
Scalfmm
Periodic Model
A description of the Scalfmm library
Berenger Bramas

Problem description

Implementing the periodic boundary condition
● We want to stay generic
● We have different kernels
● We would like to make in 1/2/3 directions if

needed
● We would like to keep the current accuracy
● Of course we want it running fast

Using the FMM

Using FMM kernels to create a periodic system
looks good:
● One kernel should propose the functions for

the periodicity
● It keeps its constraints and characteristics
● It keeps its accuracy
● Kernels are optimized for FMM

But the ideal system should re-use what each
kernel already proposes

Using the FMM

We want to use the current kernels as they are
to perform periodic simulations:

→ It means that this system should be hidden
in the FMM core and independant from the
kernel

→ It is an algorithmic problem constrained
(limited) by the kernels possibilities

What a kernel can do

M2M/L2L (1/8 children)

M2L (-3/+3 in x/y/z)

Periodicity - First Step

As we are processing the FMM, what are
changed if it is periodic?
M2L/P2P : on the border use data from the
other side of the box

P2P (Periodic)

M2L (Periodic until level 1)

Real system
(normal FMM)

Extended tree

Imaginary tree

From the original tree we can imagine a
repetition of the box in each dimension and
have in mind a biggest tree

Real
tree

Above real root, M2L
are with itself

inside tree real, M2L
are with cells and
translated cells

Imaginary tree

● Moving "up", above the real tree root
requires a M2M operation by using the cell
of the previous level as the 8 children

● We can represent a cell at any level above
the real root

Small periodicity

● Using standard operators: M2L and
M2M/L2L already implemented by the
kernels, we can create basic periodicity

● Let be D the deeper of the periodicity
D = -1' 0'

And if D > 0?

● What if we want to go above?
● We can construct any cell above the real

root with the M2M

● But what kind of M2L do we need to do? To
work correctly, the FMM needs M2L (from -2
/+3 or -3/+2)

● And then, to do the downward pass, what
L2L do we have to compute?

Example

With D = 1'
● We compute cells using M2M for level 1 to

+1' (usual FMM stop M2M at level 2/3)

2

1

0

1'

Example

D = 1'
● We do M2L (-3/2 for level 0 to D-1', and -2/3

for level D') using previously computed cells

Example

D = 1'
● Then we do a L2L by considering that our

cell is in position +1/+1/+1

Example

D = 1'
● By doing this we have a grid of :
R = 3*2^(D+1) of original system (D=1';R=12)
● It is not symmetric! We need to add a

"border"

Example

D = 1'
● We add boxes and compute M2L at D+1'
Then R = 2^(D+1) + 1 of the original system

Another example

Another point of view is to start from the top
● We do a M2L at a very high level(-2/+3)

Another example

Our objective is to be in the middle
● The original box is centered

Another example

That is why we consider to be at position
(1,1,1) for the L2L and that we need a border
for the symmetry

Algorithm - Summary

1. Compute M2M for l = 0 : D
2. Compute M2L (-3:2/-3:2/-3/2) from 0 to D-1'
3. Compute M2L at D (-2:+3/-2:+3/-2/+3)
4. Compute the border (and M2L at D+1')
5. Go down with L2L using position 7 from D+1'

to 0 (or 1 because usual FMM do not do L2L
between 0 and 2)

Conclusion

● We add a periodic system independent from
the kernel (as long as the kernel work for the
FMM)

● It uses standard FMM operators (no special
M2L needed)

● It can be extended to go only in some
directions

● It repeats the original grid per:3 * 2^(D+1) +
1

● It already works with all our operators since
no changes are needed, we cheat by giving
wrong information to the kernel about the
tree height

Cost

● For each level above 2 we do:
(189 M2L + 8 M2M + 1 L2L) * D

● And the "border":
7 M2L
(X M2M + X M2L) * 7 * D
With X [1:4]

