER; ++j)
messner's avatar
messner committed
335
        T_of_roots[o][j] = FReal(BasisType::T(o, FReal(BasisType::roots[j])));
336

337 338 339 340 341 342
		// initialize chebyshev polynomials of root nodes: T_o(x_j)
    for (unsigned int o=1; o<ORDER; ++o)
      for (unsigned int j=0; j<ORDER; ++j)
        T[(o-1)*ORDER + j] = FReal(BasisType::T(o, FReal(BasisType::roots[j])));
		

343 344
		// initialize root node ids
		TensorType::setNodeIds(node_ids);
345 346 347

		// initialize interpolation operator for non M2M and L2L (non leaf
		// operations)
348 349
		//this -> initM2MandL2L();     // non tensor-product interpolation
		this -> initTensorM2MandL2L(); // tensor-product interpolation
350 351 352 353 354 355 356 357 358 359
	}

	
	/**
	 * Destructor: Delete dynamically allocated memory for M2M and L2L operator
	 */
	~FChebInterpolator()
	{
		for (unsigned int child=0; child<8; ++child)
			delete [] ChildParentInterpolator[child];
360 361 362
	}


363 364 365 366 367 368 369 370 371 372
	/**
	 * Assembles the interpolator \f$S_\ell\f$ of size \f$N\times
	 * \ell^3\f$. Here local points is meant as points whose global coordinates
	 * have already been mapped to the reference interval [-1,1].
	 *
	 * @param[in] NumberOfLocalPoints
	 * @param[in] LocalPoints
	 * @param[out] Interpolator
	 */
	void assembleInterpolator(const unsigned int NumberOfLocalPoints,
COULAUD Olivier's avatar
COULAUD Olivier committed
373
				  const FPoint *const LocalPoints,
374
				  FReal *const Interpolator) const
COULAUD Olivier's avatar
COULAUD Olivier committed
375
	{
376 377
		// values of chebyshev polynomials of source particle: T_o(x_i)
		FReal T_of_x[ORDER][3];
378 379
		// loop: local points (mapped in [-1,1])
		for (unsigned int m=0; m<NumberOfLocalPoints; ++m) {
380 381 382 383 384 385
			// evaluate chebyshev polynomials at local points
			for (unsigned int o=1; o<ORDER; ++o) {
				T_of_x[o][0] = BasisType::T(o, LocalPoints[m].getX());
				T_of_x[o][1] = BasisType::T(o, LocalPoints[m].getY());
				T_of_x[o][2] = BasisType::T(o, LocalPoints[m].getZ());
			}
386

387 388
			// assemble interpolator
			for (unsigned int n=0; n<nnodes; ++n) {
389 390
				//Interpolator[n*nnodes + m] = FReal(1.);
				Interpolator[n*NumberOfLocalPoints + m] = FReal(1.);
391 392
				for (unsigned int d=0; d<3; ++d) {
					const unsigned int j = node_ids[n][d];
393
					FReal S_d = FReal(1.) / ORDER;
394
					for (unsigned int o=1; o<ORDER; ++o)
395 396 397
					 	S_d += FReal(2.) / ORDER * T_of_x[o][d] * T_of_roots[o][j];
					//Interpolator[n*nnodes + m] *= S_d;
					Interpolator[n*NumberOfLocalPoints + m] *= S_d;
398
				}
399

400 401 402 403 404 405
			}
			
		}
		
	}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

	void assembleInterpolator(const unsigned int M, const FReal *const x, FReal *const S) const
	{
		// values of chebyshev polynomials of source particle: T_o(x_i)
		FReal T_of_x[ORDER];

		// loop: local points (mapped in [-1,1])
		for (unsigned int m=0; m<M; ++m) {
			// evaluate chebyshev polynomials at local points
			for (unsigned int o=1; o<ORDER; ++o)
				T_of_x[o] = BasisType::T(o, x[m]);
			
			for (unsigned int n=0; n<ORDER; ++n) {
				S[n*M + m] = FReal(1.) / ORDER;
				for (unsigned int o=1; o<ORDER; ++o)
					S[n*M + m] += FReal(2.) / ORDER * T_of_x[o] * T_of_roots[o][n];
			}
			
		}
		
	}
427 428
	

429

430 431 432 433
	const FReal *const *const getChildParentInterpolator() const
	{ return ChildParentInterpolator; }
	const unsigned int *const getPermutationsM2ML2L(unsigned int i) const
	{ return perm[i]; }
434

435
	
436 437 438



439 440
	
	/**
441 442
	 * Particle to moment: application of \f$S_\ell(y,\bar y_n)\f$
	 * (anterpolation, it is the transposed interpolation)
443 444
	 */
	template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
445
	void applyP2M(const FPoint& center,
446 447
								const FReal width,
								FReal *const multipoleExpansion,
448
								const ContainerClass *const sourceParticles) const;
449 450 451 452


	
	/**
453
	 * Local to particle operation: application of \f$S_\ell(x,\bar x_m)\f$ (interpolation)
454 455
	 */
	template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
456
	void applyL2P(const FPoint& center,
457 458
								const FReal width,
								const FReal *const localExpansion,
459
								ContainerClass *const localParticles) const;
460

461 462 463 464 465

	/**
	 * Local to particle operation: application of \f$\nabla_x S_\ell(x,\bar x_m)\f$ (interpolation)
	 */
	template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
466
	void applyL2PGradient(const FPoint& center,
467 468
												const FReal width,
												const FReal *const localExpansion,
469
												ContainerClass *const localParticles) const;
470

471 472 473 474 475
	/**
	 * Local to particle operation: application of \f$S_\ell(x,\bar x_m)\f$ and
	 * \f$\nabla_x S_\ell(x,\bar x_m)\f$ (interpolation)
	 */
	template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
476
	void applyL2PTotal(const FPoint& center,
477 478 479 480
										 const FReal width,
										 const FReal *const localExpansion,
										 ContainerClass *const localParticles) const;
	
481
	
482
	/*
483 484 485 486 487 488
	void applyM2M(const unsigned int ChildIndex,
								const FReal *const ChildExpansion,
								FReal *const ParentExpansion) const
	{
		FBlas::gemtva(nnodes, nnodes, FReal(1.),
									ChildParentInterpolator[ChildIndex],
messner's avatar
messner committed
489
									const_cast<FReal*>(ChildExpansion), ParentExpansion);
490
	}
491

492 493 494 495 496 497
	void applyL2L(const unsigned int ChildIndex,
								const FReal *const ParentExpansion,
								FReal *const ChildExpansion) const
	{
		FBlas::gemva(nnodes, nnodes, FReal(1.),
								 ChildParentInterpolator[ChildIndex],
messner's avatar
messner committed
498
								 const_cast<FReal*>(ParentExpansion), ChildExpansion);
499
	}
500 501 502 503 504 505 506 507 508
	*/
	

	
	void applyM2M(const unsigned int ChildIndex,
								const FReal *const ChildExpansion,
								FReal *const ParentExpansion) const
	{
		FReal Exp[nnodes], PermExp[nnodes];
509
		// ORDER*ORDER*ORDER * (2*ORDER-1)
510 511 512 513 514
		FBlas::gemtm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								 ChildParentInterpolator[ChildIndex], ORDER,
								 const_cast<FReal*>(ChildExpansion), ORDER, PermExp, ORDER);
		
		for (unsigned int n=0; n<nnodes; ++n)	Exp[n] = PermExp[perm[1][n]];
515
		// ORDER*ORDER*ORDER * (2*ORDER-1)
516 517 518 519 520
		FBlas::gemtm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								 ChildParentInterpolator[ChildIndex] + 2 * ORDER*ORDER, ORDER,
								 Exp, ORDER, PermExp, ORDER);

		for (unsigned int n=0; n<nnodes; ++n)	Exp[perm[1][n]] = PermExp[perm[2][n]];
521
		// ORDER*ORDER*ORDER * (2*ORDER-1)
522 523 524 525 526 527 528 529 530 531 532 533 534
		FBlas::gemtm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								 ChildParentInterpolator[ChildIndex] + 1 * ORDER*ORDER, ORDER,
								 Exp, ORDER, PermExp, ORDER);

		for (unsigned int n=0; n<nnodes; ++n)	ParentExpansion[perm[2][n]] += PermExp[n];
	}


	void applyL2L(const unsigned int ChildIndex,
								const FReal *const ParentExpansion,
								FReal *const ChildExpansion) const
	{
		FReal Exp[nnodes], PermExp[nnodes];
535
		// ORDER*ORDER*ORDER * (2*ORDER-1)
536 537 538 539 540
		FBlas::gemm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								ChildParentInterpolator[ChildIndex], ORDER,
								const_cast<FReal*>(ParentExpansion), ORDER, PermExp, ORDER);
		
		for (unsigned int n=0; n<nnodes; ++n)	Exp[n] = PermExp[perm[1][n]];
541
		// ORDER*ORDER*ORDER * (2*ORDER-1)
542 543 544 545 546
		FBlas::gemm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								ChildParentInterpolator[ChildIndex] + 2 * ORDER*ORDER, ORDER,
								Exp, ORDER, PermExp, ORDER);
		
		for (unsigned int n=0; n<nnodes; ++n)	Exp[perm[1][n]] = PermExp[perm[2][n]];
547
		// ORDER*ORDER*ORDER * (2*ORDER-1)
548 549 550 551 552 553
		FBlas::gemm(ORDER, ORDER, ORDER*ORDER, FReal(1.),
								ChildParentInterpolator[ChildIndex] + 1 * ORDER*ORDER, ORDER,
								Exp, ORDER, PermExp, ORDER);

		for (unsigned int n=0; n<nnodes; ++n)	ChildExpansion[perm[2][n]] += PermExp[n];
	}
554
	// total flops count: 3 * ORDER*ORDER*ORDER * (2*ORDER-1)
555
};
556 557 558



559 560 561 562 563 564 565 566 567 568




/**
 * Particle to moment: application of \f$S_\ell(y,\bar y_n)\f$
 * (anterpolation, it is the transposed interpolation)
 */
template <int ORDER>
template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
569
inline void FChebInterpolator<ORDER>::applyP2M(const FPoint& center,
570 571 572 573 574 575 576 577 578
																							 const FReal width,
																							 FReal *const multipoleExpansion,
																							 const ContainerClass *const sourceParticles) const
{
	// set all multipole expansions to zero
	FBlas::setzero(nnodes, multipoleExpansion);

	// allocate stuff
	const map_glob_loc map(center, width);
COULAUD Olivier's avatar
COULAUD Olivier committed
579
	FPoint localPosition;
580 581 582 583 584 585 586 587 588

	FReal W1 = FReal(0.);
	FReal W2[3][ ORDER-1];
	FReal W4[3][(ORDER-1)*(ORDER-1)];
	FReal W8[   (ORDER-1)*(ORDER-1)*(ORDER-1)];
	for(unsigned int i=0; i<(ORDER-1); ++i) W2[0][i] = W2[1][i] = W2[2][i] = FReal(0.);
	for(unsigned int i=0; i<(ORDER-1)*(ORDER-1); ++i)	W4[0][i] = W4[1][i] = W4[2][i] = FReal(0.);
	for(unsigned int i=0; i<(ORDER-1)*(ORDER-1)*(ORDER-1); ++i)	W8[i] = FReal(0.);
	
589 590 591
	// loop over source particles
	typename ContainerClass::ConstBasicIterator iter(*sourceParticles);
	while(iter.hasNotFinished()){
592
		
593
		// map global position to [-1,1]
594
		map(iter.data().getPosition(), localPosition); // 15 flops
595
		
596 597 598 599 600 601 602 603 604 605 606
		FReal T_of_x[3][ORDER];
		T_of_x[0][0] = FReal(1.); T_of_x[0][1] = localPosition.getX();
		T_of_x[1][0] = FReal(1.); T_of_x[1][1] = localPosition.getY();
		T_of_x[2][0] = FReal(1.); T_of_x[2][1] = localPosition.getZ();
		const FReal x2 = FReal(2.) * T_of_x[0][1]; // 1 flop
		const FReal y2 = FReal(2.) * T_of_x[1][1]; // 1 flop
		const FReal z2 = FReal(2.) * T_of_x[2][1]; // 1 flop
		for (unsigned int j=2; j<ORDER; ++j) {
			T_of_x[0][j] = x2 * T_of_x[0][j-1] - T_of_x[0][j-2]; // 2 flops
			T_of_x[1][j] = y2 * T_of_x[1][j-1] - T_of_x[1][j-2]; // 2 flops
			T_of_x[2][j] = z2 * T_of_x[2][j-1] - T_of_x[2][j-2]; // 2 flops
607
		}
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
		
		const FReal weight = iter.data().getPhysicalValue();
		W1 += weight; // 1 flop
		for (unsigned int i=1; i<ORDER; ++i) {
			const FReal wx = weight * T_of_x[0][i]; // 1 flop
			const FReal wy = weight * T_of_x[1][i]; // 1 flop
			const FReal wz = weight * T_of_x[2][i]; // 1 flop
			W2[0][i-1] += wx; // 1 flop
			W2[1][i-1] += wy; // 1 flop
			W2[2][i-1] += wz; // 1 flop
			for (unsigned int j=1; j<ORDER; ++j) {
				const FReal wxy = wx * T_of_x[1][j]; // 1 flop
				const FReal wxz = wx * T_of_x[2][j]; // 1 flop
				const FReal wyz = wy * T_of_x[2][j]; // 1 flop
				W4[0][(j-1)*(ORDER-1) + (i-1)] += wxy; // 1 flop
				W4[1][(j-1)*(ORDER-1) + (i-1)] += wxz; // 1 flop
				W4[2][(j-1)*(ORDER-1) + (i-1)] += wyz; // 1 flop
				for (unsigned int k=1; k<ORDER; ++k) {
					const FReal wxyz = wxy * T_of_x[2][k]; // 1 flop
					W8[(k-1)*(ORDER-1)*(ORDER-1) + (j-1)*(ORDER-1) + (i-1)] += wxyz; // 1 flop
				} // flops: (ORDER-1) * 2
			} // flops: (ORDER-1) * (6 + (ORDER-1) * 2) 
		} // flops: (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1) * 2))
		
		
633 634
		// increment source iterator
		iter.gotoNext();
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	} // flops: N * (18 + (ORDER-2) * 6 + (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1) * 2)))

	////////////////////////////////////////////////////////////////////

	// loop over interpolation points
	FReal F2[3][ORDER];
	FReal F4[3][ORDER*ORDER];
	FReal F8[   ORDER*ORDER*ORDER];
	{
		// compute W2: 3 * ORDER*(2*(ORDER-1)-1) flops
		FBlas::gemv(ORDER, ORDER-1, FReal(1.), const_cast<FReal*>(T), W2[0], F2[0]);
		FBlas::gemv(ORDER, ORDER-1, FReal(1.), const_cast<FReal*>(T), W2[1], F2[1]);
		FBlas::gemv(ORDER, ORDER-1, FReal(1.), const_cast<FReal*>(T), W2[2], F2[2]);

		// compute W4: 3 * [ORDER*(ORDER-1)*(2*(ORDER-1)-1) + ORDER*ORDER*(2*(ORDER-1)-1)]
		FReal C[ORDER * (ORDER-1)];
		FBlas::gemmt(ORDER, ORDER-1, ORDER-1, FReal(1.), const_cast<FReal*>(T), ORDER, W4[0], ORDER-1, C,     ORDER);
		FBlas::gemmt(ORDER, ORDER-1, ORDER,   FReal(1.), const_cast<FReal*>(T), ORDER, C,     ORDER,   F4[0], ORDER);
		FBlas::gemmt(ORDER, ORDER-1, ORDER-1, FReal(1.), const_cast<FReal*>(T), ORDER, W4[1], ORDER-1, C,     ORDER);
		FBlas::gemmt(ORDER, ORDER-1, ORDER,   FReal(1.), const_cast<FReal*>(T), ORDER, C,     ORDER,   F4[1], ORDER);
		FBlas::gemmt(ORDER, ORDER-1, ORDER-1, FReal(1.), const_cast<FReal*>(T), ORDER, W4[2], ORDER-1, C,     ORDER);
		FBlas::gemmt(ORDER, ORDER-1, ORDER,   FReal(1.), const_cast<FReal*>(T), ORDER, C,     ORDER,   F4[2], ORDER);
	
		// compute W8: 3 * (2*(ORDER-1)-1) * [ORDER*(ORDER-1)*(ORDER-1) + ORDER*ORDER*(ORDER-1) + ORDER*ORDER*ORDER]
		FReal D[ORDER * (ORDER-1) * (ORDER-1)];
		FBlas::gemm(ORDER, ORDER-1, (ORDER-1)*(ORDER-1), FReal(1.),	const_cast<FReal*>(T), ORDER, W8, ORDER-1, D, ORDER);
		FReal E[(ORDER-1) * (ORDER-1) * ORDER];
		for (unsigned int s=0; s<perm0.size; ++s)	E[perm0.mni[s]] = D[perm0.imn[s]];
		FReal F[ORDER * (ORDER-1) * ORDER];
		FBlas::gemm(ORDER, ORDER-1, ORDER*(ORDER-1), FReal(1.), const_cast<FReal*>(T), ORDER, E, ORDER-1, F, ORDER);
		FReal G[(ORDER-1) * ORDER * ORDER];
		for (unsigned int s=0; s<perm1.size; ++s)	G[perm1.nij[s]] = F[perm1.jni[s]];
		FReal H[ORDER * ORDER * ORDER];
		FBlas::gemm(ORDER, ORDER-1, ORDER*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER, G, ORDER-1, H, ORDER);
		for (unsigned int s=0; s<perm2.size; ++s)	F8[perm2.ijk[s]] = H[perm2.kij[s]];
670
	}
671 672 673 674 675 676 677 678 679 680 681 682 683 684
	
	// assemble multipole expansions
	for (unsigned int i=0; i<ORDER; ++i) {
		for (unsigned int j=0; j<ORDER; ++j) {
			for (unsigned int k=0; k<ORDER; ++k) {
				const unsigned int idx = k*ORDER*ORDER + j*ORDER + i;
				multipoleExpansion[idx] = (W1 + 
																	 FReal(2.) * (F2[0][i] + F2[1][j] + F2[2][k]) +
																	 FReal(4.) * (F4[0][j*ORDER+i] + F4[1][k*ORDER+i] + F4[2][k*ORDER+j]) +
																	 FReal(8.) *  F8[idx]) / nnodes; // 11 * ORDER*ORDER*ORDER flops
			}
		}
	}

685 686 687
}


688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
///**
// * Particle to moment: application of \f$S_\ell(y,\bar y_n)\f$
// * (anterpolation, it is the transposed interpolation)
// */
//template <int ORDER>
//template <class ContainerClass>
//inline void FChebInterpolator<ORDER>::applyP2M(const FPoint& center,
//																							 const FReal width,
//																							 FReal *const multipoleExpansion,
//																							 const ContainerClass *const sourceParticles) const
//{
//	// set all multipole expansions to zero
//	FBlas::setzero(nnodes, multipoleExpansion);
//
//	// allocate stuff
//	const map_glob_loc map(center, width);
//	FPoint localPosition;
//	FReal T_of_x[ORDER][3];
//	FReal S[3], c1;
//	//
//	FReal xpx,ypy,zpz ;
//	c1 = FReal(8.) / nnodes ; // 1 flop
//	// loop over source particles
//	typename ContainerClass::ConstBasicIterator iter(*sourceParticles);
//	while(iter.hasNotFinished()){
//
//		// map global position to [-1,1]
//		map(iter.data().getPosition(), localPosition); // 15 flops
//
//		// evaluate chebyshev polynomials of source particle: T_o(x_i)
//		T_of_x[0][0] = FReal(1.);	T_of_x[1][0] = localPosition.getX();
//		T_of_x[0][1] = FReal(1.);	T_of_x[1][1] = localPosition.getY();
//		T_of_x[0][2] = FReal(1.);	T_of_x[1][2] = localPosition.getZ();
//		xpx = FReal(2.) * localPosition.getX() ; // 1 flop
//		ypy = FReal(2.) * localPosition.getY() ; // 1 flop
//		zpz = FReal(2.) * localPosition.getZ() ; // 1 flop
//
//		for (unsigned int o=2; o<ORDER; ++o) {
//			T_of_x[o][0] = xpx * T_of_x[o-1][0] - T_of_x[o-2][0]; // 2 flops
//			T_of_x[o][1] = ypy * T_of_x[o-1][1] - T_of_x[o-2][1];	// 2 flops
//			T_of_x[o][2] = zpz * T_of_x[o-1][2] - T_of_x[o-2][2]; // 2 flops
//		} // flops: (ORDER-1) * 6
//		
//		// anterpolate
//		const FReal sourceValue = iter.data().getPhysicalValue();
//		for (unsigned int n=0; n<nnodes; ++n) {
//			const unsigned int j[3] = {node_ids[n][0], node_ids[n][1], node_ids[n][2]};
//			S[0] = FReal(0.5) + T_of_x[1][0] * T_of_roots[1][j[0]]; // 2 flops 
//			S[1] = FReal(0.5) + T_of_x[1][1] * T_of_roots[1][j[1]]; // 2 flops
//			S[2] = FReal(0.5) + T_of_x[1][2] * T_of_roots[1][j[2]]; // 2 flops
//			for (unsigned int o=2; o<ORDER; ++o) {
//				S[0] += T_of_x[o][0] * T_of_roots[o][j[0]]; // 2 flops
//				S[1] += T_of_x[o][1] * T_of_roots[o][j[1]]; // 2 flops
//				S[2] += T_of_x[o][2] * T_of_roots[o][j[2]]; // 2 flops
//			} // flops: (ORDER-2) * 6
//
//			// gather contributions
//			multipoleExpansion[n]	+= c1 *	S[0] * S[1] * S[2] *	sourceValue; // 4 flops
//		} // flops: ORDER*ORDER*ORDER * (10 + (ORDER-2) * 6)
//
//		// increment source iterator
//		iter.gotoNext();
//	} // flops: M * (18 + (ORDER-1) * 6 + ORDER*ORDER*ORDER * (10 + (ORDER-2) * 6))
//}



755 756 757 758 759
/**
 * Local to particle operation: application of \f$S_\ell(x,\bar x_m)\f$ (interpolation)
 */
template <int ORDER>
template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
760
inline void FChebInterpolator<ORDER>::applyL2P(const FPoint& center,
761 762 763 764
																							 const FReal width,
																							 const FReal *const localExpansion,
																							 ContainerClass *const localParticles) const
{
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	FReal f1;
	FReal W2[3][ ORDER-1];
	FReal W4[3][(ORDER-1)*(ORDER-1)];
	FReal W8[   (ORDER-1)*(ORDER-1)*(ORDER-1)];
	{ // sum over interpolation points
		f1 = FReal(0.);
		for(unsigned int i=0; i<ORDER-1; ++i)	                   W2[0][i] = W2[1][i] = W2[2][i] = FReal(0.);
		for(unsigned int i=0; i<(ORDER-1)*(ORDER-1); ++i)        W4[0][i] = W4[1][i] = W4[2][i] = FReal(0.);
		for(unsigned int i=0; i<(ORDER-1)*(ORDER-1)*(ORDER-1); ++i)	W8[i] = FReal(0.);
		
		for (unsigned int idx=0; idx<nnodes; ++idx) {
			const unsigned int i = node_ids[idx][0];
			const unsigned int j = node_ids[idx][1];
			const unsigned int k = node_ids[idx][2];
			
			f1 += localExpansion[idx]; // 1 flop

			for (unsigned int l=0; l<ORDER-1; ++l) {
				const FReal wx = T[l*ORDER+i] * localExpansion[idx]; // 1 flops
				const FReal wy = T[l*ORDER+j] * localExpansion[idx]; // 1 flops
				const FReal wz = T[l*ORDER+k] * localExpansion[idx]; // 1 flops
				W2[0][l] += wx; // 1 flops
				W2[1][l] += wy; // 1 flops
				W2[2][l] += wz; // 1 flops
				for (unsigned int m=0; m<ORDER-1; ++m) {
					const FReal wxy = wx * T[m*ORDER + j]; // 1 flops
					const FReal wxz = wx * T[m*ORDER + k]; // 1 flops
					const FReal wyz = wy * T[m*ORDER + k]; // 1 flops
					W4[0][m*(ORDER-1)+l] += wxy; // 1 flops
					W4[1][m*(ORDER-1)+l] += wxz; // 1 flops
					W4[2][m*(ORDER-1)+l] += wyz; // 1 flops
					for (unsigned int n=0; n<ORDER-1; ++n) {
						const FReal wxyz = wxy * T[n*ORDER + k]; // 1 flops
						W8[n*(ORDER-1)*(ORDER-1) + m*(ORDER-1) + l]	+= wxyz; // 1 flops
					} // (ORDER-1) * 2 flops
				} // (ORDER-1) * (6 + (ORDER-1)*2) flops
			} // (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1)*2)) flops
		} // ORDER*ORDER*ORDER * (1 + (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1)*2))) flops
		
	}


	// loop over particles
808
	const map_glob_loc map(center, width);
COULAUD Olivier's avatar
COULAUD Olivier committed
809
	FPoint localPosition;
810 811 812 813
	typename ContainerClass::BasicIterator iter(*localParticles);
	while(iter.hasNotFinished()){
			
		// map global position to [-1,1]
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		map(iter.data().getPosition(), localPosition); // 15 flops

		FReal T_of_x[3][ORDER];
		{
			T_of_x[0][0] = FReal(1.); T_of_x[0][1] = localPosition.getX();
			T_of_x[1][0] = FReal(1.); T_of_x[1][1] = localPosition.getY();
			T_of_x[2][0] = FReal(1.); T_of_x[2][1] = localPosition.getZ();
			const FReal x2 = FReal(2.) * T_of_x[0][1]; // 1 flop
			const FReal y2 = FReal(2.) * T_of_x[1][1]; // 1 flop
			const FReal z2 = FReal(2.) * T_of_x[2][1]; // 1 flop
			for (unsigned int j=2; j<ORDER; ++j) {
				T_of_x[0][j] = x2 * T_of_x[0][j-1] - T_of_x[0][j-2]; // 2 flops
				T_of_x[1][j] = y2 * T_of_x[1][j-1] - T_of_x[1][j-2]; // 2 flops
				T_of_x[2][j] = z2 * T_of_x[2][j-1] - T_of_x[2][j-2]; // 2 flops
			}
829 830 831 832
		}

		// interpolate and increment target value
		FReal targetValue = iter.data().getPotential();
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
		{
			FReal f2, f4, f8;
			{
				f2 = f4 = f8 = FReal(0.);
				for (unsigned int l=1; l<ORDER; ++l) {
					f2 +=
						T_of_x[0][l] * W2[0][l-1] +
						T_of_x[1][l] * W2[1][l-1] +
						T_of_x[2][l] * W2[2][l-1]; // 6 flops
					for (unsigned int m=1; m<ORDER; ++m) {
						f4 +=
							T_of_x[0][l] * T_of_x[1][m] * W4[0][(m-1)*(ORDER-1)+(l-1)] +
							T_of_x[0][l] * T_of_x[2][m] * W4[1][(m-1)*(ORDER-1)+(l-1)] +
							T_of_x[1][l] * T_of_x[2][m] * W4[2][(m-1)*(ORDER-1)+(l-1)]; // 9 flops
						for (unsigned int n=1; n<ORDER; ++n) {
							f8 +=
								T_of_x[0][l] * T_of_x[1][m] * T_of_x[2][n] *
								W8[(n-1)*(ORDER-1)*(ORDER-1) + (m-1)*(ORDER-1) + (l-1)];
						} // ORDER * 4 flops
					} // ORDER * (9 + ORDER * 4) flops
				} // ORDER * (ORDER * (9 + ORDER * 4)) flops
854
			}
855 856
			targetValue = (f1 + FReal(2.)*f2 + FReal(4.)*f4 + FReal(8.)*f8) / nnodes; // 7 flops
		} // 7 + ORDER * (ORDER * (9 + ORDER * 4)) flops
857

858 859
		// set potential
		iter.data().setPotential(targetValue);
860

861 862
		// increment target iterator
		iter.gotoNext();
863
	} // N * (7 + ORDER * (ORDER * (9 + ORDER * 4))) flops
864 865 866
}


867 868 869 870 871 872 873
//	FReal F2[3][ORDER-1];
//	FBlas::gemtv(ORDER, ORDER-1, FReal(1.), const_cast<FReal*>(T), const_cast<FReal*>(localExpansion), F2[0]);
//	for (unsigned int i=1; i<ORDER*ORDER; ++i)
//		FBlas::gemtva(ORDER, ORDER-1, FReal(1.), const_cast<FReal*>(T),
//									const_cast<FReal*>(localExpansion) + ORDER*i, F2[0]);
//	for (unsigned int i=0; i<ORDER-1; ++i)
//		std::cout << W2[0][i] << "\t" << F2[0][i] << std::endl;
874

875 876 877 878 879 880 881 882
//	FReal F2[(ORDER-1) * ORDER*ORDER];
//	FBlas::gemtm(ORDER, ORDER-1, ORDER*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER,
//							 const_cast<FReal*>(localExpansion), ORDER, F2, ORDER-1);
//	FReal F[ORDER-1]; FBlas::setzero(ORDER-1, F);
//	for (unsigned int i=0; i<ORDER-1; ++i)
//		for (unsigned int j=0; j<ORDER*ORDER; ++j) F[i] += F2[j*(ORDER-1) + i];
//	for (unsigned int i=0; i<ORDER-1; ++i)
//		std::cout << W2[0][i] << "\t" << F[i] << std::endl;
883 884


885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
///**
// * Local to particle operation: application of \f$S_\ell(x,\bar x_m)\f$ (interpolation)
// */
//template <int ORDER>
//template <class ContainerClass>
//inline void FChebInterpolator<ORDER>::applyL2P(const FPoint& center,
//																							 const FReal width,
//																							 const FReal *const localExpansion,
//																							 ContainerClass *const localParticles) const
//{
//	// allocate stuff
//	const map_glob_loc map(center, width);
//	FPoint localPosition;
//	FReal T_of_x[ORDER][3];
//	FReal xpx,ypy,zpz ;
//	FReal S[3],c1;
//	//
//	c1 = FReal(8.) / nnodes ;
//	typename ContainerClass::BasicIterator iter(*localParticles);
//	while(iter.hasNotFinished()){
//			
//		// map global position to [-1,1]
//		map(iter.data().getPosition(), localPosition); // 15 flops
//
//		// evaluate chebyshev polynomials of source particle: T_o(x_i)
//		T_of_x[0][0] = FReal(1.);	T_of_x[1][0] = localPosition.getX();
//		T_of_x[0][1] = FReal(1.);	T_of_x[1][1] = localPosition.getY();
//		T_of_x[0][2] = FReal(1.);	T_of_x[1][2] = localPosition.getZ();
//		xpx = FReal(2.) * localPosition.getX() ; // 1 flop
//		ypy = FReal(2.) * localPosition.getY() ; // 1 flop
//		zpz = FReal(2.) * localPosition.getZ() ; // 1 flop
//		for (unsigned int o=2; o<ORDER; ++o) {
//			T_of_x[o][0] = xpx * T_of_x[o-1][0] - T_of_x[o-2][0]; // 2 flop
//			T_of_x[o][1] = ypy * T_of_x[o-1][1] - T_of_x[o-2][1]; // 2 flop
//			T_of_x[o][2] = zpz * T_of_x[o-1][2] - T_of_x[o-2][2]; // 2 flop
//		} // (ORDER-2) * 6 flops
//
//		// interpolate and increment target value
//		FReal targetValue = iter.data().getPotential();
//		for (unsigned int n=0; n<nnodes; ++n) {
//			const unsigned int j[3] = {node_ids[n][0], node_ids[n][1], node_ids[n][2]};
//			S[0] = T_of_x[1][0] * T_of_roots[1][j[0]]; // 1 flops
//			S[1] = T_of_x[1][1] * T_of_roots[1][j[1]]; // 1 flops
//			S[2] = T_of_x[1][2] * T_of_roots[1][j[2]]; // 1 flops
//			for (unsigned int o=2; o<ORDER; ++o) {
//				S[0] += T_of_x[o][0] * T_of_roots[o][j[0]]; // 2 flops
//				S[1] += T_of_x[o][1] * T_of_roots[o][j[1]]; // 2 flops
//				S[2] += T_of_x[o][2] * T_of_roots[o][j[2]]; // 2 flops
//			} // (ORDER-2) * 6 flops 
//			// gather contributions
//			S[0] += FReal(0.5); // 1 flops
//			S[1] += FReal(0.5); // 1 flops
//			S[2] += FReal(0.5); // 1 flops
//			targetValue	+= S[0] * S[1] * S[2] * localExpansion[n]; // 4 flops
//		} // ORDER*ORDER*ORDER * (10 + (ORDER-2) * 6) flops
//		// scale
//		targetValue *= c1; // 1 flops
//
//		// set potential
//		iter.data().setPotential(targetValue);
//
//		// increment target iterator
//		iter.gotoNext();
//	} // N * ORDER*ORDER*ORDER * (10 + (ORDER-2) * 6) flops
//}
950 951 952 953 954 955






Matthias Messner's avatar
Matthias Messner committed
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/**
 * Local to particle operation: application of \f$\nabla_x S_\ell(x,\bar x_m)\f$ (interpolation)
 */
template <int ORDER>
template <class ContainerClass>
inline void FChebInterpolator<ORDER>::applyL2PGradient(const FPoint& center,
																											 const FReal width,
																											 const FReal *const localExpansion,
																											 ContainerClass *const localParticles) const
{
	////////////////////////////////////////////////////////////////////
	// TENSOR-PRODUCT INTERPOLUTION NOT IMPLEMENTED YET HERE!!! ////////
	////////////////////////////////////////////////////////////////////

	// setup local to global mapping
	const map_glob_loc map(center, width);
	FPoint Jacobian;
	map.computeJacobian(Jacobian);
	const FReal jacobian[3] = {Jacobian.getX(), Jacobian.getY(), Jacobian.getZ()}; 
	FPoint localPosition;
	FReal T_of_x[ORDER][3];
	FReal U_of_x[ORDER][3];
	FReal P[3];

	typename ContainerClass::BasicIterator iter(*localParticles);
	while(iter.hasNotFinished()){
			
		// map global position to [-1,1]
		map(iter.data().getPosition(), localPosition);
			
		// evaluate chebyshev polynomials of source particle
		// T_0(x_i) and T_1(x_i)
		T_of_x[0][0] = FReal(1.);	T_of_x[1][0] = localPosition.getX();
		T_of_x[0][1] = FReal(1.);	T_of_x[1][1] = localPosition.getY();
		T_of_x[0][2] = FReal(1.);	T_of_x[1][2] = localPosition.getZ();
		// U_0(x_i) and U_1(x_i)
		U_of_x[0][0] = FReal(1.);	U_of_x[1][0] = localPosition.getX() * FReal(2.);
		U_of_x[0][1] = FReal(1.);	U_of_x[1][1] = localPosition.getY() * FReal(2.);
		U_of_x[0][2] = FReal(1.);	U_of_x[1][2] = localPosition.getZ() * FReal(2.);
		for (unsigned int o=2; o<ORDER; ++o) {
			// T_o(x_i)
			T_of_x[o][0] = FReal(2.)*localPosition.getX()*T_of_x[o-1][0] - T_of_x[o-2][0];
			T_of_x[o][1] = FReal(2.)*localPosition.getY()*T_of_x[o-1][1] - T_of_x[o-2][1];
			T_of_x[o][2] = FReal(2.)*localPosition.getZ()*T_of_x[o-1][2] - T_of_x[o-2][2];
			// U_o(x_i)
			U_of_x[o][0] = FReal(2.)*localPosition.getX()*U_of_x[o-1][0] - U_of_x[o-2][0];
			U_of_x[o][1] = FReal(2.)*localPosition.getY()*U_of_x[o-1][1] - U_of_x[o-2][1];
			U_of_x[o][2] = FReal(2.)*localPosition.getZ()*U_of_x[o-1][2] - U_of_x[o-2][2];
		}

		// scale, because dT_o/dx = oU_{o-1}
		for (unsigned int o=2; o<ORDER; ++o) {
			U_of_x[o-1][0] *= FReal(o);
			U_of_x[o-1][1] *= FReal(o);
			U_of_x[o-1][2] *= FReal(o);
		}

		// apply P and increment forces
		FReal forces[3] = {FReal(0.), FReal(0.), FReal(0.)};
		for (unsigned int n=0; n<nnodes; ++n) {
			
			// tensor indices of chebyshev nodes
			const unsigned int j[3] = {node_ids[n][0], node_ids[n][1], node_ids[n][2]};

			// f0 component //////////////////////////////////////
			P[0] = U_of_x[0][0] * T_of_roots[1][j[0]];
			P[1] = T_of_x[1][1] * T_of_roots[1][j[1]];
			P[2] = T_of_x[1][2] * T_of_roots[1][j[2]];
			for (unsigned int o=2; o<ORDER; ++o) {
				P[0] += U_of_x[o-1][0] * T_of_roots[o][j[0]];
				P[1] += T_of_x[o  ][1] * T_of_roots[o][j[1]];
				P[2] += T_of_x[o  ][2] * T_of_roots[o][j[2]];
			}
			P[0] *= FReal(2.);
			P[1] *= FReal(2.); P[1] += FReal(1.);
			P[2] *= FReal(2.); P[2] += FReal(1.);
			forces[0]	+= P[0] * P[1] * P[2] * localExpansion[n];

			// f1 component //////////////////////////////////////
			P[0] = T_of_x[1][0] * T_of_roots[1][j[0]];
			P[1] = U_of_x[0][1] * T_of_roots[1][j[1]];
			P[2] = T_of_x[1][2] * T_of_roots[1][j[2]];
			for (unsigned int o=2; o<ORDER; ++o) {
				P[0] += T_of_x[o  ][0] * T_of_roots[o][j[0]];
				P[1] += U_of_x[o-1][1] * T_of_roots[o][j[1]];
				P[2] += T_of_x[o  ][2] * T_of_roots[o][j[2]];
			}
			P[0] *= FReal(2.); P[0] += FReal(1.);
			P[1] *= FReal(2.); 
			P[2] *= FReal(2.); P[2] += FReal(1.);
			forces[1]	+= P[0] * P[1] * P[2] * localExpansion[n];

			// f2 component //////////////////////////////////////
			P[0] = T_of_x[1][0] * T_of_roots[1][j[0]];
			P[1] = T_of_x[1][1] * T_of_roots[1][j[1]];
			P[2] = U_of_x[0][2] * T_of_roots[1][j[2]];
			for (unsigned int o=2; o<ORDER; ++o) {
				P[0] += T_of_x[o  ][0] * T_of_roots[o][j[0]];
				P[1] += T_of_x[o  ][1] * T_of_roots[o][j[1]];
				P[2] += U_of_x[o-1][2] * T_of_roots[o][j[2]];
			}
			P[0] *= FReal(2.); P[0] += FReal(1.);
			P[1] *= FReal(2.); P[1] += FReal(1.);
			P[2] *= FReal(2.);
			forces[2]	+= P[0] * P[1] * P[2] * localExpansion[n];
		}

		// scale forces
		forces[0] *= jacobian[0] / nnodes;
		forces[1] *= jacobian[1] / nnodes;
		forces[2] *= jacobian[2] / nnodes;

		// set computed forces
		iter.data().incForces(forces[0] * iter.data().getPhysicalValue(),
													forces[1] * iter.data().getPhysicalValue(),
													forces[2] * iter.data().getPhysicalValue());

		// increment iterator
		iter.gotoNext();
	}
}
1077

1078 1079 1080 1081 1082 1083 1084

/**
 * Local to particle operation: application of \f$S_\ell(x,\bar x_m)\f$ and
 * \f$\nabla_x S_\ell(x,\bar x_m)\f$ (interpolation)
 */
template <int ORDER>
template <class ContainerClass>
COULAUD Olivier's avatar
COULAUD Olivier committed
1085
inline void FChebInterpolator<ORDER>::applyL2PTotal(const FPoint& center,
1086 1087 1088 1089
																										const FReal width,
																										const FReal *const localExpansion,
																										ContainerClass *const localParticles) const
{
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	FReal f1;
	FReal W2[3][ ORDER-1];
	FReal W4[3][(ORDER-1)*(ORDER-1)];
	FReal W8[   (ORDER-1)*(ORDER-1)*(ORDER-1)];

	//{ // sum over interpolation points
	//	f1 = FReal(0.);
	//	for(unsigned int i=0; i<ORDER-1; ++i)	                   W2[0][i] = W2[1][i] = W2[2][i] = FReal(0.);
	//	for(unsigned int i=0; i<(ORDER-1)*(ORDER-1); ++i)        W4[0][i] = W4[1][i] = W4[2][i] = FReal(0.);
	//	for(unsigned int i=0; i<(ORDER-1)*(ORDER-1)*(ORDER-1); ++i)	W8[i] = FReal(0.);
	//	
	//	for (unsigned int idx=0; idx<nnodes; ++idx) {
	//		const unsigned int i = node_ids[idx][0];
	//		const unsigned int j = node_ids[idx][1];
	//		const unsigned int k = node_ids[idx][2];
	//		
	//		f1 += localExpansion[idx]; // 1 flop
	//		
	//		for (unsigned int l=0; l<ORDER-1; ++l) {
	//			const FReal wx = T[l*ORDER+i] * localExpansion[idx]; // 1 flops
	//			const FReal wy = T[l*ORDER+j] * localExpansion[idx]; // 1 flops
	//			const FReal wz = T[l*ORDER+k] * localExpansion[idx]; // 1 flops
	//			W2[0][l] += wx; // 1 flops
	//			W2[1][l] += wy; // 1 flops
	//			W2[2][l] += wz; // 1 flops
	//			for (unsigned int m=0; m<ORDER-1; ++m) {
	//				const FReal wxy = wx * T[m*ORDER + j]; // 1 flops
	//				const FReal wxz = wx * T[m*ORDER + k]; // 1 flops
	//				const FReal wyz = wy * T[m*ORDER + k]; // 1 flops
	//				W4[0][m*(ORDER-1)+l] += wxy; // 1 flops
	//				W4[1][m*(ORDER-1)+l] += wxz; // 1 flops
	//				W4[2][m*(ORDER-1)+l] += wyz; // 1 flops
	//				for (unsigned int n=0; n<ORDER-1; ++n) {
	//					const FReal wxyz = wxy * T[n*ORDER + k]; // 1 flops
	//					W8[n*(ORDER-1)*(ORDER-1) + m*(ORDER-1) + l]	+= wxyz; // 1 flops
	//				} // (ORDER-1) * 2 flops
	//			} // (ORDER-1) * (6 + (ORDER-1)*2) flops
	//		} // (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1)*2)) flops
	//
	//	} // ORDER*ORDER*ORDER * (1 + (ORDER-1) * (6 + (ORDER-1) * (6 + (ORDER-1)*2))) flops
	//	
	//}

	{
		// for W2
		FReal lE[nnodes];
		FReal F2[(ORDER-1) * ORDER*ORDER];
		// for W4
		FReal F4[ORDER * ORDER*(ORDER-1)];
		FReal G4[(ORDER-1) * ORDER*(ORDER-1)];
		// for W8
		FReal G8[ORDER * (ORDER-1)*(ORDER-1)];

		// sum local expansions
		f1 = FReal(0.);
		for (unsigned int idx=0; idx<nnodes; ++idx)	f1 += localExpansion[idx]; // 1 flop

		//////////////////////////////////////////////////////////////////
		// IMPORTANT: NOT CHANGE ORDER OF COMPUTATIONS!!! ////////////////
		//////////////////////////////////////////////////////////////////

1151
		// W2[0] ///////////////// (ORDER-1)*ORDER*ORDER * 2*ORDER
1152 1153 1154 1155
		FBlas::gemtm(ORDER, ORDER-1, ORDER*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER,
								 const_cast<FReal*>(localExpansion), ORDER, F2, ORDER-1);
		for (unsigned int l=0; l<ORDER-1; ++l) { W2[0][l] = F2[l];
			for (unsigned int j=1; j<ORDER*ORDER; ++j) W2[0][l] += F2[j*(ORDER-1) + l];	}
1156
		// W4[0] ///////////////// ORDER*(ORDER-1)*(ORDER-1) + 2*ORDER
1157 1158 1159 1160 1161
		perm5.permute(F2, F4);
		FBlas::gemtm(ORDER, ORDER-1, ORDER*(ORDER-1), FReal(1.), const_cast<FReal*>(T), ORDER, F4, ORDER, G4, ORDER-1);
		for (unsigned int l=0; l<ORDER-1; ++l)
			for (unsigned int m=0; m<ORDER-1; ++m) { W4[0][m*(ORDER-1)+l] = G4[l*ORDER*(ORDER-1) + m];
				for (unsigned int k=1; k<ORDER; ++k) W4[0][m*(ORDER-1)+l] += G4[l*ORDER*(ORDER-1) + k*(ORDER-1) + m];	}
1162
		// W8 //////////////////// (ORDER-1)*(ORDER-1)*(ORDER-1) * (2*ORDER-1)
1163 1164 1165 1166
		perm8.permute(G4, G8);
		FReal F8[(ORDER-1)*(ORDER-1)*(ORDER-1)];
		FBlas::gemtm(ORDER, ORDER-1, (ORDER-1)*(ORDER-1), FReal(1.), const_cast<FReal*>(T), ORDER, G8, ORDER, F8, ORDER-1);
		perm9.permute(F8, W8);
1167
		// W4[1] ///////////////// ORDER*(ORDER-1)*(ORDER-1) + 2*ORDER
1168 1169 1170 1171 1172
		perm6.permute(F2, F4);
		FBlas::gemtm(ORDER, ORDER-1, (ORDER-1)*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER, F4, ORDER, G4, ORDER-1);
		for (unsigned int l=0; l<ORDER-1; ++l)
			for (unsigned int n=0; n<ORDER-1; ++n) { W4[1][n*(ORDER-1)+l] = G4[l*(ORDER-1) + n];
				for (unsigned int j=1; j<ORDER; ++j) W4[1][n*(ORDER-1)+l] += G4[j*(ORDER-1)*(ORDER-1) + l*(ORDER-1) + n];	}
1173
		// W2[1] ///////////////// (ORDER-1)*ORDER*ORDER * 2*ORDER
1174 1175 1176 1177
		perm3.permute(localExpansion, lE);
		FBlas::gemtm(ORDER, ORDER-1, ORDER*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER, lE, ORDER, F2, ORDER-1);
		for (unsigned int i=0; i<ORDER-1; ++i) { W2[1][i] = F2[i];
			for (unsigned int j=1; j<ORDER*ORDER; ++j) W2[1][i] += F2[j*(ORDER-1) + i]; }
1178
		// W4[2] ///////////////// ORDER*(ORDER-1)*(ORDER-1) + 2*ORDER
1179 1180 1181 1182 1183
		perm7.permute(F2, F4);
		FBlas::gemtm(ORDER, ORDER-1, (ORDER-1)*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER, F4, ORDER, G4, ORDER-1);
		for (unsigned int m=0; m<ORDER-1; ++m)
			for (unsigned int n=0; n<ORDER-1; ++n) { W4[2][n*(ORDER-1)+m] = G4[m*ORDER*(ORDER-1) + n];
				for (unsigned int i=1; i<ORDER; ++i) W4[2][n*(ORDER-1)+m] += G4[m*ORDER*(ORDER-1) + i*(ORDER-1) + n];	}
1184
		// W2[2] ///////////////// (ORDER-1)*ORDER*ORDER * 2*ORDER
1185 1186 1187 1188 1189 1190 1191 1192
		perm4.permute(localExpansion, lE);
		FBlas::gemtm(ORDER, ORDER-1, ORDER*ORDER, FReal(1.), const_cast<FReal*>(T), ORDER, lE, ORDER, F2, ORDER-1);
		for (unsigned int i=0; i<ORDER-1; ++i) { W2[2][i] = F2[i];
			for (unsigned int j=1; j<ORDER*ORDER; ++j) W2[2][i] += F2[j*(ORDER-1) + i]; }
	}

	
	// loop over particles
1193
	const map_glob_loc map(center, width);
COULAUD Olivier's avatar
COULAUD Olivier committed
1194
	FPoint Jacobian;
1195
	map.computeJacobian(Jacobian); // 6 flops
1196
	const FReal jacobian[3] = {Jacobian.getX(), Jacobian.getY(), Jacobian.getZ()}; 
COULAUD Olivier's avatar
COULAUD Olivier committed
1197
	FPoint localPosition;
1198

1199 1200 1201 1202
	typename ContainerClass::BasicIterator iter(*localParticles);
	while(iter.hasNotFinished()){
			
		// map global position to [-1,1]
1203
		map(iter.data().getPosition(), localPosition); // 15 flops
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

		FReal U_of_x[3][ORDER];
		FReal T_of_x[3][ORDER];
		{
			T_of_x[0][0] = FReal(1.); T_of_x[0][1] = localPosition.getX();
			T_of_x[1][0] = FReal(1.); T_of_x[1][1] = localPosition.getY();
			T_of_x[2][0] = FReal(1.); T_of_x[2][1] = localPosition.getZ();
			const FReal x2 = FReal(2.) * T_of_x[0][1]; // 1 flop
			const FReal y2 = FReal(2.) * T_of_x[1][1]; // 1 flop
			const FReal z2 = FReal(2.) * T_of_x[2][1]; // 1 flop
			U_of_x[0][0] = FReal(1.);	U_of_x[0][1] = x2;
			U_of_x[1][0] = FReal(1.);	U_of_x[1][1] = y2;
			U_of_x[2][0] = FReal(1.);	U_of_x[2][1] = z2;
			for (unsigned int j=2; j<ORDER; ++j) {
				T_of_x[0][j] = x2 * T_of_x[0][j-1] - T_of_x[0][j-2]; // 2 flops
				T_of_x[1][j] = y2 * T_of_x[1][j-1] - T_of_x[1][j-2]; // 2 flops
				T_of_x[2][j] = z2 * T_of_x[2][j-1] - T_of_x[2][j-2]; // 2 flops
				U_of_x[0][j] = x2 * U_of_x[0][j-1] - U_of_x[0][j-2]; // 2 flops
				U_of_x[1][j] = y2 * U_of_x[1][j-1] - U_of_x[1][j-2]; // 2 flops
				U_of_x[2][j] = z2 * U_of_x[2][j-1] - U_of_x[2][j-2]; // 2 flops
			}
			// scale, because dT_j/dx = jU_{j-1}
			for (unsigned int j=2; j<ORDER; ++j) {
				U_of_x[0][j-1] *= FReal(j); // 1 flops
				U_of_x[1][j-1] *= FReal(j); // 1 flops
				U_of_x[2][j-1] *= FReal(j); // 1 flops
			}
1231
		} // 3 + (ORDER-2)*15
1232 1233 1234 1235

		// apply P and increment forces
		FReal potential = FReal(0.);
		FReal forces[3] = {FReal(0.), FReal(0.), FReal(0.)};
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		{
			FReal f2[4], f4[4], f8[4];
			for (unsigned int i=0; i<4; ++i) f2[i] = f4[i] = f8[i] = FReal(0.);
			{
				for (unsigned int l=1; l<ORDER; ++l) {
					const FReal w2[3] = {W2[0][l-1], W2[1][l-1], W2[2][l-1]};
					f2[0] += T_of_x[0][l  ] * w2[0] + T_of_x[1][l] * w2[1] + T_of_x[2][l] * w2[2]; // 6 flops
					f2[1] += U_of_x[0][l-1] * w2[0]; // 2 flops
					f2[2] += U_of_x[1][l-1] * w2[1]; // 2 flops
					f2[3] += U_of_x[2][l-1] * w2[2]; // 2 flops
					for (unsigned int m=1; m<ORDER; ++m) {
						const unsigned int w4idx = (m-1)*(ORDER-1)+(l-1);
						const FReal w4[3] = {W4[0][w4idx], W4[1][w4idx], W4[2][w4idx]};
						f4[0] +=
							T_of_x[0][l] * T_of_x[1][m] * w4[0] +
							T_of_x[0][l] * T_of_x[2][m] * w4[1] +