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Abstract

Homogeneous Systems Control Toolbox (HCS Toolbox) for MATLAB is a collection
of functions for design and tuning of control systems with improved control quality
(faster convergences, better robustness, smaller overshoots, etc) based on the concept
of a dilation symmetry (homogeneity). Homogeneous controllers/observers design
well as procedures for upgrading of existing linear controllers/observers to nonlinear
(homogeneous) ones are developed for both Single-Input Single-Output (SISO) and
Multiply-Input Multiply-Output (MIMO) systems.
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Chapter 1

Get Started

1.1 General Context

The HCS Toolbox supports an model-based control systems design under the conven-
tional framework presented at Fig. [T.1}

z = f(z,u)

)

Caren in.e y= h(l‘)
? W(S) Nonlinear model
Transfer function .
T = Az + Bu
y=Cz
Airplane Linear model

_ Plant Plant Model
(with actuators, sensors,...)
Signals to Signals from u y
actuators sensors
Control Device Control Law

/’/R

T
Ko(t) + Kai(®) + K [ (r)dr
PID control

o -sign[y(t) + Ay(t)]
Sliding mode control

Programmable automation controller

Figure 1.1: Model-based control systems design

where z € R™ - the system state, u € R™ - the control input , y € R¥ - the system
output, the matrices A € R"*", B € R®*™ and C € R**™ are assumed to be known.



Control problems which can be solved using HCS toolbox

e design of a state feedback law u for robust finite! /fixed-time? stabilization
of the state or the output (i.e., y(t) = 0,Vt > T)

e upgrading a linear stabilizing controller (e.g., v = Kj;,y) to a nonlinear
one with a better quality

e design of a dynamic observer?® for finite/fixed-time estimation of the state
z based on the measured output y

e upgrading a linear (Lunberger) observer of z to a nonlinear one with a
better quality

e design of an observer-based feedback law for robust finite/fixed-time sta-
bilization of the system state to zero using the output measurements only

The HCS toolbox solves the above design problems based on the concept of the
generalized homogeneity (see Chapter [2]) and contains (see Chapter |3)

e m-functions for homogeneous controllers/observers design
e m-functions for discretization of controllers/observers 4

e examples of homogeneous systems design realized in m-files

e demo of upgrading linear controller/observer for the rotary inverted pendulum?®
to homogeneous one with a better quality.

e various m-functions for homogeneous systems

! Finite-time stability = Vz(0) € R",3T = T(2(0)) > 0: z(t) = 0,Vt > T

2Fixed-time stability = ITmax > 0 : x(t) = 0,Vt > Tiax, V£ (0) € R™

3A system 2 = f(z,y),y = Cx is a finite-time observer of z if z(t) = x(t) for t > T, where
T = T(z(0)) < +oo. The above system is a fixed-time observer if sup, gy 7'(z(0)) < +oo.

4The discretization algorithms are not optimized for digital implementation in low performance
devices (e.g., outdated controllers) or for fast control plants (like power converters). Please do contact
the toolbox developer andrey.polyakov@inria.fr if a specific algorithm of digital implementation
for your concrete industrial application is required

5The demo is supported by real physical experiments with Rotary Inverted Pendulum Quanser
QUBE Servo-2 connected to ControlHub platform (http://valse-pendulum.lille.inria.fr:5000/. The
users can repeat remotely all control experiments and test/compare their own controllers/observers.


http://valse-pendulum.lille.inria.fr:5000/

1.2 Supporting Information

Installation of the HCS Toolbox:

1 Download zip-file from http://gitlab.inria.fr /polyakov/hecs-toolbox-for-matlab

overshoots, etc). Download

Download source code

m targz = tarbz2 @ tar d3a | 3

Figure 1.2: Click a button as shown above to download zip-file

2 Extract the archive

3 AddE| path to the folder ’. . .\HCS_toolbox_ver01\’ in the search path of MAT-
LAB

Type help HCS_toolbox in the Command Line of MATLAB to check if the installa-
tion is well done (you should see the list of functions of HCS Toolbox).
Compatibility:

e The HCS Toolbox uses just common MATLAB functions. It is compatible with
most versions of MATLAB.

e The recommended browser for for ControlHub Demo
http://valse-pendulum.lille.inria.fr:5000/

is Google Chrome.

1Use ’Set Path’ in the panel of MATLAB or the function addpath(’<path_to_folder>’) in the
Command Line of MATLAB


https://gitlab.inria.fr/polyakov/hcs-toolbox-for-matlab
http://valse-pendulum.lille.inria.fr:5000/

Chapter 2

Mathematical Backgrounds

Notation
e R-field of real, Ry = {a € R: > 0};

|z] = V2 Tz is the Euclidean norm in R, z € R"

e P>~ 0means P = P € R" " is a positive definite matrix (< 0,>= 0, =< 0)

e d(s) = ¥4 s € R is a linear dilation in R™ with an anti-Hurwitz matrix Gg;

|z||=VzT Px is the weighted Euclidean norm such that P=0, PGq+GJ P = 0;

S ={z €R":|z|| = 1} is the unit sphere;

|| - |la is the canonical homogeneous induced by || - ||(see below);

Ha(R™) - a set of all d-homogeneous functions R™ — R (see below);

Fa(R™) be a set of all d-homogeneous vector fields R — R™;

degq4(f) - homogeneity degree of f.

2.1 Problems Under Consideration

The classical problems of the control systems theory
e state/output stabilization of a system
e state estimation of a system

are considered under additional constraint of a finite or a fixed-time response (see
below) of the system. Solutions to these problems are going to be developed based
on the generalized homogeneity surveyed in this chapter. Let us first theoretical
formulations of the mentioned control/estimation problems.



2.1.1 Stabilization Problem
Model of control system:
#(t) = Az(t) + Bu(t), t>0 (2.1)
e x(t) € R™ is the system state
e u(t) € R™ is the control input (can be modified as need)
e AcR"™™ and B € R"™™ are known matrices

Asymptotic Stabilization by a Feedback Law

The problem is to design @ : R™ — R™ such that the system
&(t) = Az(t) + Bu(z(t))
is asymptotically stableEI:>

z(t) >0 as t— 400

Finite-time Stabilization by a Feedback Law

The problem is to design % : R™ — R" such that the system
z(t) = Ax(t) + Bu(z(t))

is finite-time stable =

Vz(0) e R", IT=T(x(0)) >0 : x(t)=0, Vt>T

Fixed-time Stabilization by a Feedback Law

The problem is to design @ : R™ — R" such that the system
&(t) = Az(t) + Bu(z(t))
is fixed-time stable =

Mnax >0 : 2(t) =0, Vt>Thay, Va(0) €R”

A stabilization of an output y = Cz is a particular case of the above problems.

IThe classical solution is @ = Kx such that A + BK is Hurwitz (i.e., all its eigenvalues have
negative real parts).



2.1.2 State Estimation Problem

Model of the system:
#(t) = Ax(t) +p(t), y(t) = Cx(t) (2.2)
e z(t) € R™ is the system state (unknown)

o p(t) € R™ is the exogenous input (can be measured on-line)

e y(t) € R¥ is the measured output

e AcR™" BeR™ and C € RF*™ are known matrices

Asymptotic Observer

The problem is to design a system (asymptotic observerfl
At) = f(z@®),p(t), (1),  f:R"xR"xR* > R"

such that ||z(t) —z(t)]| =0 as ¢ — +©

Finite-time Observer
The problem is to design a system (finite-time observer)
(1) = f(=(t),p(t),5(8)),  f:R"xR"xRR"

such that Vz(0) e R*, 3T =T(2(0)) >0 : |z(t)—=z@)]|=0, Vt>T

Fixed-time Observer
The problem is to design a system (fixed-time observer)
A(t) = f(z(),p(1), (1)),  f:R"XR" xR R"

such that FTnax >0 :  ||2(t) —2z(@)|]| =0, V&> Thax, Vz(0)€R™.

2The classical solution (Luenberger observer) is #(t) = Az(t) + Bi(t) + L(y(t) — Cz(t)) such that
the matrix A + LC is Hurwitz (i.e., all its eigenvalues are placed in the left complex half-plane).




2.2 From Linearity to Homogeneity in Control Sys-
tems Design

The basic idea of the homogeneity based control/observer design is an expansion of
linear methods/algorithms of (asymptotic controllers/observers) design to nonlinear
systems such that finite/fixed-time stability can be provided by means of the tuning
of the so-called homogeneity degree. This section explains the basis intuitions behind
the mentioned idea.

2.2.1 Homogeneity is a Dilation Symmetry

In mathematics, an invariance of some characteristics of an object with respect to
a certain group of transformations is known as a symmetry. The simplest example
of a symmetry is the invariance of geometric figures with respect to a rotation or a
dilation (see Fig[2.1)).

rotation

x— R(x

dilation
X — AX,
A>0

Figure 2.1: Rotation and dilation symmetries of the figure

By definition, homogeneity is a dilation symmetry. For functions, it can be iden-
tified analyzing the linearity property.
Linearity = Homogeneity + Additivity + Central Symmetry

fislinear & f(Ax) =Af(z) & flz+y)=[f(2)+fly) & f(-z)=—f()

Example: f(z) = z1 + x2, where z= (1, xQ)T



Standard Homogeneity (Leonhard Euler, 18th century)

z — Ax (standard dilation) fQx) =N f(z), Vs, (symmetry)
A > 0 - scaling factor v € R - homogeneity degree

Ezample: f(z) = z122 + x% is standard homogeneous of degree 2:

Faz) = A f(2)

Generalized Homogeneity (Zubov 1958, Kawski 1991 [24, [6])

z —d(s)xz (generalized dilation) f(d(s)z) =e”*f(x), (symmetry)
Limit property: s_lir_noo Ild(s)z||=0, SEIJPOO ld(s)z|| =400, Vx#0

Ezample: d(s) = (egs 62 ), f(z) = 21 + 3 is d-homogeneous:

d(s)z = (ezsml, es;tg)-r and  f(d(s)z) = €*° f(z)

The HPC toolbox deals only with linear dilations in R™.
Linear Dilation (Polyakov 2019 [14, 15])

A continuous linear dilation in R” is a matrix-valued function given by
+oo
d(S):eSGd:ZSGd7 SGR

4!
=0

where Ggq € R™*"™ is an anti- Hurwitz matm’afkalled a generator of d.

e Standard dilation:
di(s) =e°I, Gq=1¢€cR"*"

‘x
e Weighted dilation: /

ds(s)=diag{e"*}, Gg=diag{r;} >0

AT

d (s)x

e Linear dirlation:
ds(s)=e%, Gq is anti-Hurwitz

3 A matrix is anti-Hurwitz if its eigenvalues have positive real parts

10



2.2.2 Properties of Homogeneous Systems

Homogeneity (dilation symmetry) of a function is inherited by any other mathematical
object induced by this function: the derivatives of the homogenous functions are
homogeneous as well, solutions of differential equations with homogeneous right-hand
side are symmetric, etc. Indeed, for example, see below the dilation symmetry of
solutions of two standard homogeneous systems (harmonic and relays oscillators)

with respect to scaling of initial conditions.

Harmonic oscillat

{ i;;xfz‘él’ r1,x2 €R {

/ 7 /fSAx) - )\Ji(x) NN
RN

i I AN \\\}\

S NN

s

iy NN\

\

LA e
| e

7
Z

;;
i/
1

f

(

\
\

or

Relay oscillator
&1 = —sign[xa],
&9 = sign[z],

fQz) = Xf(x)

r1,r0 ER

Ax,

~—_
~—

»‘g\\
NN

N

2
<

Table 1: Properties of linear vs homogeneous systems

Linear System
= Az, z(0) =xzo

A € R"*"™ is a matrix

Homogeneous System
& = f(x), x(0) ==x0
f(d(s)z) = et*d(s)f(z)

Trajectory Scaling

z(t,eSxo) =e3z(t, zo)

Local & Global

z(t,d(s)zo)=d(s)z(e!5t, xo)
v

Invarianceﬁ@ Stability v v

Stability = Robustness & = Az + Dw z = f(z,w)

(Input-to-State Stability) w € L™ w € L™
Convergence Rate Exponential +Finite/Fixed-time (u # 0)

Lyapunov Function

A weighted Euclidean norm
\%4

A homogeneous norm

Consistent discretization
(preserves convergence rate)

=Vz' Pz, P>0
v

Exponential

V(d(s)z) = e*V (z)
v

+Finite/Fixed-time (p # 0)

Question

Is there any potential advantage of a homogeneous system versus a linear one?

43 a positively invariant compact set

11




2.2.3 Linearity vs Homogeneity

I. Convergence rates of homogeneous and locally homogeneous systems:

(t) = u(t),
{ 2(0) = o, z,u € R.
Exponential stability (Lyapunov 1892, [§]): 23
u(t) = —x(t) @2
2(t) = e~twg — 0 if t — +o00 ’ S=Sui.
0 1 4 5
Time
4
Finite-time stability (Rozin 1966, [21]): 23
u(t) = —sign(x(t)) Gf\
x(t) = 0 for t > ||xo| o
0 1 4 5
Time
Fixed-time stability (Polyakov 2012, [13]): g3
p w2
u(t)=— (Ja(®) 3 +12(1) ) sign(a(t) N,
z(t) =0 for t > m independently of z L Time 4 s

Conclusion 1

Homogeneous system may have faster convergence than linear one.

II. Robustness issues of homogeneous systems:

Model of system T = AT+ u, z=u+ g(t),
where A > 0 is unknown constant where ¢(t) is unknown but
bounded function |g(t)| < g.
Control aim stabilize z to 0 stabilize z to 0
Linear control u=—kx cannot guarantee u=—kx cannot guarantee
a boundedness of solutions asymptotic stability
Homogeneous control u= —ka3, k>0 guarantees u=—(g+k)sign(z) guarantees
a practical (fixed-time) stability local (aympt.) stability
limsup |z(t)| = \/A/k z(t) =0, Vt>|zol/k
t——4o0

Conclusion 11

Homogeneous system may be more robust than linear one.



III. Elimination of ”unbounded” peaking effect:

Model of system:

0
& = Az + bu(x) 0
’ t>0, A=1| --
U o<t ( ;

oo ~O
or: oo
v

Sy

I
VR
—o oo
v

co: o~

where x = (21,22, ...,2,) ", u: R” — R.

Control aim: |jz(t)||<e, Vt>T, wheree>0,7T>0 are given
— Linear control: For any € > 0 and T > 0 there exists k = (k1, k2, ..., kn):
w(z) =kr = |z@)]|<Ce " <e Vt>T
Unbounded "peaking”: There exist&E] v > 0 independent of ¢ such that

sup sup |lz(t)|| > vo" ! = +ocase — 0
0<t<o~' |[lz(0)||=1

— Homogeneous control: For any 7" > 0 there exists k= (151, ko, ..., kn) :
Upom (T) 1= I%d(—ln lzlla)z = |z@®)|| =0, Vvt>T.

where || - ||a is homogeneous norm (see below). The control upem, is globally

uniformly bounded |uom| <|/k|| and the overshoot is independent of &> 0.
4 4

-4 -3 -2 -1 0 1 2 3 4 i -4 -3 -2 -1 0 1 2 3 4

Iy n

”Overshoots” of linear (left) and homogeneous (right) controllers (n=2, e = 0.005, T=1)

Conclusion II

Homogeneous system may have smaller overshoot than linear one.

5Izmailov 1987 [5], Polyak & Smirnov 2016 [12]

13



2.3 Generalized Homogeneity

2.3.1 Linear Dilations

A linear continuous dilation in R” is a matrix-valued function given by

too
d(s):eSGd:Zs a seR

4!
=0

where Ggq € R™"*" is an anti- Hurwitz matm’zﬁcalled a generator of d.

Monotone dilation

Let || - || be a norm in R™ and d be a dilatiorﬂm R™. A dilation d is said to be
strictly monotone with respect to || - || if 38 > 0 : [|d(s)|| < e%.

The standard dilation d(s) = e®I,, is always monotone due to standard homogene-
ity (by definition) of any norm |e®z| = e*||z||.

Criterion of monotonicity of linear continuous dilation in R"

A linear continuous dilation d is strictly monotone with respect to the weighted

Euclidean norm
|z|| = V& T Pz, ze€R",

where 0 < P = PT € R™ ", if and only if the following linear matrix

inequality holds
PG4+ GJP >0, (2.3)

where G4 € R™ is the generator of the dilation d. Moreover, one has

O 1d(s)z|2, Vs € R,Vz € R,

Blld(s)z||? < 2=l
s)] <[ld(s)[| < e, V¥s<O0, (2.4)

eas S Ld(
ef*<|d(s)) <[ld(s)| < e, V520,

where .
&= =hmax (P%de—% ¥ P_%GgP%> >0,

1
8= 5min (P%GdP—% n P—%G,]P%) > 0.

7A dilation is a one-parameter group of transformations d(s) : R™ + R™,s € R satisfying the
limit property lim ||d(s)z| =0, lim ||d(s)z||=+o0c0, Vz#O0
S——00 s——4o00

14



2.3.2 Canonical Homogeneous Norm

A vector space over the filed R is a set V together with two operations:

o vector addition V x V — V denoted by v + w for v,w € V.

o multiplication by a scalar RxV +— V denoted by « - v for « €R, veV.
satisfying certain axioms

o Associatwvity: u+ (v+w) = (u+v)+w

o Distributivity: (a+pflu=a-u+ 8- v

For V = R" the multiplication of v = (vy,...,v,)" € R" by a € R is traditionally
defined as follows

av = (awy, ..., avy) " (standard dilation!!!)

Is it possible to construct a vector space using a generalized dilation as a mul-
tiplication by a scalar?

Definition (a norm): Definition ( a homogeneous norm):
I -] € C(R*,Ry) is a norm if | - la € C(R™",Ry) is a d-homogeneous
norm if

1) lzl=0<2z=0
1) |zla=0<2=0

2) || +ez| = ezl 2) | £d(s)zlla = e*|]|

3) Mz +yll < =l + llyll 3) llz+ylla < llzlla + lyla

where + is an alternative vector addition in R™ satisfying all axiomes of the vector
space together with the scalar multiplication defined as o'z = sign(a)d(—In|a|)z.

Canonical®homogeneous norm for monotone dilations

|z[la=e®* where s; €R:||d(—sz)z]|=1 =x#0

8 A homogeneous norm induced by a canonical norm of the space.

15
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[
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=15

-5 -5

0 5 -5 l‘l 5
llz|| = (0.52% + 0.4z1z2 + x%)% |lz|la induced by ||z|| and d(s)=diag{e?*, e}

Figure 2.2: Level sets of the weighted Euclidean norm and the d-homogeneous norm.

Lemma (Polyakov 2019 [14])

The canonical homogeneous norm introduces an alternative norm topology in R"™.

16



Generalized homogeneous homeomorphism on R"

Let a linear continuous dilation d be strictly monotone with respect to the
norm ||z| = VaT Pz. The mapping ® : R” — R"™ given by

®(z) = [[zlad(—In[z]la)z, zeR" (2.8)
is a homeomorphism in R™, its inverse has the form
& z) = ||z[|"*d(In||z]))z, z€R™

with ®(0) = ®~1(0) = 0 by continuity.

The following theorem justifies the name ”"norm” for the functional || - ||a

Theorem (Polyakov 2020 [15])

Let a linear dilation d be strictly monotone with respect to the norm |z| =
Va T Px. Let an addition of vectors + : R™ x R™ — R™ and a multiplication by
a scalar *: R x R"™ — R" be defined as follows

o zty:=® 1(®(x) + P(y)), where z,y € R",
o Nz :=sign(A)d(In |A|)x, where A € R, x € R™.

Then the set R™ together with the operations 4+ and ~ is a linear vector space
R% with the norm || - [|4.



2.4 Homogeneous Systems

2.4.1 Homogeneous Mappings

Homogeneous function (Kawski 1991 [6])

A function h : R"™ — R is said to be d-homogeneous of a degree v € R if
h(d(s)x) =e"’h(z) for seR, xeR", (2.9)
where d is a dilation in R™.

Let Haq(R™) be a set of all d-homogeneous functions R — R and deggy(h) € R
denote the homogeneity degree of h € Hq(R"™).
Elements homogeneous arithmetics for functions h,g € Ha(R™):

1. ah € Hq(R™) and degy(ah) = degy(h) for any a € R;
2. h+ g € Ha(R™) provided that degq(h) = degy(9);
3. h-g € Ha(R") and degy(h - g) = degq(h) + degy(9);

4. ge’Hd(R”) and deggy (%) = degq(h) — degq(g) if g(z) # 0, Vz € S;

5. if h(z) = c for all x € R™ then h € Hq(R™) and degq(h) = 0 for ¢ € R\{0}. If
¢ =0 then degy(h) is any.

Properties of homogeneous functions (Bhat € Bernstein 2005 [2])

Let h € Ha(R™) be such that sup,cg |h(z)| < +o00.

o If degy(h) > 0 then h is bounded on any d-homogeneous ball Bq(r) and
h(z) > 0asxz—0

o If degy(h) <0 then h is bounded on any set R™\Bq4(r) with r >0 and
h(z) — 0 as x — oo

o If degy(h) = 0 then h is uniformly bounded on R™ and, moreover,
h = const provided that h is continuous at zero.

Euler’s homogeneous function theorem (Polyakov 2020 [15])

If h € Hq(R™) is differentiable on R™\{0} then

Oh(x)
or

where Gq € R™*"™ is a generator of the linear dilation d.

Gax = degq(h) - h(z), Yz #O0, (2.10)



Homogeneous vector field (Kawski 1991 [6])

A vector field f : R™—R" is said to be d-homogeneous of degree R if
f(d(s)xz) =e**d(s)f(z) forall seR, wueR" (2.11)
where d is a dilation in R™.

Let Fq(R™) be a set of d-homogeneous vector fields R™ — R™ and degy(f) denote
the homogeneity degree.
Elements homogeneous arithmetics for vector fields:

o If h € Hq(R") and f € F4q(R") then
h- f € Fa(R") and degq(h - f) = degq(h) + degq(f)

o If f1, fo € Fa(R™) and degy(f1) = degy(f2) then
fit+f2 € Fa(R™) and degqy(f1 + f2) = degq(f1) = degq(f2)

o If f1, fo € Fa(R™) then
f1(f2) € Fa(R™)

provided that degq(f2) = 0 or f; is standard homogeneous.

Properties of homogeneous vector fields (Polyakov 2020 [15])

Let f € Fa(R™) be such that M :=sup g || f(z)| < +o0

o If degy(f) + 8 > 0 then f is bounded on Bg(r) and
If (@) = 0 as [z =0

o If degy(f) + @ < 0 then f is bounded on R"\B4(r) and
[f (@)l = 0 as [lz]| = 400

o If degy(f) + B = degq(f) + @ = 0 then f is uniformly bounded on R™,

where « = Amax (Pl/QGdP_l/2 + P_1/2GdP1/2) and [ =
Amin (PY/2GqP~1/2 + P=1/2GqP1/?).

Euler’s theorem for vector fields (Polyakov 2020 [15])

If f € Fa(R™) is differentiable on R™\{0} then

—aggf") Gaz = (degq(f)In + Ga)f(x) for all z € R"\{0}. (2.12)



On linear homogeneous vector fields (Polyakov 2020, Zimenko et al. 2020)

The following three claims are equivalent ([15], [23]):

1) a vector field z — Az with z € R" and A € R"*" is d-homogeneous of
degree p # 0 with respect to a linear continuous dilation d in R"™.

2) there exists an anti-Hurwitz matrix Gg € R™*"™ such that
AGq = (I + Ga)A; (2.13)
3) the matrix A is nipotent.

Conclusion:

e A" £0 = Gaq=1I,, u=0

e A"=0 = Vu#0,3Gq — anti-Hurwitz : AGq = (ul, + Gq)A
How to find G4 for a given u # 07

A possible solution:

1. find G(] such that AG() = (In + G())A (i.e., solve the linear equation)

2. take Ggq :EIW/+/LGO with a large enough €> 0 (to make Gq4 anti-Hurwitz)

Local Homogeneity (Andrieu et al 2008 [1])

A d-homogeneous vector field fr : R™ — R™ of degree v € R is said be d-
homogeneous approximation of f at L-limit (with L = 0 or L = o) if

lim sup [[r~"d(—1In7)f(d(Inr)z) — fr(z)|| = 0,

r—L+ xeS
where S = {x :€ R" : ||z|| = 1} is the unit sphere in R.
Example: If f(z) = —23 + 2* — 2° then

e the linearization at zero gives %(Zz)

x=32 _ =0
-0 z2=0

e the homogeneous approximation at zero gives fo(z) = —a°.
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2.4.2 Homogeneous Differential Equations

Any linear system

T=Az, teR, z(t)eR", AeR™™ =z(0)=umx

is standard homogeneous and its solution z(t, z¢) = ez is symmetric with respect
to the scaling of the initial condition z(t,e’zo) = e*z(t, zo)

Symmetry of a flow of generalized homogeneous linear vector field

Let d be a linear dilation and let a linear vector field f : R” — R™ given by
fx)=Az, zeR", AeR™"
be d-homogeneous of degree p € R™ (i.e., Ad(s) = e**d(s)A) then
etAd(s) = d(s)et?®”", VseR, VteR.
Let x(t, o) denote a solution of the system
z(t) = f(z(t)), t>0, (2.14)

with the initial condition z(0) = zo € R™.
Theorem (Zubov 1958, Kawski 1991)

Let d be a dilation in R™ and the vector field f be d-homogeneous of degree
w € R If z(t,x0) with ¢ € [0,77] is a solution of the system (2.14) with the
initial condition 2:(0) = xg then, for any s € R,

z(t,d(s)zg) = d(s)z(e"®t,x0), t€[0,e " T]

is a solution of (2.14) with the scaled initial condition x(0) = d(s)zg.

Corollary

Let f be a continuous d-homogeneous vector field of degree p < 0 then the
system & = f(x) is Completeﬂ

9A solution z of the system has a finite-time blow-up if there exists T' € R such that
lz(t)] = oo ast — T.
A system is complete if all its solutions have no finite-time blow up (in other words, if any solution
exists for all t € R)



Lyapunov Stability (Lyapunov 1892)

The system ([2.14) is said to be locally (globally) uniformly Lyapunov stable
if 3c € K
|x(t, z0)| < e(|xo]), VE>0, Ve,

where (2 is a neighborhood of the origin (resp., 2 = R™)

Figure 2.3: Hlustration of Lyapunov stability

Proposition (Bhat € Bernstein 2005 [2])

Let f : R™ — R™ be a continuous d-homogeneous vector field. The system
(2.14)) is Lyapunov stable if and only if it has a positively invarianﬂ bounded
neighborhood of the origin.

Asymptotic Stability (Lyapunov 1892)

The system (2.14)) is said to be locally (globally) uniformly asymptotically stable

if73sekL
||117(t,21,‘0)“ S ﬂ(|l‘0|,t), vt > 07 va S Qy

where (2 is a neighborhood of the origin (resp., 2 = R")

Figure 2.4: Illustration of asymptotic stability

10A function ¢ : [0, +00) > [0, +00) is said to be of the class K if ¢ is continuous, strictly increasing
and €(0) = 0.

LA set Q C R™ is positively invariant if zg € Q = x(t,z0) € ,Vt > 0.

12 A function 8 : [0, +00) x [0, 400) is said to be of the class KL if 5(-,s) € K for any fixed s > 0
and B(r,-) is strictly decreasing to zero for any fixed r» > 0.
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Zubov-Rosier Theorem (Zubov 1958 [24] and Rosier 1992[20])

Let a continuous vector field f : R” — R” be d-homogeneous of degree p. Let
m > 0 be an arbitrary positive number.

The system (2.14)) is asymptotically stable if and only if there exists a positive
definite homogeneous function V' € C(R™) N C*°(R™\0) of degree m:

V(z) < —pV'tm(z), VzeR"\{0}, (2.15)

where p > 0 is some number.

Corollary (Nakamura et al 2002 [9]

Let f be d-homogeneous of degree pu € R. If (2.14) is locally asymptotically
stable then it is

e globally uniformly finite-time stableIElfor @ < 0 with a settling-time
function T" being continuous at z = 0;

e globally nearly fixed-time stable for u > 0, i.e.

Vr > 0,37, > 0 such that ||z(¢, zo)|| < r,VE > T),,Vzy € R™.

Let us consider the perturbed nonlinear system:

i=f(z,q), t>0, z(t)eR", qt)eR" z(0)=um (2.16)

Definition (Sontag 1989 [22])

A system (2.16]) is said to be Input-to-State Stable (ISS) with respect to g €
L>=(R,RF) if there existFEl B € KL and v € K such that

@)l < B(lloll, t) + Y(llall Lo ((to,6),2%))- (2.17)

Theorem (Hong 2001 [E])

Let dg be a dilation in R™ and d, be a dilation in R™ such that 3 € R :
f(dz(s)z,dg(s)q) = e*°dy(s) f(z,q) Va € R™, Vge R™,VseR.
If the system @ = f(z, 0) is asymptotically stable then the system (2.16)) is ISS.

I3 A system is said to be globally uniformly finite-time stable if it is Lyapunov stable and there
exists a locally settling-time function 7' : R+ [0, +00) such that

z(t,z0)=0, Vt>T(xo), VYzo€eR".
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2.4.3 Homogeneous Control Design
Let us consider the control system
&= Ax+ Bu, t>0, (2.18)

where x € R" - system state, u € R™ - control input, A € R"*" B € R"*™,

The Problem of Homogeneous Stabilization

Given p € R the control aim is to design a dilation d in R™ and a feedback
control u : R™ — R™ such that the closed-loop system is

1. d-homogeneous of degree p, i.e. for f(x) = Az + Bu(z) one holds
f(d(s)z) = e**d(s)f(z), VzeR" VseR,;

2. asymptotically stable (= finite-time stability for u < 0).

Theorem 1 (inspired by [17}, 18], 23] [15] [10])

The system (2.18) is homogeneously stabilizable with u # 0 if and only if
the pair {A, B} is controllabld™®} For any controllable pair {A, B} one holds

1) the linear algebraic equation
AGy—GopA+BYy=A, GyB=0 (2.19)

has a solution Yy e R™*" GyeR™*"™ and for any solution one hold

— the matrix Gy — I, is invertible is invertible;

— Gq=1I,+uGy is anti-Hurwitz for p<1 /n, where n €N is a minimal
number such that rank[B, AB, ..., A" 1 B] = n;

— the matrix Ag = A + BKj is nilpotent, Ko=Yy(Go — I,) ! and

AoGa = (Ga + pl) Ao, GaB = B; (2.20)
2) the linear algebraic system
Ao X+XAJ+BY+Y ' BT+p(Ga X +XG])=0, (2.21)

GaX+XGl=0, X=XT>0
has a solution X e R"*" Y € R™*" for any p€R,;

3) the homogeneous norm | - ||q induced by ||z|| = V& X1 is a Lyapunov
function of the system (]2.18|) with the feedback law

u(z) =Koz + ||z 5 Kd(~n ||z|a)z, K=YX?, (2.22)
where d is a dilation generated by Ggq; moreover,
1
Zlella = —pllzlg™, = #0; (2.23)

1) ueC=(R™\{0}) and [u(®)] < Kolo|+Amax (X) [2l| 57 Vo eR?, Yu> —1;
5) the system (2.18]), (2.22) is d-homogeneous of degree p.



2.4.4 Homogeneous Observer Design

Let us consider the system

t=Ax+p(t), t>0, y=Cz (2.24)
where x € R” - (unknown) system state, p(t) € R™ - known exogenous input, y € R¥
- measured system output, A € R”*™ and C' € R**",

The Problem of Homogeneous Observer Design

Given p € R we need to design a dilation d in R™ and an observer:
3=Az4+p+g(Cz—y), 2(00=0 g:RF—R"
such that the error equation
é=Ac+g(Ce), e=z—z
1. is d-homogeneous of degree p, i.e. for f(e) = Ae + g(Ce) one holds
f(d(s)e) = e'*d(s)f(e), VeeR", VseR;

2. is asymptotically stable.

Theorem 2 (inspired by [2, [7l, 5], 10])

The system ([2.24)) is homogeneously observable with degree p # 0 if and only
if the pair {A, C} is observable. For any observable pair {A, C'} one holds

1) the linear algebraic equation
AGy — GoA+ Yo C=A4, CGy=0 (2.25)
has a solution Yy € R™** Gy € R"*™ and for any solution one holds
— the matrix Gg + I, is invertible

— the matrix Gq = I, + vG) is anti-Hurwitz for v > —1/n, where 7 is
a minimal natural number such that

C
rank{ cA ] = 7l
cAn—?t
— the matrix Ag = A + LoC is nilpotent, Ly = —(Go + I,,) 'Y, and
AgGq = (l/In = Gd)Ao, CGq = C

2) the algebraic system

PAy+AJP+YC+CTY T+p(PGa+G] P)=0,
PG4+ GiP =0, P=PT >0
has a solution P € R"*", Y € RF¥*™ for any p € R,.

(2.26)

15 A pair {A, B} is controllable if and only if rank[B, AB, ..., A"~ 1B] = n.
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3) the canonical homogeneous norm ||e|lq induced by the weighted Euclidean
norm |le|| = Ve Pe is a Lyapunov function (at least if v close to 0) for
the error equation (2.28]) of the observer

t=Az+p+(Lo+|Cz—y|" 'd(In|Cz — y|)L) (Cz—y), 2(0)=0, (2.27)
where L = P~'Y;
e the error equation
¢ = (Ag+ |Cel*'d(In|Ce))LO)e, e=2z—=x (2.28)
is continuous for ¥ > —1/n and discontinuous for v = —1/7;

e the error system (12.27) is d-homogeneous of degree v,

Remarks

e without loss of generality, the identity = 0 in the system of LMIs (2.21]) (resp.
(2.26))) can replaced with inequality < 0;

e combing the homogeneous controllers/observers with positive and negative de-
grees, a locally homogeneous fixed-time stable system can be designed:

I max >0 z(t,zg) =0, Vt>Thax, VroeR”

(resp., ITmax >0  :  2(t) = z(t,x0), VYVt > Tmax, Vao € R™)

2.5 On Discretization of Homogeneous Systems

2.5.1 Control Discretization
Due to a digital implementation of controller one holds
U(t) = Uy, YVt € [tj,tj+1),j=0,172,...

where t;41 —t; > h > 0, ¢ = 0. Moreover, the measurements are samples as
well. Let us assume (for simplicity) that the measurements and control samplings are
synchronized, i.e. at time ¢ = t; we can measure x; = x(t;). Several algorithms of
digital implementation of homogeneous controller can be suggested in this case [11].

Explicit discretization of homogeneous control

1
U; = Kol’j + ||«Tj||d+HKd(_ In ”mj”d)xj

Using the so-called semi implicit Euler method the closed-loop system can be
approximated as follows

z(tjp1) = Tjp1 = x5+ h(A+ BK))ij, K; =Ko+ |la;||" ™ Kd(—In ||z;]|a)
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Hence, 741 = (I, — h(A + BK;) 'z, the semi-implicit control discritization can be
defined as follows.

Semi-implicit discretization of homogeneous control

uj = Kj(In— (tj1—t;)(A+BK;) "'ej,  Kj = Ko+|lz;llg" Kd(~In|jlla)

The methodology of consistent discretization of homogeneous systems are devel-
oped in [16], [19].
2.5.2 Observer Discretization

To implement a homogeneous observer in a digital device the system (2.27)) has to
be properly discretized under assumption that the output measurements y and the
exogenous input p are sampled:

y(t) =y(t;),  p(t) =plt;), te€ltytjn), j=0,1,2,..

where ;41 —t; > h > 0. The observer’s discretizations are defined using the same
ideas as controllers discretization.

Explicit discretization of homogeneous observer

zj+1 = 25+ (tir1-t,) (A2 +p;+(Lo+|Cz —y;" " d(In|Cz; —y; ) L)(Cz; ;)
where zp = 2(0) and z; =~ 2(¢;). The semi-implicit Euler’s method gives

zjp1 =2+ h (Azjir +pj + (Lo + Oz — y" 7 d(In|Czj — y; ) L(C2ji1 — y7))

Semi-implicit discretization of homogeneous observer

1 |

Ziy1 = A7 (25 + (511 — &) (05 — Lj;))
where A; = I,, — h(A + L;C) and

Lj=Lo+|Cz —y;|*'d(In|Cz; — y;|)L.



The presented discretizations have different computational complexity and can
be selected for practical implementation dependently of the available computational
resources.

2.6 Theoretical conclusions

e Homogeneous systems may have faster convergence, better robustness and smaller
overshoots than linear systems.

e Theorems 1 and 2 are constructive and provide a way to define parameters of
homogeneous controllers/ observer by solving certain algebraic systems. All
functions of controllers and observers design are developed in HCS Toolbox
based on the mentioned theorems and their corollaries.

e In the view of the structure of the homogeneous controllers/observers many
existing linear controllers/observers can be easily upgraded/transformed to ho-
mogeneous ones.

28



Chapter 3

Homogeneous Systems in
MATLAB

3.1 Controllers

This section surveys functions of HCS Toolbox for homogeneous control design and
implementation in MATLAB. It is essentially based on the concept of the homoge-
neous norm considered in Chapter

3.1.1 Homogeneous Proportional Control (HPC)

Model of the control system:
t=Arx+ B(u+~(t,z)), ze€R” uweR™ AecR"™™ BeR"™™"
where the pair {A, B} is controllable and v : R x R — R™ is an unknown function.
Homogeneous control:
Unpe = Koz + ||z T Kd(—In ||z|a)z, Ko €R™™ K eR™"

where ;1 > —1, d(s) = e*“< is a dilation in R", (/g € R™*™ and the homogeneous norm
lz]|a is induced by the weighted Euclidean norm ||z| = V2T Pz in R, P € R"*™,

Properties:

e finite-time stabilization for negative homogeneity degree p < 0
x(t) =0, Vt=>|[z(0)lg"/(=pp);
e nearly fixed-time stabilization for positive homogeneity degree p > 0

1
lz(t)la <7, Vt>—, Vr>0, Vz(0)eR"
pprt
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e d-homogeneity of the unperturbed system (if v = 0) = ISS with respect to
measurement noises in x and additive perturbations in the model;

e rejection of the matched perturbation -~y if

Y (t )] < Fmae 2]l

HPC Design

The function hpc_design computes parameters K, K, Gy and P of HPC for
given A, B, u > —1, p > 0 and vpax > 0

e Input parameters: A, B, p and p (by default p = 1) and ymax (by
default Ymax = 0)

e Output parameters: K, K, G, and P

HPC Implementation

e The function e hpc computes ezplicit discretization of upp.
— Input parameters: z, Ky, K, u, Gg, P
— Output parameters: upp.

e The function si_hpc computes semi-implicit discretization of upp.
— Input parameters: h (sampling period), z, A, B, Ko, K, u, Ga, P
— Output parameters: upy.

e The function c_hpc computes consistent discretization of uppc if Ymaer = 0
— Input parameters: h (sampling period), z, A, B, K., K, i, Ga, P, p

— Output parameters: upp.

Useﬂ demo_hpc.m from HCS Toolbox as a demo of HPC design

1To open a demo please type ’edit <name_of_demo>.m’ in the Command Line of MATLAB



3.1.2 Fixed-time HPC

Model of the control system:
2=Ax+ Bu, ze€R", uwcR™, AcR"™™,
where the pair {4, B} is controllable.

Control law:

14+p1 7.~ .
Izl Kdi(=Inlz]la, )z if

_K
A fhwe “x+{ 2] Kdy(— n [|zllay)z  if

B c Rnxm

x Pr<1

3.1
2T Pz >1 ( )

where 11, <0< jip, dg(s)=esUnt1:G0) and ||z||q, is induced by ||z||=Vaz TPz, k=1,2

Properties:

e fixed-time stabilization of linear plant:

.’K(t) = 07 vt > Tmaxv V.’E(O) € Rn’ Trnax =

1 1
_’_7

—pip - p2p

e local homogeneity of closed-loop system (of degree 1 at 0 and of degree uo at
00) = ISS with respect to measurement noises in « and additive perturbations

in the model;

Fixed-time HPC Design

The function fhpc_design computes parameters Ko, K, Gq, P, ji1, j1o and p > 0
of Fixed-time HPC for given system matrix A and control matrix B.

e Input parameters: A and B

e Output parameters: K. K, G, P, i1, j15 and p

Fixed-time HPC Implementation

e The function e_fhpc computes explicit discretization of u tpp.

— Input parameters: xz, Ky, K, (1, po, Go, P
— Output parameters: upy.

e The function si_fhpc computes semi-implicit discretization of uppe

— Input parameters: h(sampling period), z, A,B, Ky, K, 1, o,

Gy, P
— Output parameters: .

Use demo_fhpc.m from HCS Toolbox as a demo of Fixed-time HPC design



3.1.3 Homogeneous Sliding Mode Control (HSMC)

Model of the control system:
t=Ax+B(utvy(t,z)), y=Cz, xz€R", uweR™, AeR™™ BeR™™ CecRP*"

where y € RP is a controllable output and v : R x R” +— R™ is an unknown uniformly
bounded function.
Control law:

Upsme = Koz + Kd(—In||Czx||q)Cz, KyeR™" K eR™P

where d(s) = e*“4 is a dilation in R?, (g € RP*P and the homogeneous norm ||z|q
is induced by the weighted Euclidean norm |z|| = V2T Pz in RP, P € RP*P.
Properties:

e enforces sliding mode on the surface Cz = 0 in a finite time
Cx(t) =0, Vt=|[Cx(0)]la/p;

e the output dynamics y = Ct is d-homogeneous of degree —1.

e rejection of the matched perturbation -~y if

|7(t7 ‘T)‘ < Ymax-

HSMC Design

The function hsmc_design computes parameters K, K, Gy and PP of HPC for
given A, B, p > 0 and ypax > 0

e Input parameters: A, B, p (by default p = 1) and vypax (by default
Ymax = O)
e Output parameters: K, K, G, and P

HSMC Implementation

e The function e_smc computes explicit discretization of upsme
— Input parameters: z, C, K, K, Gg4, P
— Output parameters: upsmc
e The function si hpc computes semi-implicit discretization of upgme
— Input parameters: h (sampling period), z, A, B, C, Ky, K, G4, P

— Output parameters: upsmc

Use demo_hsmc.m from HCS Toolbox as a demo of HSMC design



3.1.4 Homogeneous Proportional-Integral Control (HPIC)

Model of the control system:
t=Arx+ Blu+~v+p), z€R", uweR™ AecR™" BeR"™™,

where the pair {4, B} is controllable, v : R x R” — R™ is an unknown (vanishing at
x = 0) function and p € R™ is an unknown constant.

Control law: .
Uhpic = Uhpc + / Uint (ZC(T))CZT
0

Unpe = Koz + ||z T Kd(—=In ||z|la)z, Ko €R™™ K eR™¥"

o 1+2u K;d(—In||z|a)z I mxn
uint = [|lg TTd el Pead(— el i €R
where 1 > —0.5, d(s) = e*“d is a dilation in R", G'q € R™™" and the homogeneous

norm ||z||q is induced by the weighted Euclidean norm ||z||=vz TPz in R", P € R"*™,
Properties:
e finite-time stabilization for negative homogeneity degree p < 0
e nearly fixed-time stabilization for positive homogeneity degree p > 0

e rejection of the unknown constant perturbation p and matched (vanishing at
z = 0) disturbance 7 if [v(t, )| < Ymax||lz]| 5T

e generalized homogeneity of the augmented system for x and 2,41 =p+ [ wint-

HPIC Design

The function hpic_design computes parameters K, K, K;, G, and P of HPC
for given A, B, i > —0.5, Ymax > 0 and p > 0 (the parameter p > 0 can be

utilized for tuning of convergence time: the larger p, the faster convergence).

e Input parameters: A, B, p and p (by default p = 1) and ymax (by
default Ymax = 0)

e Output parameters: K, K, K;, G, and P

HPIC Implementation

e The function e_hpic computes explicit discretization of uppi.

— Input parameters: z, K. K, u, Gg, P

— Output parameters: upp. and Uiy

Use demo _hpc.m from HCS Toolbox as a demo of HPC design
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3.1.5 Fixed-time HPIC

Model of the control system:
t=Ax+ B(u+p), z€R" weR™ AeR"™", BeR"™™
where the pair {A, B} is controllable and p € R™ is an unknown constant.

Control law: ,
Uhpic = Ufhpc + / Ufint (.’I}(T))dT
0

; |5 Kdy(—=In||z|a)z  if 2TPz<1
Ufhpe = Koz + us g . T

lzllq,"* Kda(=In[zllay)z if z'Pz>1
2|5 Kida (= 1n |2l )= $ 2TPr<1

we — 3 @Al (=) PCaydi(—Infe]a,)e =

fint )52 Kida (= In||z]la, )z .
2 2 if xTPxr>1
2Td] (= In [[2]lay) PGaydz(— n[[2]lay)e

where 11 <0< jio, dj(s) =e3Un+1:CG0) and ||z g, is induced by ||lz||=Va TPz, k=1,2
Properties:

e fixed-time stabilization of linear plant:

Mpax >0 1 2(t) =0, V> Thax, Vz(0) €R™

e rejection of the unknown constant perturbation p;

e local homogeneity of the augmented system for x and 41 = p + [ Upine.

Fixed-time HPIC Design

The function fhpic design computes parameters K, K, K;Go, P, i1, o of
Fixed-time HPC for given system matrix A and control matrix B.

e Input parameters: A and B

e Output parameters: K, i, K;Gq, P, 111, 1o

Fixed-time HPIC Implementation

e The function e_fhpic computes explicit discretization of u¢ppic

— Input parameters: xz, Ky, K. K;, 1, po, Go, P

— Output parameters: ufppic and ugne

Use demo_fhpic.m from HCS Toolbox as a demo of Fixed-time HPIC design
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3.1.6 HSMC with integral action

Model of the control system:
t=Az+B(ut+y+p), y=Czx, zeR", ueR™, AeR™™ BeR"™™ (CeRP*"

where y € RP is a controlled output, v : R x R™ — R™ is an unknown (vanishing at
x = 0) function and p € R™ is an unknown constant.

Control law: ,
Uhsmei = Uo + / UsintdT
0
up = Koz + ||Cz||y° Kd(— In||Cz|a)Cx, Ko € R™™, K € R™P,
Using (Cx (7)) = K;d(—In ||Cz||q)Cx,

where d(s) = e*“< is a dilation in R?, GGq € RP*P and the homogeneous norm ||z|q
is induced by the weighted Euclidean norm |z| = V2T Pz in RP, P € RP*P.

Properties:

e enforces sliding mode on the surface Cx = 0 in a finite time

IT = T(2(0)) : Ca(t) =0, Vt>T

e rejection of the unknown constant perturbation p and the (vanishing at = = 0)
matched perturbation ~y if

1/2
(s 2)] < Y12l 2.

Design of HSMC with Integral action

The function hsmc_design computes parameters K, K, K;, G, and P of HPC
for given A, B and Ypax > 0

e Input parameters: A, B, p (by default p = 1) and vyax (by default
Ymax = O)

e Output parameters: K, K, G, and P

Implementation of HSMC with integral action

e The function e hsmci computes explicit discretization of upsme;

— Input parameters: z, C, K, K, K;, G4, P

— Output parameters: ug and uging

Use demo_hsmci.m from HCS Toolbox as a demo of HSMC with Integral action
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3.1.7 Upgrading Linear Proportional Controller (LPC) to HPC

Model of the control system:
t=Ax+ Bu, xze€R" weR™ AeR"™™ BeR"™™

u= Kjpz, (already well-tuned LPC)
where the pair {A, B} is controllable and Kj;, € R™*™ is such that

the matrix A + BKj;, is Hurwitz.
The aim is to upgrade LPC to HPC:
Unpe = Koz + ||x||il+‘L(K1ill — Ko)d(—In ||z||a)=x (3.2)
where d(s)=e*In+1#C0) _ dilation, € [fimin, fmax)s ||Z]|a is induced by ||z || =V Pz
Upgrading LPC to HPC

The function lpc2hpc computes parameters K, Go, P and 3 < 0 < po of
HPC for given A, B and Kj;,

e Input parameters: A, B and Kj;,

e Output parameters: K, G, P, fmin < 0 < fhmax

Implementation of HPC

See Section for Gq = I, + pGy and K = Ky;, — Ko.

Global Upgrading Algorithm

e Take =0 = Uppe = Kiin

e Decrease p or increase p while a control quality is improving

Local Upgrading Algorithm

e Use the saturation sat, ;(¢) = max(a, min(b, ¢)), where 0 < a < b < 400
to restrict the homogeneous norm

Ginpe = Ko + satqp || 57 (Kin — Ko)d(— Insat, p ||z]|a)z

e Takea=b=1 = Uppc = KinT

e Decrease a and increase b while a control quality is improving

Use demo_lpc2hpc.m from HCS Toolbox as a demo of LPC to HPC upgrade
for Rotary Inverted Pendulum Quanser QUBE Servo-2
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3.1.8 Upgrading Linear Proportional-Integral Controller (LPIC)
to HPIC
Model of the control system:

i=Az+Bu, z€R", uweR™ AeR™" BecR"™

¢
U= Kjnx + / K;xz(r)dr, (already well-tuned LPIC)
0
where the pair {4, B} is controllable and Kj;, € R™*™ K, € R™*" are such that

A+ BKy;, B

the matrix
( Klin 0

) is Hurwitz.
The aim is to upgrade LPIC to HPIC:
t
Uhpic = Uhpc (37) + / Uint (m(T))dT
0
Unpe = Koz + ||z g7 (Kiin — Ko)d(=n |z]la)x

_ =)l g2 K d(=In ||z]|la)=
Uint = z'd T (—In|z]la) PGad(— In||z|qa)z

where d(s) =e*nt1C0) is a dilation in R™ for any p € [111, 2] and ||z||q is induced

by [la|| =vz Pz
Upgrading LPIC to HPIC

The function 1pic2hpic computes parameters K, G, P, K" and 13 <0 <
1o of HPIC for given A, B and Ky, K;

e Input parameters: A, B and Kj;,

e Output parameters: K, G, P, 11 <0 < s

Implementation of HPIC

See Section [3.1.4] for G4 = I,, + uGy and K = Kj;,, — K.

Global/Local Upgrading Algorithm

See Section B.1.71

Use demo_lpic2hpic.m from HCS Toolbox as a demo of LPIC to HPIC upgrade



3.2 Observers

3.2.1 Homogeneous Observer (HO)

Model of the system:
IE:AI+p, y:C.’IJ l‘ERn, UERM, AERnXm’ CEkan

where the pair {A, C} is observable and p € R™ - known exogenous input
Observer:

f=Az+p+ (Lo+|Cz—y[" ' d(In|Cz —y|)L) (Cz —y), Lo €R™*, LeR™*
where d(s) = e*“< is a dilation in R® and v > —1/f, where 7 € N is a minimal

c
natural number such that rank { cA } =n.

) car—1
Properties:

e finite-time state observation for v < 0 :

Vz(0) e R®, 3T =T(x(0)) : =z2(t)==z(), Vt>T

e nearly fixed-time state estimation for v > 0:

Vr>0, 3T.>0 : |z@t)—z@)|<r, VEt>T,. Vz(0)eR"

e the error ¢ = z — z has a d-homogeneous dynamics of degree v =
ISS (Input-to-State Stability) with respect to measurement noises.

Design of HO

The function ho_design computes parameters L, L and G4 of HO

e Input parameters: A, C and v > 0

e Output parameters: Lj, L and Gg4

Implementation of HO

e The function e ho computes explicit discretization of HO
— Input parameters: h(sampling period),z,y, A,C, p, Lo, L, Gq4, v
— Output parameters: z"" - new estimation of x
e The function si_ho computes semi-implicit discretization of HO
— Input parameters: h,z,y, A,C, p, Lo, L, Gq, v
— Output parameters: 2" - new estimation of x

Use demo_ho.m from HCS Toolbox as a demo of HO design
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3.2.2 Fixed-time HO

Model of the system:
it=Ax+p, y=Czx xz€R", wuwcR™ AcR™™ (CcR>*"

where the pair {A, C} is observable and p € R™ - known exogenous input
Observer:

. Lo+ |Cz —y|/" tdi(In|Cz —y|)L) (Cz —y) if [Cz—y| <1
F=Artpt { §L0 +|Cz —y|>"1da(In|Cz — y|)L) (Cz —y) if [Cz—y|>1

where v <0<y, di(s)=e*Int7:CG0) k=12 and L, € R***, [ € R**F
Properties:

e fixed-time state observation:

nax > 0: + z(t) =x(t), Vt>Thax, Vx(0)eR"

e the error € = z — = has a locally homogeneous dynamics =
ISS (Input-to-State Stability) with respect to measurement noises.

Design of Fixed-time HO

The function fho design computes parameters Lo, L and Gg of HO

e Input parameters: A, C

e Output parameters: L, L, Gy, v, 15

Implementation of Fixed-time HO

e The function e_fho computes ezplicit discretization of Fixed-time HO
— Input parameters: h,z,y, A,C, p, Lo, L, Gg, 11,15
— Output parameters: z"°" - new estimation of x
e The function si_fho computes semi-implicit discretization of Fixed-time HO
— Input parameters: h,z,y, A,C, p, Lo, L, Go, 11,15
— Output parameters: 2" - new estimation of x

Use demo_fho.m from HCS Toolbox as a demo of HO design



3.2.3 Upgrading Linear Observer (LO) to HO

Model of the system:
t=Ax+p, y=Czx z€R", wuweR™ AecR™™ (CecR*"
2=Az+p+ Lijn(Cz —y),

where the pair {4, C'} is observable and p € R™ - known exogenous input and the
gain of L;;, € R™** the linear observer is such that

the matrix A + L;;,C is Hurwitz.
The aim is to upgrade LO to HO
5= Azt pt (Lo +(C2 -y~ 1d(n|Cz — yl)(Lism — Lo)) (Cz — ), Lo € R¥,
where d(s) = 310 ig a dilation in R” and v € [Vuin, Vinax)-

Upgrading LO to HO

The function 1o2ho computes parameters Lg, Vmin, Ymax and G of HO

e Input parameters: A, C, Lj;,,

e Output parameters: Ly, Go, Vinin, Ymax

Implementation of HO

See Section [3.2.1] for Gq = I, + vGo and L = Ly, — Lo.

Global Upgrading Algorithm

e Take v =0 = HO becomes LO

e Decrease p or increase p while a control quality is improving

Local Upgrading Algorithm

e Use the saturation sat, ;(¢) = max(a, min(b, ¢)), where 0 < a < b < 400
to restrict the homogeneous norm

£ = Az+p+(Lo+satas |Cz — y[* " 'd(Insatep |Cz—y|) (Lim —Lo)) (Czy),

e Takea=b=1 = HO becomes LO

e Decrease a and increase b while a control quality is improving

Use demo_lo2ho.m from HCS Toolbox as a demo of upgrading
LO to HO for Rotary Inverted Pendulum Quanser QUBE Servo - 2
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3.3 Miscellaneous functions

This section surveys supporting functions of HCS Toolbox induced by linear dilations.

3.3.1 Homogeneous Curves
Given x € R” the set Ta(z) = {d(s)z : s € R}, (3.3)
is called a d-homogeneous curve.

Design of a homogeneous curve

The function hcurve generates an array of points on the homogeneous curve
crossing the point x € R”™.

e Input parameters: z, Gq, s; (array of points s; € R,i =1,2,...)

e Output parameters: z; (array of points corresponding to s;)

Use demo_hcurve.m from HCS Toolbox as a demo of plotting the homogeneous curve

3.3.2 Homogeneous Spheres

The set Sa(r)={z€eR": |zl]la=r},

is a d-homogeneous sphere of the radius » > 0, where the dilation d(s) = ¢*%d is a

dilation monotone with respect to the norm ||z|| = V2T Pz and || - ||q is the canonical
homogeneous norm induced by || - ||.

Design of a homogeneous sphere

The function hsphere generates an array of points on a homogeneous sphere
of the radius r.

e Input parameters: 7, Gq, P and Ny.x (number of points to be ran-
domly generated on the sphere)

e Output parameters: )/ (array of points on the sphere Sq(r))

Use demo_hsphere.m from HCS Toolbox as a demo of plotting the homogeneous spheres

3.3.3 Homogeneous Norm | - ||q

Computation of homogeneous norm

The function hnorm computes homogeneous norm of the vector x.
e Input parameters: z, Gq, P

e Output parameters: [|z|q



3.3.4 Homogeneous Projection

If d is a continuous dilation in R™ then for any z € R™\{0} there exist so € R and
zo € S such that zp = d(sp)z. The corresponding point zg € S is called a homogeneous
projection of z on the unit sphere S.

a homogeneous projection
2 =d(sy)z, |afl =1

-5 a homogeneous projection
2 =d(s2)z, [|2o] =1

Figure 3.1: Illustration of homogeneous projection

If d is a monotone dilation then homogeneous projection is unique [15].

Computation of homogeneous projection

The function hproj computes homogeneous projection of the vector z to the
unit sphere S = {z € R" : ||z|| = 1} for a monotone dilation.

e Input parameters: x, Gq, P

e Output parameters: z € S (homogeneous projection of x)

42



Chapter 4

Use Case

Int his chapter a procedure of upgrading linear controller to homogeneous one for an
existing/operating system ( Rotary Inverted Pendulum Quanser QUBE Servo - 2) is
demonstrated.

4.1 Model of the system

A schematic representation of the rotary inverted pendulum (IP) is shown in Figure
1] The generalized coordinates 6 and « describe the angular positions of the rotary
arm and the pendulum, respectively. To obtain motion equations, the pendulum is
considered as a lumped mass at its center.

Figure 4.1: Schematic diagram of inverted pendulum (IP)

Table presents the notation utilized for model description.
The dynamic model of the inverted pendulum is derived by means of the Euler-
Lagrange method:
0’L 0L

- 0. 4.1
905, 0g, ~ (4.1)
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Symbol Description
my Mass of the pendulum
L, Length of the pendulum
JIp Inertia of the pendulum
D, Pendulum damping coefficient
L, Length of the rotary arm
Jr Rotary arm inertia
D, Viscous damping coefficient
g Gravitational acceleration

Table 4.1: Parameters of the rotary inverted pendulum

The Lagrangian of the pendulum is described as:
L=T-V (4.2)

where T is the total kinetic energy of the inverted pendulum and V is the total
potential energy of the system.
The variable g; represents the generalized coordinates, in our case, given by

q(t) = [0t) at)]’ (4.3)

Considering the defined generalized coordinates (4.3]), the Euler-Lagrange equations
become:

0’L 0L 0’L 0L

oL _ oL oL 4.4
oto6 00 @ 906 9a @ (44)

The generalized forces ); describe non-conservative forces applied to the system.
In our case, the generalized forces acting on the IP are:

Q. =7-D,0 Q2 = —Dya (4.5)

Once the kinetic and potential energy are obtained, then the Lagrangian is found,
the nonlinear dynamic equations of motion for the inverted pendulum are:

(v + 0.25¢ — 0.25¢ cos(a)? + J;.) 6 — 0.5w cos(a)d
(4.6)
+0.5¢ sin(e) cos(a)fé + 0.5w sin(a)é? = 7 — D,.0

and
—0.5w cos(@)f + (J, + 0.25¢) é& — 0.25¢ cos(a) sin(r)6?
(4.7)
—0.5mpLpgsin(a) = —Dpc
where ¢ =m, L2, ¢ =m,L? and @ = mp,L,L,.
A torque generated by the servo motor and applied to the rotary arm is described
by the following equation:

7 = bV k) (4.8)

Ry, )
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where k,,, is the motor back EMF (electromotive force) constant, R,, is the terminal
resistance and V,, is the control input (the input voltage for the servo motor).
Notice that for a generalized coordinate vector ¢(t), the equations (4.6) and (4.7)

can be transformed in the following matrix form:

J(@)q+ Cla,q)q +w(q) = ¢ (4.9)
where
[Ir+ v+ 2= (eos? (@) —iwcos(a)
J(g) = { f%w cos(a) Jp + %C }

w<q>[ 0 } ¢[g] (4.10)

—2gmy Ly sin(a)
_ [i¢sin(a)cos()d+ D, Swsin(a)d
Cla) = {2 —1¢sin(a) cos(a)d ’ D, ]

The control aim is to stabilize the pendulum arm at the upper position (a=0)

The conventional approach [3] to solving this control problem is switching between
two control strategies:

e swing-up control accumulates an kinetic energy (increases oscillation amplitude)
of the pendulum to bring it close to the upper position

e a stabilizing feedback operating locally (close to the upper position)

The swing-up control is usually defined as an optimal feed-forward (or feedback)
algorithm [3], so a stabilizing controller is needed to be designed only.

To design the stabilizing feedback the nonlinear model of the inverted pendulum is
usually linearized around the operating point aw = 0 (upper position of the pendulum)
using the equations and ([4.7).

Let z1 = 0, 22 = o, x3 = 0 and x4 = &. From the equation for a close to
zero we have sin(zz) =~ 0, cos(rz) =~ 1, then the linearized state-space representation
for the inverted pendulum satisfies the following differential equations:

1 = T3, To = T4
B — (Jp +0.25¢) D,x3 — 0.5wDpx4 + 0.250gx2 + (Jp + 0.25¢) 7
3 =
Jr (4.11)
B 0.5wD,x3 — (Jr + ) Dpxa + 0.5mpLyg (Jr + ) 22 + 0.5w7
4 =
Jr

where Jr = J,{ + J,Jp +0.25J,.¢ and ¥ = m%LiLT and
km (u—kmx
7= Enlnte) (4.12)

with u = V,,, being a control input (voltage).
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Therefore, the linearized model of the inverted pendulum admits the following
state-space representation:

z(t) = Az(t) + Bu(t) (4.13)
where z(t) = (xl(t) ;1: ( ), x3(t), z4(t))" € R* is the state vector, u(t) € R is the
control signal, A € R***4 B € R**!. In the equation (4.13), the matrices A, B are

defined as:

00 1 0
_1({o0 0 1 I T
A= (0 as2 as;s a374> ; B = 35—(0,0, (J,+0.25(), 05w ) (4.14)
0ag2 as3 asa

The elements of the matrix A are given by:

a3 2 = 0.25199, a3.3 = (J + 0. 25() ( 2 /R )
azy = —0.25wD,, a2 = 0.25m,Lyg(J, + ¢) (4.15)
a4,3 = O25w( - kz /R ) a4.4 = (J + 1/))

The pair {A, B} is controllable in any realistic scenario.

4.2 Description of Experimental Setup

The platform QUBE- Servo 2 of Quanse (see Fig. is utilized for the control
upgrading experiment.

Figure 4.2: Rotary IP Quanser QUBE - Servo 2

The parameters of the experimental platform are given by the manufacturer and
listed in the Table The control input (voltage) is saturated by £10V, i.e.
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Parameter Value
My 0.024 Kg
L, 0.129 m
JIp 3.3x107° Kg m?
D, 0.0015 N m s/rad
L, 0.085 m
Jr 5.7x10~° Kg m?
D, 0.0005 N m s/rad
g 9.81 m/s?

Table 4.2: Parameters of Quanser QUBE-Servo 2
u € [—10,10].

The Quanser’s platform is supported with both a swing-up controller and a linear
stabilizing controller realized in MATLAB. Our aim is to upgrade the linear stabi-
lizing controller. The gains of the linear feedback (given by the manufacturer) are as
follows

Kin=(2 -35 15 —3) (4.16)

4.3 Upgrading linear controller via HCS Toolbox

The dem(ﬂ of an upgrading linear Quanser’s controller to homogeneous one is given
in demo_lpc2hpc.m of HCS Toolbox.

1) The first part of the code defines the parameters of the rotary inverted pendu-
lum (according to Table provided by the manufacturer).

Too oo Toto To o foTo To o oo o To o oo Fo o To o Voo FoTo Yoo o o oo o o o o o oo Fo o Voo Fo o Fo o Fo o oo oo o oo oo Voo Fo o Voo Fo o fo o oo o o o o
%% Pendulum model

Tototot Toto Toto foTo FoTo oo o 1o o oo Fo o To o Fo o FoTo Fo o oo oo o o o o o oo Fo o Fo o Fo o Fo T oo o o o o oo oo Fo o Fo o Fo o Fo o Fo o oo o o
% Motor

% Resistance
Rm = 8.4;

% Current-torque (N-m/A)
kt = 0.042;

% Back-emf constant (V-s/rad)
km = 0.042;

%% Rotary Arm

ITo open a demo, please type ’edit <name_of_demo>.m’ in the Command Line of MATLAB
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% Mass (kg)
mr = 0.095;

% Total length (m)
r = 0.085;

% Moment of inertia about pivot (kg-m~2)
Jr = mr*xr~2/3;

% Equivalent Viscous Damping Coefficient (N-m-s/rad)
br = le-3; % damping tuned heuristically to match QUBE-Sero 2 response

%% Pendulum Link

% Mass (kg)
mp = 0.024;

% Total length (m)
Lp = 0.129;

% Pendulum center of mass (m)
1 = Lp/2;

% Moment of inertia about pivot (kg-m~2)
Jp = mp*Lp~2/3;

% Equivalent Viscous Damping Coefficient (N-m-s/rad)
bp = be-5; J damping tuned heuristically to match QUBE-Sero 2 response

% Gravity Constant
g = 9.81;

% Total Inertia
Jt = JrxJp - mp~2*r"2x172;

2) Next, the parameters linearized model of the system (4.13)) are computed.

TRt ToTo Tt oo o to o toToTo oo o o o oo o To T To o o oo oot oo oo o oo oo oo T oo o oo o oo o T o o oo o o oo oo o oo
%% Linearized model of the rotary inverted pendulum in the upper position

hh

Wt dx/dt=Ax+Bu, x=(x1,x2,x3,x4)’

hh

%% where x1 - angle of the pentulum arm

hh x2 - angle of the rotary arm

YA x3 - angular velocity of the pendulum arm
hh x4 - angular velocity of the rotary arm

bl ottt lo T T To T To To T To To T To T To T To T o T T T T T T T T T o o o o oo oo o o o 1o 1o oo o o o o 1o 1o o 1o o o o o o
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A=100010;

000 1;

0 mp~2x1"2*r*g/Jt -br*Jp/Jt  -mpxl*xr*bp/Jt
0 mp*g*lxJr/Jt -mp*1l*r*br/Jt  -Jr*xbp/Jt];
YA

B = [0; 0; Jp/Jt; mpxlxr/Jt];

% adding a model of actuator dynamics
A(3,3) = A(3,3) - kmkkm/Rm*B(3);
A(4,3) = A(4,3) - kmtkm/Rm*B(4);

B =5km * B / Rm;

% the linear feedback gain (provided by manufacturer)
Klin=[2 -35 1.5 -3];

The system matrix A is

>> A
A =

0 0 1.0000 0
0 0 0 1.0000
0 152.0057 -12.2542 -0.5005
0 264.3080 -12.1117 -0.8702

The control matrix B is

>> B

50.6372
50.0484

3) Finally, the parameters of the homogeneous controller are obtained using the
function 1pc2hpc of HCS Toolbox.

T I Tl T ToToto to o o o T To To o o o oo T To o o o oo o T To T o 1o o oo o o T T o o o oo o T To o o o oo o T T T o o o oo o o T o o
%% HPC/FHPC design by upgrading a linear controller

Tl ToTototo oot ToToTototo o oo ToToTo o 1o o o o o To To To o o oo o T To To o 1o o oo o o To To o 1o oo o o T To Fo o o oo o o T To o o o oo o o T Fo o o
[KO GO P mu_min mu_max]=1lpc2hpc(A,B,K1lin); % upgrade linear control to HPC

%selection of the homogeneity degree mu_min<= mu <=mu_max

Gd=eye (4)+mu_min*GO; mu=mu_min; % for HCP with negative homogeneity degree
%Gd=eye (4) +mu_max*GO; mu=mu_max; % for HCP with positive homogeneity degree
% for FHCP use GO mu_min mu_max
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K=K1in-KO;

%#KO - homogenization feedback gain

%K - control gain
%Gd - generator of dilation
%P - shape matrix of the weighted Euclidean norm

The obtained parameters of homogeneous controller are

>> KO

KO =

-0.0000 -5.2811 0.2420 0.0174
>> GO

GO =

-3.0000 2.0248 -0.0033 0.0033
0.0000 -1.0000 0.0000 -0.0000

-0.0000 0.3800 -2.0000 2.0235
-0.0000 -0.0000 0.0000 -0.0000
>> P

P =

3.1581 -7.2001 0.5908 -0.6077

-7.2001 96.7019 -6.8570 7.4704
0.5908 -6.8570 0.5539 -0.5856

-0.6077 7.4704 -0.5856 0.6472
>> mu_min

mu_min =

-1

>> mu_max

mu_max =

0.1607
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4) The rest of the code of demo_lpc2hpc is devoted to comparison of linear and
homogeneous controllers on simulations

Tt T Tt T Tt T T o T T o T o o T o o T o To o o T o T o o T o o T o o T o T o o T o o T o o T
%% Numerical Simulation

Tl lololololofolofofofofofofofoToloJoToToTo ToJo Jo To T To To T To o T To T o o o o o oo

t=0; Tmax=3;
h=0.001; 7% sampling period

x=[1;1;0;0];
t1=[t];x1=[x];ul=[]1;

%alpha and beta are tuning parameters (alpha=beta=1 => linear control)
alpha=0.1; beta=1; Y%for HPC with negative degree (upgrade close to zero)
%alpha=1;beta=100; Yfor HPC with positive degree (upgrade close to Inf)
%alpha=0.1;beta=100; %for FHPC (global upgrade)

noise=0; %magnitude of measurement noises (may be changed for comparison)
disp(’Run numerical simulation...’);

[Ah Bh]=ZOH(h,A,B); %discretization of linear plant by ZOH

while t<Tmax

xm=x+2*noise* (rand(4,1)-0.5); #modeling of noised measurement
%u=Klin*xm; %linear control (for comparison)
u=e_hpc (xm,K0,K,Gd,P,mu,alpha,beta) ; %explicit HPC

%simulation of the system (with control saturation as in QUBE Servo-2)
x=Ah*x+Bh*min (10,max(-10,u));

t=t+h; tl1=[tl t]; x1=[x1 x]; ul=[ul ul;

end;

ul=[ul ul;

disp(’Done!’);

%%norm of the state at the time instant Tmax
disp([’ | [x(Tmax) | |=’ ,num2str (norm(x))])
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The comparison of the simulation results for linear control (LC)

>> demo_lpc2hpc

Run numerical simulation...
Done!

| |x(Tmax) | |=0.0057923

with locally homogeneous controller (HPC)

>> demo_lpc2hpc

Run numerical simulation...
Done!

| |x(Tmax) | |=4.6229e-08

shows an essential improvement (in times, see above) of stabilization precision |x(T)|
at the terminal instant of time without any degradation of the system transient (see
Fig and Fig. The upgrade was done locally (close to 0). That is why trajec-
tories of system with linear and homogeneous controller simply coincide on the time
interval [0,1]. The zoomed plots for the time interval [1,3] are depicted in Fig[4.5
and Fig[.6] which clearly show faster convergence of the system with homogeneous
controller.
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n=4 LPC, m=1

5 5
8 0 S0
-5 : : : : : -5 : : : : :
0 0.5 1 15 2 2.5 3 0 0.5 1 15 2 2.5 3
t t

Figure 4.3: Simulation of linear proportional control (LPC) u = Kj;,x for linearized

system (|4.13)

n=4 HPC, m=1

Figure 4.4: Simulation of locally homogeneous proportional controller (HPC) (3.2))
for linearized system (|4.13))
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n=4 LPC, m=1

1 0.5
—
— 1y
T3
—y
0.5F
8 0 = 0
-0.5
-1 ; ' ; -0.5
1 15 25 3 1 15 2 25 3
t t

Figure 4.5: Simulation of linear proportional control (LPC) u = Kj;,z for linearized
system (4.13)) (zoom for the time interval [1, 3])

n=4 HPC, m=1
1 T T 0.5 T T
1
—
T3
—,
0.5¢
8 0 3 0
-05¢
-1 -0.5
1 15 2 2.5 3 1 15 2 25 3
t t

Figure 4.6: Simulation of locally homogeneous proportional controller (HPC) (3.2))
for linearized system (4.13)) (zoom for the time interval [1, 3])
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4.4 Comparison on real experiment in ControlHub

The setup for real control experiments with rotary inverted pendulum is available

on-line (see Fig. [4.7) and http://valse-pendulum.lille.inria.fr:5000| as a part of the
ControlHub platform (under construction in Inria Lille).

¢ c (A Not Secure | Valse-pendulumjile.infia.fr:5000/home Qo ﬁ) o

Home Downloads Make an experiment Show room Table of results  About

Rotary Inverted Pendulum

Description of control challenge

The control aim is to stabili

link at upper iti d:

- to stabilise rotary arm at zero position

QoUANSER

- to track the step signal by the rotary arm

- to track continuous trajectory by the rotary arm

As an experimental plarform, the rotary inverted pendulum QUBE-Servo-2 is selected (see Quanser webpage)

How to make experiment
Download Develop Submit Check

Figure 4.7: Home page of rotary inverted pendulum control experiment

The platform is aimed at remote rapid prototyping, demonstration and comparison
of various control algorithms on real experimental setups.

The user can upload its own control algorithm to the platform in order to test it on
a real setup (Rotary Inverted Pendulum Quanser QUBE Servo - 2). The description
of the experimental setup (provided by the manufacturer) and a Simulink model of
the system for off-line validation of user-defined controllers can be found in the tab
”Download”.

To make an experiment, first, the user need to select a control task on which the
user-defined control algorithm should be tested. There tasks are presently available:

e Task 1: stabilization (o — 0,0 — 0)
e Task 2: set-point tracking (o — 0,  — step signal):

0 ift<5
r/5  if5<t<10

—n/5 if10<t<15
0 if ¢t > 15

eref =

e Task 3: continuous trajectory tracking (« — 0,60 — sinusoidal signal)

Ores(t) = 0.3sin(t)
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http://valse-pendulum.lille.inria.fr:5000

Next, the control/observer algorithm should be uploaded or directly typed (pasted)
in the forms on the bottom of the page (see Fig. [4.8).

Please, choose the task type:

Continuous trajectory

ref_trajectory

Input Output

function [x, O_outl=observer(t, y, u, O_in)

Figure 4.8: Submission of the control law for a testing

The control algorithm has to be realized as m-function of MATLAB in a certain
format. By default, the linear (Quanser’s) controller is implemented:

function [u, C_out]=control(t, x, =x_ref, C_in)
%
%t - time
%x=(theta,alpha,d_theta,d_alpha) is the system state (estimated by the observer),
%where the angle alpha=0 corresponds to the lower position of the pendulum.
%the variable C_in(out) is the internal variable of the controller
%C_in corresponds to C_out at the previous instant of time.
%The command C_out=C_in has to be included if the controller does not need an
% internal state.
YA
%The following change of coordinate makes the state x(2)=0 corresponding to
%the upper position of the pendulum.

x(2)=mod (x(2),2*pi)-pi;

IR to s ToToTolo oo o o to ot T To T T oo o o o o oo o T T T T o oo oo o o 1o T T T o o o o oo oo o o o

% THE USER-DEFINED CONTROLLER HAS TO BE REALIZED BELOW

Tl b b o oo ToToTo T o o o o to ot To T T T o oo oo o oo o T T o oo oo oot o T T o oo o oo oo o oo

C_out=C_in;

%The static linear feedback u=K(x-x"ref) stabilizes the pendulum in

%the upper position and tracks the reference theta"ref(t)=0.3sin(t).

u=[2 -35 1.5 -3]*(x-x_ref);

Click on the button ’Submit’ on the bottom of the page to send your control solution
for testing. To identify your own control solution in the list of other submission, it is
recommended put some name to the field 'Insert your submission name’.
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The user’s controller/observer will be first tested on simulator and next on the

real experimental setup (Quanser QUBE Servo-2). The whole process takes about 3
minutes. In the tab ”Show room” the user can survey the testing progress on-line
using the web-camera installed in the lab. The results will be added to the database

(the tab 'Table of results’). The user can download the results and compare the

results of the submitted controller with the results for other controllers stored in the
database.

Since the HCS Toolbox is already installed on the pendulum platform, then its
functions can be utilized for implementation of HPCﬂ

function [u, C_out]=control(t, x, =x_ref, C_in)
%
%t - time

%x=(theta,alpha,d_theta,d_alpha) is the system state (estimated by the observer),
%where the angle alpha=0 corresponds to the lower position of the pendulum.

%the variable C_in(out) is the internal variable of the controller

%C_in corresponds to C_out at the previous instant of time.

%The command C_out=C_in has to be included if the controller does not need an

% internal state.

yA
%The following change of coordinate makes the state x(2)=0 corresponding to
%the upper position of the pendulum.

x(2)=mod (x(2),2*pi)-pi;

TtotoToTo oo oo To o oo o To o oo 1o To o oo 1o o o oo oo oo oo oo oo o oo oo o o oo T o oo T o oo o o
% THE USER-DEFINED CONTROLLER HAS TO BE REALIZED BELOW
Yy Y Y Y Y Y Y Y A Y Y Y Y YA Y Y Y A Y Y Y YA

C_out=C_in;

%The static linear feedback u=K(x-x_ref) stabilizes the pendulum in
%the upper position and tracks the reference theta"ref(t)=0.3sin(t).

K0=[-0.0000 -5.2811 0.2420 0.01741;

Gd=[ 4.0000 -2.0248 0.0033 -0.0033;
-0.0000 2.0000 -0.0000 0.0000;
0.0000 -0.3800 3.0000 -2.0235;
0.0000 0.0000  -0.0000 1.0000] ;

K=[2.0000 -29.7189 1.2580 -3.0174];

p=[

3.1581 -7.2001 0.5908 -0.6077;
-7.2001 96.7019 -6.8570 7.4704;
0.5908 -6.8570 0.5539 -0.5856;
-0.6077 7.4704 -0.5856 0.6472]1;

u=e_hpc(x-x_ref,K0,K,Gd,P,-1,0.8,1);

2The HPC discretization algorithms from HCS Toolbox are not optimized for implementation in

low performance control devices. Concerning industrial implementation of homogeneous algorithms
please contact the HCS Toolbox developer andrey.polyakov@inria.fr
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The LPC and HPC controllers are locally stabilizing controllers (for the rotary pen-
dulum), so they start to operate that the swing-up controller bring the system close to
the upper position of the pendulum. That is why the comparison is made only on the
time interval [3,20]. If a stabilizing controller cannot hold the pendulum close to the
upper position for ¢ > 3 then the quality of the stabilizing controller is unacceptable.
Both LPC and (upgraded) HPC solves successfully all three control tasks without
any a-priori knowledge about reference trajectories. Both controllers are saturated
by £10 V (due to physical restrictions of the motor’s input voltage). The control
input and output measurements are sampled with the period 0.002. Notice that only
the angles o and 6 are directly measured by encoder having certain quantization, but
their derivatives are obtained by an observer /filter. For both controller the same state
observer (provided by Quanser) is utilized.

The comparison results for LPC and HPC control application in the real device
(Qunser QUBE Servro-2) are shown in Fig. (Task 1), in Fig . (Task 2) and in
Fig . (Task 3). In all three cases the tracking error of HPC is twice smaller than
the tracking error of LPC. HPC also demonstrates smaller overshoots Fig . .
However, the homogeneous controller consumes a bit more energy. Both Lo and L.
norms of HPC signal are larger than in the case of LPC. This is also expectable, since
faster transient needs additional power. There always exists a trade of between fast
response-+high precision and a consumption of control energy. Homogeneity provides
a possible way to adjust this in practice (using the saturation parameters a,b, see

Section [3.1.7)).
Stabilization at zero Stabilzing control signal_
pbicion,

02 T T T T T = T T T T T =i
—HpC [—Hec]

| —reference]

01
o5} ‘

| ‘\‘ ‘I\\‘ i \”

O I HA
< = 0 “‘“\ “IH\ u.‘\l | wﬂ"-‘- Rl | 1

05

Figure 4.9: Comparison of LPC and HPC for Task 1

Tracking of the step reference Tracking control for step signal
T T

1 T T T T ] ] I I " Fec
e —+ipc|

—HPC
reference] 1

o5k

Figure 4.10: Comparison of LPC and HPC for Task 2
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Tracking precision for the refenence signal 6,/ = 0.3sin(f) Tracking control signal for the reference ,.; = 0.3sin(t)
T T T T T T T T T T

1 T T

Figure 4.11: Comparison of LPC and HPC for Task 3

4.5 Conclusions

e Theoretical conclusions of Chapter [2| (about faster convergence, better robust-
ness and smaller overshoots) for homogeneous systems are confirmed by practi-
cal control experiments.

e HCS Toolbox provides simple-in-use functions for design of homogeneous con-
trollers/observer and upgrading existing linear algorithms to homogeneous ones.
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Chapter 5

List of Acronyms

e HCS (Homogeneous Control System)

e HO (Homogeneous Observer)

e HPC (Homogeneous Proportional Control)

e HPIC (Homogeneous Proportional-Integral Control)
e HSMC (Homogeneous Sliding Mode Control)

e HSMCI (Homogeneous Sliding Mode Control with Integral action)
e LO (Linear Observer)

e LPC (Linear Proportional Control)

e LPIC (Linear Proportional-Integral Control)

e MIMO (Multiply-Input Multiply-Output)

e SISO (Single Inout Single Output)

e ZOH (Zero-Order-Hold)
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Chapter 6

List of Functions of HCS Toolbox

(for more info type help <name_of_function> in the Command Line of MATLAB)

Homogeneous Objects induced by Linear Dilation:

hnorm - computation of homogeneous norm
hproj - computation of homogeneous projection
hcurve - generation of points of a homogeneous curve

hsphere - generation of a random grid on a homogeneous sphere

Homogeneous Control Design:

hpc_design - Homogeneous Proportional Control (HPC) design
hpci_design - Homogeneous Proportional-Integral Control (HPIC) design
hsmc_design - Homogeneous Sliding Mode Controller (HSMC) design
hsmci_design - design of HSMC with Integral action

fhpc_design - Fixed-time HPC design

fhpic_design - Fixed-time HPIC design

1pc2hpe - upgrading Linear Proportional Control (LPC) to HPC
1pic2hpc - upgrading Linear PI control (LPIC) to HPIC

Discretization of Homogeneous Control:

e_hpc - explicit discretization of HPC

si hpc - semi-implicit discretization of HPC
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e c_hpc - consistent discretization of HPC

e e_hpic - explicit discretization of HPIC

e e_hsmc - explicit discretization of HSMC

e si hsmc - semi-implicit explicit discretization of HSMC

e e hsmci - explicit discretization of HSMC with Integral action
e e_fhpc - explicit discretization of Fixed-time HPC

e si_fhpc - semi-implicit discretization of Fixed-time HPC

e e_fhpic - explicit discretization of Fixed-time HPIC

Homogeneous Observer Design:
e ho_design - Homogeneous Observer (HO) design
e fho_design - Fixed-time HO design

e 1lo2ho - upgrading Linear Observer (LO) to HO

Discretization of Homogeneous Observer:

e e _ho - explicit Euler discretization of HO

e si_ho - semi-implicit discretization of HO

e e_fho - explicit Euler discretization of FHO

e si_fho - semi-implicit discretization of HO

Block forms:

e block_con - transformation to block controlability form

e bloc_obs - transformation to block observability form

e trans_con - transformation to partial block controlability form
e trans_con - transformation to partial block observability form

e output_form - transformation to reduced order output control system

Ezamples (to open type edit <name_of_example> in Command Line of MATLAB):
e demo_hnorm - demo of computation of a homogeneous norm

e demo_hsphere - plot of homogeneous spheres in 2D
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demo_hcurve - plot of homogeneous curves in 2D
demo_hpc - demo of HPC design and simulation
demo_hpic - demo of HPIC design and simulation
demo_hsmc - demo of HSMC design and simulation
demo_hsmci - demo of HSMCI design and simulation
demo_fhpc - demo of FHPC design and simulation
demo_fhpic - demo of FHPIC design and simulation
demo_lpc2hpc - demo of upgrading LPC to HPC/FHPC
demo_lpic2hpic - demo of upgrading LPIC to HPIC/FHPIC
demo_ho - demo of HO design and simulation

demo_fho - demo of FHO design and simulation

demo_lo2ho - demo of upgrading LO to HO/FHO
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