ScalF'mm - Parallel Algorithms (Draft)

Berenger Bramas, Olivier Coulaud, Cyrille Piacibello

April 10, 2014

Contents

Introduction s

Building the tree in Parallel
Description
Load a file in parallel
Sorting the particles
Using QuickSort
Using a Sorting Network oo
Using an intermediate Octree
Balancing the leaves
Balancing algorithms supported oL
Mpicalls o e

Distributed algorithm
Morton Index Intervals
PoM .

P2P

Original Algorithm
Algorithm Modified

Cheat sheet about using EZtrace with VIiTE on ScalFMM
EZtrace e

Introduction

In this document we introduce the principles and the algorithms used in our library to run in
a distributed environment using MPI. The algorithms in this document may not be up to date
comparing to those used in the code. We advise to check the version of this document and the
code to have the latest available.

Building the tree in Parallel

Description

The main motivation to create a distributed version of the FMM is to run large simulations. These
ones contain more particles than a computer can host which involves using several computers.
Moreover, it is not reasonable to ask a master process to load an entire file and to dispatch the
data to others processes. Without being able to know the entire tree it may send randomly the
data to the slaves. To override this situation, our solution can be viewed as a two steps process.
First, each node loads a part of the file to possess several particles. After this task, each node
can compute the Morton index for the particles he had loaded. The Morton index of a particle
depends of the system properties but also of the tree height. If we want to choose the tree height
and the number of nodes at run time then we cannot pre-process the file. The second step is
a parallel sort based on the Morton index between all nodes with a balancing operation at the
end.

Load a file in parallel

We use the MPI /0O functions to split a file between all the mpi processes. The prerequisite to
make the splitting easier is to have a binary file. Thereby, using a very basic formula each node
knows which part of the file it needs to load.

sizeperproc <— (filesize — headersize) /nbprocs (1)

of fset < headersize + sizeperproc. (rank — 1) (2)

We do not use the view system to read that data as it is used to write. The MPI_File_read is
called as described in the following C++ code.

// From FMpiFmaLoader
MPI_File_read_at (file , headDataOffSet + startPart % 4 x sizeof(FReal),
particles , int(bufsize), MPIFLOAT, &status);

Our files are composed by a header fallowing by all the particles. The header enables to check
several properties as the precision of the file. Finally, a particle is represented by four decimal
values: a position and a physical value.

Remark: The MPI IO function do not work if we use a MPI_Initthread(MPI.THREAD_MULTIPLE)

and a version above 1.5.1.

Sorting the particles

Once each node has a set of particles we need to sort them. This problem boils down to a simple
parallel sort where Morton index are used to compare particles. We use two different approaches
to sort the data. In the next version of scalfmm the less efficient method should be deleted.

Using QuickSort

A first approach is to use a famous sorting algorithm. We choose to use the quick sort algorithm
because the distributed and the shared memory approaches are mostly similar. Our implementa-
tion is based on the algorithm described in [1]. The efficiency of this algorithm depends roughly
of the pivot choice. In fact, a wrong idea of the parallel quick sort is to think that each process
first sort their particles using quick sort and then use a merge sort to share their results. Instead,
the nodes choose a common pivot and progress for one quick sort iteration together. From that
point all process has an array with a left part where all values are lower than the pivot and a
right part where all values are upper or equal than the pivot. Then, the nodes exchange data
and some of them will work on the lower part and the other on the upper parts until there is one
process for a part. At this point, the process performs a shared memory quick sort. To choose
the pivot we tried to use an average of all the data hosted by the nodes:

Result: A Morton index as next iteration pivot

1 myFirstIndex < particles|0].index;

2 allFirstIndexes = MortonIndex[nbprocs];

3 allGather(myFirstIndex, allFirstIndexes);

4 pivot <— Sum(allFirstIndexes(:) / nbprocs);

Algorithm 1: Choosing the QS pivot
A bug was made when at the beginning, we did an average by summing all the values first
and dividing after. But the Morton index may be extremly high, so we need to to divide all the
value before performing the sum.

Using a Sorting Network

In [2], a proposition has been made to sort the data using a sorting network. We implemented
a such sorting algorithm but the result were not extremly efficient. Contrary to Quick sort, a
sorting network is extremly stable and all the nodes performs similar work. The quick sort is
pivot dependant and some nodes may work much more than other. But, the average case the
quick sort enable higher efficiency.

Using an intermediate Octree

The second approach uses an octree to sort the particles in each process instead of a sorting
algorithm. The time complexity is equivalent but it needs more memory since it is not done
in place. After inserting the particles in the tree, we can iterate at the leaves level and access
to the particles in an ordered way. Then, the processes are doing a minimum and a maximum

reduction to know the real Morton interval of the system. By building the system interval in
term of Morton index, the nodes cannot know the data scattering. Finally, the processes split
the interval in a uniform manner and exchange data with P? communication in the worst case.

In both approaches the data may not be balanced at the end. In fact, the first method is
pivot dependent and the second consider that the data are uniformly distributed. That is the
reason why we need to balance the data among nodes.

Balancing the leaves

After sorting, each process has potentially several leaves. If we have two processes P; and P;
with ¢ < 7 the sort guarantees that all leaves from node i are inferior than the leaves on the node
j in a Morton indexing way. But the leaves are randomly distributed among the nodes and we
need to balance them. It is a simple reordoring of the data, but the data has to stayed sorted.

1. Each process informs other to tell how many leaves it holds.

2. Each process compute how many leaves it has to send or to receive from left or right.

At the end of the algorithm our system is completely balanced with the same number of
leaves on each process. If another kind of balancing algorithm is needed, one can only change
the BalanceAlgorithm class that is given in parameter to the ArrayToTree static method in the
step 2.

Balancing algorithms supported

Any balancing algorithm can be used, but it has to provide at least two method, as showed in
the class FAbstractBalancingAlgorithm. Those methods are :

1. GetLeft : return the number of leaves that will belongs only to proc on the left of given
proc.

2. GetRight : return the number of leaves that will belongs only to proc on the right of given
proc.

In the parameters of those two methods, one can find the total number of leaves, the total
number of particles, the number of proc, and the index of a proc to be treated.

PO | P1 P2 P3 P4

#8 Data to exchange

Objectives Limits = = Current Limits

Figure 1: Balancing Example : A process has to send data to the left if its current left limit is
upper than its objective limit. Same in the other side, and we can reverse the calculs to know if
a process has to received data.

Mpi calls

Once every process know exactly what it needs to compute for itself and for any other proc the
bound GetRight() and GetLeft(), there is only one Mpi communication AllToAll.

To prepare the buffers to be sent and received, each proc count the number of leafs (and the
size) it holds, and divide them into potentially three parts :

1. The datas to send to proc on left (Can be null).
2. The datas to keep (can be null).

3. The datas to send to proc on right(can be null).

Distributed algorithm

Here present the different FMM operators in two separated parts depending on their parallel
complexity. In this first part, we present the three simplest operators P2M, M2M and L2L.
Their simplicity is explained by the possible prediction to know which node hosts a cell and how
to organize the communication.

We will first present how the different processus can know which cell or leaf belongs to which
processus.

Morton Index Intervals

A Morton Index Interval is a simple structure with two Morton indexes inside, referencing the
first a last leaf of each processus. Each processus compute its Morton Index Interval at first by
scanning all its leafs.

Once each processus compute its interval, there is a global communication for the processus
to know the interval of the others, and the result is stored in an array of interval structures.

P2M

The P2M still unchanged from the sequential approach to the distributed memory algorithm.
In fact, in the sequential model we compute a P2M between all particles of a leaf and this leaf
which is also a cell. Although, a leaf and the particles it hosts belong to only one node so doing
the P2M operator do not require any information from another node. From that point, using
the shared memory operator makes sense.

M2M

During the upward pass information moves from a level to the upper one. The problem in a
distributed memory model is that one cell can exist in several trees i.e. in several nodes. Because
the M2M operator computes the relation between a cell and its child, the nodes which have a
cell in common need to share information.

Moreover, we have to decide which process will be responsible of the computation if the cell
is present on more than one node. We have decided that the node with the smallest rank has
the responsibility to compute the M2M and propagate the value for the future operations.

Despite the fact that others processes are not computing this cell, they have to send the child
of this shared cell to the responsible node.

We can establish some rules and some properties of the communication during this operation.
In fact, at each iteration a process never needs to send more than 7 cells, also a process never
needs to receive more than 7 cells. The shared cells are always at extremities and one process
cannot be designed to be the responsible of more than one shared cell at a level.

There are to cases :

e My first cell is shared means that I need to send the children I have of this cell to the
processus on my left.

e My last cell is shared means that I need to receive some children from the processus on my
right.

Worse case Impossible case

Figure 2: Potential Conflicts

ok W =

Data: none
Result: none

for idxLevel <~ Height —2 to 1 do
forall the Cell ¢ at level idxLevel do
‘ M2M(c, c.child);
end
end

Algorithm 2: Traditional M2M

© 00 N O ok W N =

10
11
12
13
14

Data: none
Result: none

for idxLevel < Height —2 to 1 do

if cells[0] not in my working interval then
isend(cells[0].child);

hasSend < true;

f cells[end] in another working interval then
irecv(recvBuffer);

hasRecv + true;

o

forall the Cell ¢ at level idxLevel in working interval do
| M2M(c, c.child);

end

Wait send and recv if needed;

if hasRecv is true then

| M2M(cells[end], recvBuffer);

end

Algorithm 3: Distributed M2M
In the oct-tree, a cell or a leaf only exists if it has some children or particles in. When the

processus receive some cells, it need to know their positions in the tree, because maybe one of
the cells has not be sent since it didn’t exist.

The first thing to read from the buffer received is the heading, which is a bit vector of length

8 (practically a char), indexing each cells send.

Header Data Data
00001011 || Data of cell 5 | Data of cell 7 | Data of cell 8

Example :

Modified M2M

The algorithm may not be efficient for special cases. Since the communications do not progress
(even in asynchrone way) while computing the M2M, the algorithm has been modified, in order

10

to set one of the OMP thread to the communications.

© N o ks N

[
N = O

13
14
15
16
17
18

Data: none
Result: none

for idxLevel <~ Height —2 to 1 do

// pragma omp single

begin To be done by one thread only

if cells[0] not in my working interval then
isend(cells[0].child);

hasSend < true;

f cells[end] in another working interval then
irecv(recvBuffer);

hasRecv «+ true;

o

Wait send and recv if needed;
if hasRecv is true then
| M2M(cells[end], recvBuffer);

end
// pragma omp for
begin To be done by all the other threads
forall the Cell c at level idxLevel in working interval do
| M2M(c, c.child);
end
end

end

Algorithm 4: Distributed M2M

11

L2L

The L2L operator is very similar to the M2M. It is just the contrary, a result hosted by only one
node needs to be shared with every others nodes that are responsible of at least one child of this
node.

The L2L operator fill child local array from parent local array, so there is no need to precise
wich cell is send, since it’s the parent cell that is send. Consequently, there is no need for a
heading.

Data: none
Result: none

1 for idxLevel < 2 to Height — 2 do

2 if cells[0] not in my working interval then

3 irecv(cells|0]);

4 hasRecv < true;

5 if cells|end] in another working interval then
6 isend(cells[end)]);

7 hasSend < true;

8 forall the Cell c at level idxLevel in working interval do
9 ‘ M2M(e, c.child);

10 end

11 Wait send and recv if needed;

12 if hasRecv is true then

13 | M2M(cells[0], cells[0].child);

14 end

Algorithm 5: Distributed L2L

12

Complex operators: P2P, M2L

These two operators are more complex than the ones presented in the previous chapter. In fact,
it is very difficult to predict the communication between nodes. Each step requires pre-processing
to know what are the potential communications and a gather to inform other about the needs.

P2P

To compute the P2P a leaf need to know all its direct neighbors. Even if the Morton indexing
maximizes the locality, the neighbors of a leaf can be on any node. Also, the tree used in our
library is an indirection tree. It means that only the leaves that contain particles are created.

That is the reason why when we know that a leaf needs another one on a different node, this
other node may not realize this relation if this neighbor leaf do not exist on its own tree.

At the contrary, if this neighbor leaf exists then the node wills require the first leaf to compute
the P2P too. In our current version we are first processing each potential needs to know the
communication we should need. Then the nodes do an all gather to inform each other how many
communication they are going to send. Finally they send and receive data in an asynchronous
way and cover it by the P2P they can do.

13

© 00 N & Ok W =

NONON NN N B R e e e e e e e
AR W N R O ©® N0 U AW N R O

Data: none
Result: none

forall the Leaf If do
neighborsIndexes < [f.potential Neighbors();
forall the index in neighborsindexes do
if index belong to another proc then
isend(1f);
Mark If as a leaf that is linked to another proc;

end

end

all gather how many particles to send to who;

prepare the buffer to receive data;

forall the Leaf If do

if If is not linked to another proc then
neighbors < tree.get Neighbors(lf);
P2P(1f, neighbors);

end

while We do not have receive/send everything do

Wait some send and recv;

Put received particles in a fake tree;

end

orall the Leaf If do

if If is linked to another proc then
neighbors < tree.get Neighbors(lf);
otherNeighbors < fakeTree.get Neighbors(lf);
P2P(If, neighbors + otherNeighbors);

—h

end

Algorithm 6: Distributed P2P

Shared Memory Version

The P2P algorithm is computed once for each pair of leafs belonging to the same proc. This
means that when a proc will compute the force on the particles of leaf 1 due to the particles of

leaf 2, both leafs 1 and 2 will be updated.

This way of compute the interaction is faster, but leads to concurrency problems.

M2L

The M2L operator is relatively similar to the P2P. Hence P2P is done at the leaves level, M2L
is done on several levels from Height — 2 to 2. At each level, a node needs to have access to all
the distant neighbors of the cells it is the proprietary and those ones can be hosted by any other
node. Anyway, each node can compute a part of the M2L with the data it has.

14

Original Algorithm

The algorithm can be viewed as several tasks:
1. Compute to know what data has to be sent
2. All gather to know what data has to be received
3. Do all the computation we can without the data from other nodes
4. Wait send/receive

5. Compute M2L with the data we received

Data: none
Result: none

1 forall the Level idxLevel from 2 to Height - 2 do

2 forall the Cell c at level idxLevel do

3 neighborsIndexes < c.potential Distant N eighbors();
4 forall the index in neighborsindexes do

5 if index belong to another proc then

6 isend(c);

7 Mark ¢ as a cell that is linked to another proc;
8 end

9 end

10 end

11 Normal M2L;

12 Wait send and recv if needed;

13 forall the Cell ¢ received do

14 | lightOctree.insert(c);

15 end

16 forall the Level idxLeve from 2 to Height - 1 do

17 forall the Cell ¢ at level idzLevel that are marked do
18 neighborsIndexes <— c.potential Distant Neighbors();
19 neighbors < lightOctree.get(neighborsIndexes);

20 M2L(¢, neighbors);

21 end

22 end

Algorithm 7: Distributed M2L

15

Algorithm Modified

The idea in the following version is to cover the communications between process with the work
(M2L Self) that can be done without anything from outside.

© w0 N o oA W N o=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Data: none
Result: none

begin To be done by one thread only
forall the Level idxLevel from 2 to Height - 2 do
forall the Cell c at level idxLevel do
neighborslndexes «— c.potential Distant Neighbors();
forall the index in neighborsindexes do
if index belong to another proc then
isend(c);
Mark ¢ as a cell that is linked to another proc;
end
end
end
Wait send and recv if needed;
end
begin To be done by everybody else
‘ Normal M2L;
end
forall the Cell ¢ received do

| lightOctree.insert(c);

end

forall the Level idxLeve from 2 to Height - 1 do

forall the Cell ¢ at level idzLevel that are marked do
neighborsIndexes < c.potential Distant N eighbors();
neighbors < lightOctree.get(neighborsIndexes);
M2L(¢, neighbors);

end

end

Algorithm 8: Distributed M2L 2

16

Cheat sheet about using EZtrace with
ViTE on ScalFMM

In this appendix, one can find usefull information about using EZtrace on ScalFMM, and visu-
alisation with ViTE.

EZtrace

EZTrace is a tool that aims at generating automatically execution trace from HPC (High Per-
formance Computing) programs.
It does not need any source instrumentation. Usefull variables :

e FZTRACE_FLUSH : set the value to 1 in order to flush the event buffer to the disk in case
of uge amouts of datas.

e EZTRACE_TRACE : choice of the type of event one wants to have. Example : EZ-
TRACE_TRACE="mpi stdio omp memory”. Remark : Mpi do a lot of call to pthread, so
I suggest to not trace pthread events in order to visualize the results.

e EZTRACE_TRACE_DIR : path to a directory in wich eztrace will store trace for each MPI
Proc. (Set to /lustre/username/smt to avoid overhead)

Once the traces are generated, one need to convert them, in order to visualize its.

ViTE

ViTE is a high memory consumption software, so in order to use it, avoid tracing pthread for
example.

One can zoom in and out in the gant chart.

Plugin : One can get a histogram of each proc display the percentage of time spend in different
section.

e Got to Preferences — Plugin.

Sorting the gant charts : Sometimes the process are badly sorted (like 0,1,10,11,2,3,4,5,6,7,8.9).
It’s possible to sort them with the mouse, or with editing an xml file :

e Got to Preferences — Node Selection and then Sort, or export/load xml file .

17

Bibliography

[1] Ananth Grama, George Karypis, Vipin Kumar, Anshul Gupta, Introduction to Parallel Com-
puting. Addison Wesley, Massachusetts, 2nd Edition, 2003.

2] I. Kabadshow, H. Dachsel, Passing The Three Trillion Particle Limit With An Error-
Controlled Fast Multipole Method. 2011.

18

	Introduction
	Building the tree in Parallel
	Description
	Load a file in parallel
	Sorting the particles
	Using QuickSort
	Using a Sorting Network
	Using an intermediate Octree

	Balancing the leaves
	Balancing algorithms supported
	Mpi calls

	Distributed algorithm
	Morton Index Intervals
	P2M
	M2M
	Modified M2M

	L2L

	Complex operators: P2P, M2L
	P2P
	Shared Memory Version

	M2L
	Original Algorithm
	Algorithm Modified

	Cheat sheet about using EZtrace with ViTE on ScalFMM
	EZtrace
	ViTE

