
A short description of the Spherical Harmonics
Rotation Kernel

August 23, 2012

1 Spherical Harmonics

This document present very briefly how the rotation kernel is implemented
in scafmm. Please refer to the papers: Parallelization of the Fast Multi-
pole Method (Eric Lorenz), and Implementation of rotation-based opera-
tors for Fast Multipole Method in X10 (Andrew Haigh). Also the code
FRotationKernel and FRotationOriginalKernel is well commented and
refers direclty to the paper formulas.

Spherical Harmonics are centerer in 0 and have the form :

Y m
l (θ, φ), 0 ≤ l ≤ ∞,−l ≤ m ≤ l (1)

But for a computational reason, spherical harmonics are truncated to P
term.

2 Initializing the multipoles

We create the multipole moments Olm by:

Olm(a) =
al

(l + |m|)!
Plm(cos(α))e−imβ (2)

Since we have a symetrie with :

Ol,−m = ¯Ol,m(−1)m (3)

1

We do not need to store all the multipole moments but only for 0 ≤ m.
So in the memory our multipole vector will have a size ((P + 2) ∗ (P + 1))/2
and store the moments as:

ω0,0

ω1,0ω1,1

...
ωP,0...ωP,P

Multipole moments of the same order can be summed. In a SH point of
view, spherical harmonics centered in the same position of a similar systems
can be summed directly.

3 M2M

Translating multipole to another point is done by the formula:

Olm(a + b) =
l∑

j=0

j∑
k=−j

Alm
jk (b)Ojk(a) (4)

Translating multipole moments on the z axis is more easy :

Ol,m(a + b′) =
l∑

j=|m|

bl−j

(l − j)!
Oj,m(a) (5)

The idea is to rotate the spherical harmonics to make it pointed in direc-
tion of the parent cell. Then, we can translate it along the z axis and finally
rotate it back. By doing so the target and the source will be expressed in
the same system.

Such rotation has to be performed in two times : first a rotation around
the z axis using the azimuth angle, then a rotation around y axis using
the inclinaison angle. Azimuth and inclinaison are obtained by computing
the relative difference between our current cell spherical harmonics position
center and the target spherical harmonics position center. This difference
is expressed in spherical coordinate such that 0 ≤ Azimuth ≤ 2Π and 0 ≤
Inclinaison ≤ Π.

2

3.1 Rotating around z

This is a simple multiplication :

Ol,m(α, β + φ) = e−iφmOl,m(α, β) (6)

In the code, we precompute all possible rotations around z. There are 4
possibilities for the M2M and the L2L, and lets say 343 − 27 for the M2L.
Then, at the begining of M2M or M2L (not L2L since this is not multipole
any more) and at the end of the M2M we multiply the multipole vector per
another one term-to-term. We have ((P + 2) ∗ (P + 1))/2 complex multipli-
cations.

static void RotationZVectorsMul(FComplexe* FRestrict dest, const
FComplexe* FRestrict src, const int inSize = SizeArray){
const FComplexe*const FRestrict lastElement = dest + inSize;
const FComplexe*const FRestrict intermediateLastElement =

dest + (inSize & ~0x3);
// first the inSize - inSize%4 elements
for(; dest != intermediateLastElement ;) {

(*dest++) *= (*src++);
(*dest++) *= (*src++);
(*dest++) *= (*src++);
(*dest++) *= (*src++);

}
// then the rest
for(; dest != lastElement ;) {

(*dest++) *= (*src++);
}

}

3.2 Rotating around y

Rotating around y is a little more tricky:

Ol,m(α + θ, β) =
l∑

k=−l

√
(l − k)!(l + k)!

(l − |m|)!(l + |m|)!
dl

k,m(θ)Ol,k(α, β) (7)

Finaly it is just sum of complex number after they have been multiply
respectively per a real number. The sum goes from −l to l, but multipole

3

for m ≤ 0 are not stored. Let rewrite the formula with another notation to
simplify :

Dl
k,m =

√
(l − k)!(l + k)!

(l − |m|)!(l + |m|)!
dl

k,m(θ) (8)

Ol,m(α + θ, β) =
l∑

k=−l

Dl
k,mOl,k(α, β) (9)

But we have only Ol,m for 0 ≤ m so the formula becomes:

Ol,m(α + θ, β) = Dl
0,mOl,0(α, β) +

l∑
k=1

(−1)kDl
−k,m

¯Ol,k(α, β) + Dl
k,mOl,k(α, β)

(10)

Which can be factorized by working on the real and the imaginary part
separatly :

Real(Ol,m(α + θ, β)) = Dl
0,mReal(Ol,0(α, β)) +

l∑
k=1

((−1)kDl
−k,m + Dl

k,m)Real(Ol,k(α, β))

(11)

Imag(Ol,m(α + θ, β)) = Dl
0,mImag(Ol,0(α, β)) +

l∑
k=1

(−(−1)kDl
−k,m + Dl

k,m)Imag(Ol,k(α, β))

(12)

The parts Dl
0,m(θ), ((−1)kDl

−k,m(θ) + Dl
k,m(θ)) and (−(−1)kDl

−k,m(θ) +

Dl
k,m(θ)) can be precomputed and store in a array. There are store in this

order : first the coefficient needed for m == 0 which is used for real and
imaginary. Then, the coefficients for 0 ≤ m, first for the real then for the
imaginary. Finaly the code to preform this rotation becomes:

static void RotationYWithDlmk(FComplexe vec[], const FReal*
dlmkCoef){

FReal originalVec[2*SizeArray];
FMemUtils::copyall((FComplexe*)originalVec,vec,SizeArray);
// index_lm == atLm(l,m) but progress iteratively to write

the result

4

int index_lm = 0;
for(int l = 0 ; l <= P ; ++l){

const FReal*const FRestrict originalVecAtL0 = originalVec
+ (index_lm * 2);

for(int m = 0 ; m <= l ; ++m, ++index_lm){
FReal res_lkm_real = 0.0;
FReal res_lkm_imag = 0.0;
// To read all "m" value for current "l"
const FReal* FRestrict iterOrignalVec =

originalVecAtL0;
{ // for k == 0

// same coef for real and imaginary
res_lkm_real += (*dlmkCoef) *

(*iterOrignalVec++);
res_lkm_imag += (*dlmkCoef++) *

(*iterOrignalVec++);
}
for(int k = 1 ; k <= l ; ++k){

// coef contains first real value
res_lkm_real += (*dlmkCoef++) *

(*iterOrignalVec++);
// then imaginary
res_lkm_imag += (*dlmkCoef++) *

(*iterOrignalVec++);
}
// save the result
vec[index_lm].setRealImag(res_lkm_real,

res_lkm_imag);
}

}
}

3.3 Rotating back

After the translation, we perform the inverse rotation. We just rotate first
around y and the around z with inverse angle.

5

4 Other operators

The same principle apply to M2L and L2L.

4.1 M2L

At the entrance of M2L we use multipole so the rotation are the same. Then
the translation is:

Ml,m(a − b′) =
∞∑

j=|m|

(j + l)!

bj+l+1
Oj,−m(a), j bounded by P-l (13)

We then have local vector of the same size as multipole vector. We need to
rotate back, but this time we use rotation for local/taylor expansion.

4.2 Rotating around y for taylor expansion

Ml,m(α + θ, β) =
l∑

k=−l

√
(l − |m|)!(l + |m|)!

(l − k)!(l + k)!
dl

km(θ)Ml,k(α, β) (14)

4.3 Rotating around z for taylor expansion

Ml,m(α, β + φ) = eiφmMl,m(α, β) (15)

4.4 L2L

We use the rotation for taylor expansion defined previously and the transla-
tion is:

Ml,m(a − b′) =
∞∑
j=l

bj−l

(j − l)!
Mj,m(a), j bounded by P (16)

6

5 Optimization?

It is easy to see that there is a few possible rotations. For example, the
rotation for the M2M (and L2L) are the same in any level and there are only
2 possibilities for the inclinaison (0, 78 and 2, 35) and 4 possibilties for the
azimuth (π/4.3π/4, 5π/4 a 7π/4).

For the M2L there are much more possiblities but it remains some relation
and possible factorization.

7

