moving nodal example

parent fad39a6e
......@@ -36,6 +36,7 @@ After compiling, the three following commands should succeed without any error:
```
./tests
./rrspace < example_rrspace_input
./rrspace < example_rrspace_nodal_input
./class_grp_arith < example_class_grp_div_input
```
......
......@@ -3,7 +3,7 @@ Attach("magma_utils.m");
print "Disclaimer: the software rrspace implements a probabilistic algorithm. Consequently, it is possible that some of the tests fail. This is not necessarily a bug. Failure should happen very rarely (in particular the probability of failing is proportionnaly inverse to the size of the finite field), and lauching again the software should solve the problem.";
K := GF(NextPrime(2^31));
K := GF(65521);
R<Y,X,Z> := PolynomialRing(K, 3);
curve_degree := 10;
......@@ -11,7 +11,7 @@ curve_degree := 10;
print "# 16 bits finite field";
print "# smooth curve of degree 10, input divisor has no multiplicity.";
for jj in [4..100] do
for jj in [5..100 by 1] do
Dpos_degrees := {* 10^^jj *};
repeat
biv := &+[Random(K)*m : m in MonomialsOfDegree(R, curve_degree)];
......@@ -24,9 +24,9 @@ for jj in [4..100] do
print jj*10, t1, t2;
end for;
print "# smooth curve of degree 10, input divisor is a multiple of a rational point.";
print "# smooth curve of degree 10, input divisor is a multiple of a place.";
for jj in [4..100] do
for jj in [5..100 by 1] do
repeat
biv := &+[Random(K)*m : m in MonomialsOfDegree(R, curve_degree)];
until IsIrreducible(biv) and Dimension(Ideal([Derivative(biv, i) : i in [1..3]])) eq 0;
......@@ -43,7 +43,7 @@ print "# nodal curve of degree 10, input divisor has no multiplicity.";
Q := - Y^2*Z^8 + X^2*Z^8 + Y^4*Z^6 -X^3*Z^7+X^10-5*Y^10+3*X^3*Y^7;
curve := Curve(ProjectiveSpace(K, 2), Q);
for jj in [4..100] do
for jj in [5..100 by 1] do
Dpos_degrees := {* 10^^jj *};
D_pos := &+[Divisor(RandomPlace(curve, d)) : d in Dpos_degrees];
t1, t2 := Bench_rrspace(curve, D_pos, false);
......@@ -52,11 +52,11 @@ end for;
print "# smooth curve of degree 10 over a 32 bits finite field.";
K := GF(NextPrime(2^31));
K := GF(PreviousPrime(2^32));
R<Y,X,Z> := PolynomialRing(K, 3);
curve_degree := 10;
for jj in [4..100] do
for jj in [5..100 by 1] do
Dpos_degrees := {* 10^^jj *};
repeat
biv := &+[Random(K)*m : m in MonomialsOfDegree(R, curve_degree)];
......
......@@ -210,7 +210,9 @@ intrinsic Bench_rrspace(C::CrvPln, D::DivCrvElt, flag_check::BoolElt) -> FldReEl
tt := Cputime(tt);
FF<y,x> := FunctionField(C);
basis_rrspace := eval Read(RRSPACE_TMP_OUTFILE);
if flag_check then
basis_rrspace := eval Read(RRSPACE_TMP_OUTFILE);
end if;
tt2 := Cputime();
vs_rr, phi := RiemannRochSpace(D);
......@@ -219,9 +221,8 @@ intrinsic Bench_rrspace(C::CrvPln, D::DivCrvElt, flag_check::BoolElt) -> FldReEl
if flag_check then
assert (Dimension(vs_rr) eq #basis_rrspace and
CheckEqualSpan([phi(b) : b in Basis(vs_rr)], basis_rrspace));
end if;
end if;
return tt,
tt2;
return tt, tt2;
end intrinsic;
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment