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Abstract

Homogeneous Systems Control Toolbox (HCS Toolbox) for MATLAB is a collection
of functions for design and tuning of control systems with improved control quality
(faster convergences, better robustness, smaller overshoots, etc) based on the concept
of a dilation symmetry (homogeneity). Homogeneous controllers/observers design
well as procedures for upgrading of existing linear controllers/observers to nonlinear
(homogeneous) ones are developed for both Single-Input Single-Output (SISO) and
Multiply-Input Multiply-Output (MIMO) systems.
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Chapter 1

Get Started

1.1 General Context

The HCS Toolbox supports an model-based control systems design under the conven-
tional framework presented at Fig. 1.1:

Figure 1.1: Model-based control systems design

where x ∈ Rn - the system state, u ∈ Rm - the control input , y ∈ Rk - the system
output, the matrices A ∈ Rn×n, B ∈ Rn×m and C ∈ Rk×n are assumed to be known.
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Control problems which can be solved using HCS toolbox

• design of a state feedback law u for robust finite1/fixed-time2 stabilization
of the state or the output (i.e., y(t) = 0,∀t ≥ T )

• upgrading a linear stabilizing controller (e.g., u = Kliny) to a nonlinear
one with a better quality

• design of a dynamic observer3 for finite/fixed-time estimation of the state
x based on the measured output y

• upgrading a linear (Lunberger) observer of x to a nonlinear one with a
better quality

• design of an observer-based feedback law for robust finite/fixed-time sta-
bilization of the system state to zero using the output measurements only

The HCS toolbox solves the above design problems based on the concept of the
generalized homogeneity (see Chapter 2) and contains (see Chapter 3)

• m-functions for homogeneous controllers/observers design

• m-functions for discretization of controllers/observers 4

• examples of homogeneous systems design realized in m-files

• demo of upgrading linear controller/observer for the rotary inverted pendulum5

to homogeneous one with a better quality.

• various m-functions for homogeneous systems

1Finite-time stability ⇒ ∀x(0) ∈ Rn, ∃T = T (x(0)) ≥ 0 : x(t) = 0, ∀t ≥ T
2Fixed-time stability ⇒ ∃Tmax > 0 : x(t) = 0, ∀t ≥ Tmax, ∀x(0) ∈ Rn
3A system ż = f(z, y), y = Cx is a finite-time observer of x if z(t) = x(t) for t ≥ T , where

T = T (x(0)) < +∞. The above system is a fixed-time observer if supx(0) T (x(0)) < +∞.
4The discretization algorithms are not optimized for digital implementation in low performance

devices (e.g., outdated controllers) or for fast control plants (like power converters). Please do contact
the toolbox developer andrey.polyakov@inria.fr if a specific algorithm of digital implementation
for your concrete industrial application is required

5The demo is supported by real physical experiments with Rotary Inverted Pendulum Quanser
QUBE Servo-2 connected to ControlHub platform (http://valse-pendulum.lille.inria.fr:5000/. The
users can repeat remotely all control experiments and test/compare their own controllers/observers.
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1.2 Supporting Information

Installation of the HCS Toolbox:

1 Download zip-file from http://gitlab.inria.fr/polyakov/hcs-toolbox-for-matlab

Figure 1.2: Click a button as shown above to download zip-file

2 Extract the archive

3 Add1 path to the folder ’...\HCS toolbox ver01\’ in the search path of MAT-
LAB

Type help HCS toolbox in the Command Line of MATLAB to check if the installa-
tion is well done (you should see the list of functions of HCS Toolbox).

Compatibility:

• The HCS Toolbox uses just common MATLAB functions. It is compatible with
most versions of MATLAB.

• The recommended browser for for ControlHub Demo
http://valse-pendulum.lille.inria.fr:5000/

is Google Chrome.

1Use ’Set Path’ in the panel of MATLAB or the function addpath(’<path to folder>’) in the
Command Line of MATLAB
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Chapter 2

Mathematical Backgrounds

Notation

• R - field of real, R+ = {α ∈ R : α > 0};

• |x| =
√
x>x is the Euclidean norm in Rn, x ∈ Rn

• P � 0 means P = P> ∈ Rn×n is a positive definite matrix (≺ 0,� 0,� 0)

• d(s) = eaGd , s ∈ R is a linear dilation in Rn with an anti-Hurwitz matrix Gd;

• ‖x‖=
√
x>Px is the weighted Euclidean norm such that P �0, PGd+G>dP � 0;

• S = {x ∈ Rn : ‖x‖ = 1} is the unit sphere;

• ‖ · ‖d is the canonical homogeneous induced by ‖ · ‖(see below);

• Hd(Rn) - a set of all d-homogeneous functions Rn 7→ R (see below);

• Fd(Rn) be a set of all d-homogeneous vector fields Rn 7→ Rn;

• degd(f) - homogeneity degree of f .

2.1 Problems Under Consideration

The classical problems of the control systems theory

• state/output stabilization of a system

• state estimation of a system

are considered under additional constraint of a finite or a fixed-time response (see
below) of the system. Solutions to these problems are going to be developed based
on the generalized homogeneity surveyed in this chapter. Let us first theoretical
formulations of the mentioned control/estimation problems.
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2.1.1 Stabilization Problem

Model of control system:

ẋ(t) = Ax(t) +Bu(t), t > 0 (2.1)

• x(t) ∈ Rn is the system state

• u(t) ∈ Rm is the control input (can be modified as need)

• A ∈ Rn×n and B ∈ Rn×m are known matrices

Asymptotic Stabilization by a Feedback Law

The problem is to design ũ : Rn 7→ Rm such that the system

ẋ(t) = Ax(t) +Bũ(x(t))

is asymptotically stable1⇒

x(t)→ 0 as t→ +∞

Finite-time Stabilization by a Feedback Law

The problem is to design ũ : Rn 7→ Rm such that the system

ẋ(t) = Ax(t) +Bũ(x(t))

is finite-time stable ⇒

∀x(0) ∈ Rn, ∃T = T (x(0)) ≥ 0 : x(t) = 0, ∀t ≥ T

Fixed-time Stabilization by a Feedback Law

The problem is to design ũ : Rn 7→ Rm such that the system

ẋ(t) = Ax(t) +Bũ(x(t))

is fixed-time stable ⇒

∃Tmax > 0 : x(t) = 0, ∀t ≥ Tmax, ∀x(0) ∈ Rn

A stabilization of an output y = Cx is a particular case of the above problems.

1The classical solution is ũ = Kx such that A + BK is Hurwitz (i.e., all its eigenvalues have
negative real parts).
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2.1.2 State Estimation Problem

Model of the system:

ẋ(t) = Ax(t) + p(t), y(t) = Cx(t) (2.2)

• x(t) ∈ Rn is the system state (unknown)

• p(t) ∈ Rn is the exogenous input (can be measured on-line)

• y(t) ∈ Rk is the measured output

• A ∈ Rn×n, B ∈ Rn×m and C ∈ Rk×n are known matrices

Asymptotic Observer

The problem is to design a system (asymptotic observer)2

ż(t) = f(z(t), p(t), y(t)), f : Rn × Rn × Rk 7→ Rn

such that ‖z(t)− x(t)‖ → 0 as t→ +∞

Finite-time Observer

The problem is to design a system (finite-time observer)

ż(t) = f(z(t), p(t), y(t)), f : Rn × Rn × Rk 7→ Rn

such that ∀x(0) ∈ Rn, ∃T = T (x(0)) ≥ 0 : ‖z(t)− x(t)‖ = 0, ∀t ≥ T

Fixed-time Observer

The problem is to design a system (fixed-time observer)

ż(t) = f(z(t), p(t), y(t)), f : Rn × Rn × Rk 7→ Rn

such that ∃Tmax > 0 : ‖z(t)− x(t)‖ = 0, ∀t ≥ Tmax, ∀x(0) ∈ Rn.

2The classical solution (Luenberger observer) is ż(t) = Az(t) +Bũ(t) +L(y(t)−Cz(t)) such that
the matrix A+ LC is Hurwitz (i.e., all its eigenvalues are placed in the left complex half-plane).
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2.2 From Linearity to Homogeneity in Control Sys-
tems Design

The basic idea of the homogeneity based control/observer design is an expansion of
linear methods/algorithms of (asymptotic controllers/observers) design to nonlinear
systems such that finite/fixed-time stability can be provided by means of the tuning
of the so-called homogeneity degree. This section explains the basis intuitions behind
the mentioned idea.

2.2.1 Homogeneity is a Dilation Symmetry

In mathematics, an invariance of some characteristics of an object with respect to
a certain group of transformations is known as a symmetry. The simplest example
of a symmetry is the invariance of geometric figures with respect to a rotation or a
dilation (see Fig.2.1).

Figure 2.1: Rotation and dilation symmetries of the figure

By definition, homogeneity is a dilation symmetry. For functions, it can be iden-
tified analyzing the linearity property.
Linearity = Homogeneity + Additivity + Central Symmetry

f is linear ⇔ f(λx) = λf(x) & f(x+ y) = f(x) + f(y) & f(−x) = −f(x)

Example: f(x) = x1 + x2, where x=(x1, x2)>
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Standard Homogeneity (Leonhard Euler, 18th century)

x 7→ λx (standard dilation) f(λx) = λνf(x), ∀s, x (symmetry)

λ > 0 - scaling factor ν ∈ R - homogeneity degree

Example: f(x) = x1x2 + x22 is standard homogeneous of degree 2:

f(λx) = λ2f(x)

Generalized Homogeneity (Zubov 1958, Kawski 1991 [24, 6])

x→ d(s)x (generalized dilation) f(d(s)x) = eνsf(x), (symmetry)

Limit property: lim
s→−∞

‖d(s)x‖=0, lim
s→+∞

‖d(s)x‖=+∞, ∀x 6=0

Example: d(s) =
(
e2s 0
0 es

)
, f(x) = x1 + x22 is d-homogeneous:

d(s)x =
(
e2sx1, e

sx2
)>

and f(d(s)x) = e2sf(x)

The HPC toolbox deals only with linear dilations in Rn.

Linear Dilation (Polyakov 2019 [14, 15])

A continuous linear dilation in Rn is a matrix-valued function given by

d(s) = esGd =

+∞∑
i=0

siGid
i! , s ∈ R

where Gd ∈ Rn×n is an anti-Hurwitz matrix 3called a generator of d.

• Standard dilation:
d1(s) = esI, Gd = I ∈ Rn×n

• Weighted dilation:
d2(s)=diag{eris}, Gd =diag{ri}�0

• Linear dilation:
d3(s)=esGd , Gd is anti-Hurwitz

3A matrix is anti-Hurwitz if its eigenvalues have positive real parts
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2.2.2 Properties of Homogeneous Systems

Homogeneity (dilation symmetry) of a function is inherited by any other mathematical
object induced by this function: the derivatives of the homogenous functions are
homogeneous as well, solutions of differential equations with homogeneous right-hand
side are symmetric, etc. Indeed, for example, see below the dilation symmetry of
solutions of two standard homogeneous systems (harmonic and relays oscillators)
with respect to scaling of initial conditions.

Harmonic oscillator Relay oscillator{
ẋ1 = x2,
ẋ2 = −x1,

x1, x2 ∈ R
{
ẋ1 = −sign[x2],
ẋ2 = sign[x1],

x1, x2 ∈ R

f(λx) = λf(x) f(λx) = λ0f(x)

Table 1: Properties of linear vs homogeneous systems

Linear System Homogeneous System
ẋ = Ax, x(0) = x0 ẋ = f(x), x(0) = x0
A ∈ Rn×n is a matrix f(d(s)x) = eµsd(s)f(x)

Trajectory Scaling x(t, esx0)=esx(t, x0) x(t,d(s)x0)=d(s)x(eµst, x0)
Local ⇔ Global X X

Invariance4⇔ Stability X X
Stability ⇒ Robustness ẋ = Ax+Dw ẋ = f(x,w)
(Input-to-State Stability) w ∈ L∞ w ∈ L∞

Convergence Rate Exponential +Finite/Fixed-time (µ 6= 0)
Lyapunov Function A weighted Euclidean norm A homogeneous norm

V =
√
x>Px, P � 0 V (d(s)x) = esV (x)

Consistent discretization X X
(preserves convergence rate) Exponential +Finite/Fixed-time (µ 6= 0)

Question

Is there any potential advantage of a homogeneous system versus a linear one?

4∃ a positively invariant compact set
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2.2.3 Linearity vs Homogeneity

I. Convergence rates of homogeneous and locally homogeneous systems:{
ẋ(t) = u(t),
x(0) = x0,

x, u ∈ R.

Exponential stability (Lyapunov 1892, [8]):
u(t) = −x(t)
x(t) = e−tx0 → 0 if t→ +∞

Finite-time stability (Roxin 1966, [21]):
u(t) = −sign(x(t))
x(t) = 0 for t ≥ ‖x0‖

Fixed-time stability (Polyakov 2012, [13]):

u(t)=−
(
|x(t)| 12 +|x(t)| 32

)
sign(x(t))

x(t) = 0 for t ≥ π independently of x0

Conclusion I

Homogeneous system may have faster convergence than linear one.

II. Robustness issues of homogeneous systems:

Model of system ẋ = λx+ u, ẋ = u+ g(t),
where λ > 0 is unknown constant where g(t) is unknown but

bounded function |g(t)| ≤ ḡ.
Control aim stabilize x to 0 stabilize x to 0
Linear control u=−kx cannot guarantee u=−kx cannot guarantee

a boundedness of solutions asymptotic stability
Homogeneous control u = −kx3, k > 0 guarantees u=−(ḡ+k)sign(x) guarantees

a practical (fixed-time) stability local (aympt.) stability

lim sup
t→+∞

|x(t)| =
√
λ/k x(t) = 0, ∀t ≥ |x0|/k

Conclusion II

Homogeneous system may be more robust than linear one.
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III. Elimination of ”unbounded” peaking effect:

Model of system:{
ẋ = Ax+ bu(x),
‖x(0)‖ ≤ 1,

t > 0, A =

(
0 1 0 ... 0
0 0 1 ··· 0
··· ··· ··· ··· ···
0 0 0 ··· 1
0 0 0 ··· 0

)
, B =

(
0
0
···
0
1

)

where x = (x1, x2, ..., xn)>, u : Rn 7→ R.

Control aim: ‖x(t)‖≤ε, ∀t≥T, where ε>0, T >0 are given

– Linear control: For any ε > 0 and T > 0 there exists k = (k1, k2, ..., kn):

u`(x) := kx ⇒ ‖x(t)‖ ≤ Ce−σt ≤ ε, ∀t ≥ T

Unbounded ”peaking”: There exists5 γ > 0 independent of σ such that

sup
0≤t≤σ−1

sup
‖x(0)‖=1

‖x(t)‖ ≥ γσn−1 → +∞ as ε→ 0

– Homogeneous control: For any T > 0 there exists k̃ = (k̃1, k̃2, ..., k̃n) :

uhom(x) := k̃d(− ln ‖x‖d)x ⇒ ‖x(t)‖ = 0, ∀t ≥ T.

where ‖·‖d is homogeneous norm (see below). The control uhom is globally
uniformly bounded |uhom|≤‖k̃‖ and the overshoot is independent of ε>0.

”Overshoots” of linear (left) and homogeneous (right) controllers (n=2, ε = 0.005, T =1)

Conclusion II

Homogeneous system may have smaller overshoot than linear one.

5Izmailov 1987 [5], Polyak & Smirnov 2016 [12]
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2.3 Generalized Homogeneity

2.3.1 Linear Dilations

A linear continuous dilation in Rn is a matrix-valued function given by

d(s) = esGd =

+∞∑
i=0

siGid
i! , s ∈ R

where Gd ∈ Rn×n is an anti-Hurwitz matrix 6called a generator of d.

Monotone dilation

Let ‖ · ‖ be a norm in Rn and d be a dilation7in Rn. A dilation d is said to be
strictly monotone with respect to ‖ · ‖ if ∃β > 0 : ‖d(s)‖ ≤ eβs.

The standard dilation d(s) = esIn is always monotone due to standard homogene-
ity (by definition) of any norm ‖esx‖ = es‖x‖.

Criterion of monotonicity of linear continuous dilation in Rn

A linear continuous dilation d is strictly monotone with respect to the weighted
Euclidean norm

‖x‖ =
√
x>Px, x ∈ Rn,

where 0 ≺ P = P> ∈ Rn×n, if and only if the following linear matrix
inequality holds

PGd +G>dP � 0, (2.3)

where Gd ∈ Rn is the generator of the dilation d. Moreover, one has

β‖d(s)z‖2 ≤
d
ds‖d(s)z‖2

2 ≤ α‖d(s)z‖2, ∀s ∈ R,∀z ∈ Rn,
eαs≤bd(s)c≤‖d(s)‖≤ eβs, ∀s≤0,

eβs≤bd(s)c≤‖d(s)‖≤ eαs, ∀s≥0,

(2.4)

where

α =
1

2
λmax

(
P

1
2GdP

− 1
2 + P−

1
2G>dP

1
2

)
> 0,

β =
1

2
λmin

(
P

1
2GdP

− 1
2 + P−

1
2G>dP

1
2

)
> 0.

7A dilation is a one-parameter group of transformations d(s) : Rn 7→ Rn, s ∈ R satisfying the
limit property lim

s→−∞
‖d(s)x‖=0, lim

s→+∞
‖d(s)x‖=+∞, ∀x 6=0
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2.3.2 Canonical Homogeneous Norm

Vector space

A vector space over the filed R is a set V together with two operations:

• vector addition V× V 7→ V denoted by v + w for v, w ∈ V.

• multiplication by a scalar R×V 7→ V denoted by α · v for α∈R, v∈V.

satisfying certain axioms

• Associativity : u+ (v + w) = (u+ v) + w

• Distributivity : (α+ β)u = α · u+ β · v

• ...

For V = Rn the multiplication of v = (v1, ..., vn)> ∈ Rn by α ∈ R is traditionally
defined as follows

αv = (αv1, ..., αv2)> (standard dilation!!!)

Question

Is it possible to construct a vector space using a generalized dilation as a mul-
tiplication by a scalar?

Definition (a norm):
‖ · ‖ ∈ C(Rn,R+) is a norm if

1) ‖x‖ = 0⇔ x = 0

2) ‖ ± esx‖ = es‖x‖

3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Definition ( a homogeneous norm):
‖ · ‖d ∈ C(Rn,R+) is a d-homogeneous
norm if

1) ‖x‖d = 0⇔ x = 0

2) ‖ ± d(s)x‖d = es‖x‖

3) ‖x+̃y‖d ≤ ‖x‖d + ‖y‖d

where +̃ is an alternative vector addition in Rn satisfying all axiomes of the vector
space together with the scalar multiplication defined as α̃·x = sign(α)d(− ln |α|)x.

Canonical8homogeneous norm for monotone dilations

‖x‖d =esx where sx ∈ R : ‖d(−sx)x‖=1 x 6= 0

8A homogeneous norm induced by a canonical norm of the space.
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Figure 2.2: Level sets of the weighted Euclidean norm and the d-homogeneous norm.

Lemma (Polyakov 2019 [14])

If a linear continuous dilation d in Rn is strictly monotone with respect to the
norm ‖x‖ =

√
x>Px, P � 0 then

1) ‖ · ‖d : Rn 7→ R+ is single-valued and ‖ · ‖d ∈ C∞(Rn\{0});

2) ‖x‖d → 0 as x→ 0 and x 6= 0⇔ ‖x‖d 6= 0;

3) ‖ ± d(s)x‖d = es‖x‖d, ∀s ∈ R,∀x ∈ Rn;

4) ‖x‖=1⇔‖x‖d =1, ‖x‖<1⇔‖x‖d<1 and ‖x‖>1⇔‖x‖d>1;

5) for 0 < 2β = λmin

(
PGd +G>dP

)
≤ λmax

(
PGd +G>dP

)
= 2α one has

|‖x1‖αd − ‖x2‖αd| ≤ ‖x1 − x2‖, ∀x1, x2 ∈ B, (2.5)∣∣∣‖x1‖βd − ‖x2‖βd
∣∣∣ ≤ ‖x1 − x2‖, ∀x1, x2 ∈ Rn\B, (2.6)

where B = {x :∈ Rn : ‖x‖ ≤ 1} is the unit ball in Rn.

6) the derivative of ‖ · ‖d is given by

∂‖x‖d
∂x

= ‖x‖d x>d>(− ln ‖x‖d)Pd(− ln ‖x‖d)
x>d>(− ln ‖x‖d)PGdd(− ln ‖x‖d)x

, x 6= 0. (2.7)

The canonical homogeneous norm introduces an alternative norm topology in Rn.
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Generalized homogeneous homeomorphism on Rn

Let a linear continuous dilation d be strictly monotone with respect to the
norm ‖x‖ =

√
x>Px. The mapping Φ : Rn 7→ Rn given by

Φ(x) = ‖x‖dd(− ln ‖x‖d)x, x ∈ Rn (2.8)

is a homeomorphism in Rn, its inverse has the form

Φ−1(z) = ‖z‖−1d(ln ‖z‖)z, z ∈ Rn.

with Φ(0) = Φ−1(0) = 0 by continuity.

The following theorem justifies the name ”norm” for the functional ‖ · ‖d
Theorem (Polyakov 2020 [15])

Let a linear dilation d be strictly monotone with respect to the norm ‖x‖ =√
x>Px. Let an addition of vectors +̃ : Rn×Rn 7→ Rn and a multiplication by

a scalar ·̃ : R× Rn 7→ Rn be defined as follows

• x+̃y := Φ−1(Φ(x) + Φ(y)), where x, y ∈ Rn,

• λ̃·x := sign(λ)d(ln |λ|)x, where λ ∈ R, x ∈ Rn.

Then the set Rn together with the operations +̃ and ·̃ is a linear vector space
Rnd with the norm ‖ · ‖d.
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2.4 Homogeneous Systems

2.4.1 Homogeneous Mappings

Homogeneous function (Kawski 1991 [6])

A function h : Rn 7→ R is said to be d-homogeneous of a degree ν ∈ R if

h(d(s)x) = eνsh(x) for s ∈ R, x ∈ Rn, (2.9)

where d is a dilation in Rn.

Let Hd(Rn) be a set of all d-homogeneous functions Rn → R and degd(h) ∈ R
denote the homogeneity degree of h ∈ Hd(Rn).

Elements homogeneous arithmetics for functions h, g ∈ Hd(Rn):

1. αh ∈ Hd(Rn) and degd(αh) = degd(h) for any α ∈ R;

2. h+ g ∈ Hd(Rn) provided that degd(h) = degd(g);

3. h · g ∈ Hd(Rn) and degd(h · g) = degd(h) + degd(g);

4. h
g ∈Hd(Rn) and degd

(
h
g

)
= degd(h)− degd(g) if g(x) 6= 0, ∀x ∈ S;

5. if h(x) = c for all x ∈ Rn then h ∈ Hd(Rn) and degd(h) = 0 for c ∈ R\{0}. If
c = 0 then degd(h) is any.

Properties of homogeneous functions (Bhat & Bernstein 2005 [2])

Let h ∈ Hd(Rn) be such that supx∈S |h(x)| < +∞.

• If degd(h) > 0 then h is bounded on any d-homogeneous ball Bd(r) and
h(x)→ 0 as x→ 0

• If degd(h) < 0 then h is bounded on any set Rn\Bd(r) with r > 0 and
h(x)→ 0 as x→∞

• If degd(h) = 0 then h is uniformly bounded on Rn and, moreover,
h ≡ const provided that h is continuous at zero.

Euler’s homogeneous function theorem (Polyakov 2020 [15])

If h ∈ Hd(Rn) is differentiable on Rn\{0} then

∂h(x)

∂x
Gdx = degd(h) · h(x), ∀x 6= 0, (2.10)

where Gd ∈ Rn×n is a generator of the linear dilation d.
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Homogeneous vector field (Kawski 1991 [6])

A vector field f : Rn 7→Rn is said to be d-homogeneous of degree µ∈R if

f(d(s)x) = eµsd(s)f(x) for all s ∈ R, u ∈ Rn, (2.11)

where d is a dilation in Rn.

Let Fd(Rn) be a set of d-homogeneous vector fields Rn 7→ Rn and degd(f) denote
the homogeneity degree.

Elements homogeneous arithmetics for vector fields:

• If h ∈ Hd(Rn) and f ∈ Fd(Rn) then
h · f ∈ Fd(Rn) and degd(h · f) = degd(h) + degd(f)

• If f1, f2 ∈ Fd(Rn) and degd(f1) = degd(f2) then
f1+f2 ∈ Fd(Rn) and degd(f1 + f2) = degd(f1) = degd(f2)

• If f1, f2 ∈ Fd(Rn) then
f1(f2) ∈ Fd(Rn)

provided that degd(f2) = 0 or f1 is standard homogeneous.

Properties of homogeneous vector fields (Polyakov 2020 [15])

Let f ∈ Fd(Rn) be such that M := supx∈S ‖f(x)‖ < +∞

• If degd(f) + β > 0 then f is bounded on Bd(r) and
‖f(x)‖ → 0 as ‖x‖ → 0

• If degd(f) + α < 0 then f is bounded on Rn\Bd(r) and
‖f(x)‖ → 0 as ‖x‖ → +∞

• If degd(f) + β = degd(f) + α = 0 then f is uniformly bounded on Rn,

where α = λmax

(
P 1/2GdP

−1/2 + P−1/2GdP
1/2
)

and β =

λmin

(
P 1/2GdP

−1/2 + P−1/2GdP
1/2
)
.

Euler’s theorem for vector fields (Polyakov 2020 [15])

If f ∈ Fd(Rn) is differentiable on Rn\{0} then

∂f(x)

∂x
Gdx = (degd(f)In +Gd)f(x) for all x ∈ Rn\{0}. (2.12)
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On linear homogeneous vector fields (Polyakov 2020, Zimenko et al. 2020)

The following three claims are equivalent ([15], [23]):

1) a vector field x 7→ Ax with x ∈ Rn and A ∈ Rn×n is d-homogeneous of
degree µ 6= 0 with respect to a linear continuous dilation d in Rn.

2) there exists an anti-Hurwitz matrix Gd ∈ Rn×n such that

AGd = (µI +Gd)A; (2.13)

3) the matrix A is nipotent.

Conclusion:

• An 6= 0 ⇒ Gd = In, µ = 0

• An = 0 ⇒ ∀µ 6= 0, ∃Gd – anti-Hurwitz : AGd = (µIn +Gd)A

How to find Gd for a given µ 6= 0?

A possible solution:

1. find G0 such that AG0 = (In +G0)A (i.e., solve the linear equation)

2. take Gd =εIn+µG0 with a large enough ε> 0 (to make Gd anti-Hurwitz)

Local Homogeneity (Andrieu et al 2008 [1])

A d-homogeneous vector field fL : Rn 7→ Rn of degree ν ∈ R is said be d-
homogeneous approximation of f at L-limit (with L = 0 or L =∞) if

lim
r→L+

sup
x∈S
‖r−νd(− ln r)f(d(ln r)x)− fL(x)‖ = 0,

where S = {x :∈ Rn : ‖x‖ = 1} is the unit sphere in R.

Example: If f(x) = −x3 + x4 − x5 then

• the linearization at zero gives ∂f(z)
∂z

∣∣∣
z=0

x = 3z2
∣∣
z=0

x = 0

• the homogeneous approximation at zero gives f0(x) = −x3.
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2.4.2 Homogeneous Differential Equations

Any linear system

ẋ = Ax, t ∈ R, x(t) ∈ Rn, A ∈ Rn×n, x(0) = x0

is standard homogeneous and its solution x(t, x0) = etAx0 is symmetric with respect
to the scaling of the initial condition x(t, esx0) = esx(t, x0)

Symmetry of a flow of generalized homogeneous linear vector field

Let d be a linear dilation and let a linear vector field f : Rn 7→ Rn given by

f(x) = Ax, x ∈ Rn, A ∈ Rn×n

be d-homogeneous of degree µ ∈ Rn (i.e., Ad(s) = eµsd(s)A) then

etAd(s) = d(s)etAe
µs

, ∀s ∈ R, ∀t ∈ R.

Let x(t, x0) denote a solution of the system

ẋ(t) = f(x(t)), t > 0, (2.14)

with the initial condition x(0) = x0 ∈ Rn.

Theorem (Zubov 1958, Kawski 1991)

Let d be a dilation in Rn and the vector field f be d-homogeneous of degree
µ ∈ R. If x(t, x0) with t ∈ [0, T ] is a solution of the system (2.14) with the
initial condition x(0) = x0 then, for any s ∈ R,

x(t,d(s)x0) = d(s)x(eµst, x0), t ∈ [0, e−µsT ]

is a solution of (2.14) with the scaled initial condition x(0) = d(s)x0.

Corollary

Let f be a continuous d-homogeneous vector field of degree µ ≤ 0 then the
system ẋ = f(x) is complete9.

9A solution x of the system (2.14) has a finite-time blow-up if there exists T ∈ R such that
|x(t)| → +∞ as t→ T .
A system is complete if all its solutions have no finite-time blow up (in other words, if any solution
exists for all t ∈ R)
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Lyapunov Stability (Lyapunov 1892)

The system (2.14) is said to be locally (globally) uniformly Lyapunov stable
if10 ∃ε ∈ K

|x(t, x0)| ≤ ε(|x0|), ∀t ≥ 0, ∀x0 ∈ Ω,

where Ω is a neighborhood of the origin (resp., Ω = Rn)

Figure 2.3: Illustration of Lyapunov stability

Proposition (Bhat & Bernstein 2005 [2])

Let f : Rn 7→ Rn be a continuous d-homogeneous vector field. The system
(2.14) is Lyapunov stable if and only if it has a positively invariant11 bounded
neighborhood of the origin.

Asymptotic Stability (Lyapunov 1892)

The system (2.14) is said to be locally (globally) uniformly asymptotically stable
if12 ∃β∈KL

‖x(t, x0)‖ ≤ β(|x0|, t), ∀t ≥ 0, ∀x0 ∈ Ω,

where Ω is a neighborhood of the origin (resp., Ω = Rn)

Figure 2.4: Illustration of asymptotic stability

10A function ε : [0,+∞) 7→ [0,+∞) is said to be of the class K if ε is continuous, strictly increasing
and ε(0) = 0.

11A set Ω ⊂ Rn is positively invariant if x0 ∈ Ω⇒ x(t, x0) ∈ Ω,∀t ≥ 0.
12A function β : [0,+∞)× [0,+∞) is said to be of the class KL if β(·, s) ∈ K for any fixed s ≥ 0

and β(r, ·) is strictly decreasing to zero for any fixed r ≥ 0.
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Zubov-Rosier Theorem (Zubov 1958 [24] and Rosier 1992 [20])

Let a continuous vector field f : Rn 7→ Rn be d-homogeneous of degree µ. Let
m > 0 be an arbitrary positive number.

The system (2.14) is asymptotically stable if and only if there exists a positive
definite homogeneous function V ∈ C(Rn) ∩ C∞(Rn\0) of degree m:

V̇ (x) ≤ −ρV 1+ µ
m (x), ∀x ∈ Rn\{0}, (2.15)

where ρ > 0 is some number.

Corollary (Nakamura et al 2002 [9]

Let f be d-homogeneous of degree µ ∈ R. If (2.14) is locally asymptotically
stable then it is

• globally uniformly finite-time stable13 for µ < 0 with a settling-time
function T being continuous at x = 0;

• globally nearly fixed-time stable for µ > 0, i.e.

∀r > 0,∃Tr > 0 such that ‖x(t, x0)‖ ≤ r, ∀t ≥ Tr,∀x0 ∈ Rn.

Let us consider the perturbed nonlinear system:

ẋ = f(x, q), t > 0, x(t) ∈ Rn, q(t) ∈ Rk, x(0) = x0 (2.16)

Definition (Sontag 1989 [22])

A system (2.16) is said to be Input-to-State Stable (ISS) with respect to q ∈
L∞(R,Rk) if there exist14 β ∈ KL and γ ∈ K such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖q‖L∞((t0,t),Rk)). (2.17)

Theorem (Hong 2001 [4])

Let dq be a dilation in Rn and dq be a dilation in Rm such that ∃µ ∈ R :

f(dx(s)x,dq(s)q) = eµsdx(s)f(x, q) ∀x ∈ Rm,∀q ∈ Rm,∀s ∈ R.

If the system ẋ = f(x,0) is asymptotically stable then the system (2.16) is ISS.

13A system is said to be globally uniformly finite-time stable if it is Lyapunov stable and there
exists a locally settling-time function T : Rn 7→ [0,+∞) such that

x(t, x0)=0, ∀t≥T (x0), ∀x0∈Rn.
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2.4.3 Homogeneous Control Design

Let us consider the control system

ẋ = Ax+Bu, t > 0, (2.18)

where x ∈ Rn - system state, u ∈ Rm - control input, A ∈ Rn×n, B ∈ Rn×m.

The Problem of Homogeneous Stabilization

Given µ ∈ R the control aim is to design a dilation d in Rn and a feedback
control u : Rn 7→ Rm such that the closed-loop system is

1. d-homogeneous of degree µ, i.e. for f(x) = Ax+Bu(x) one holds

f(d(s)x) = eµsd(s)f(x), ∀x ∈ Rn, ∀s ∈ R;

2. asymptotically stable (⇒ finite-time stability for µ < 0).

Theorem 1 (inspired by [17, 18, 23, 15, 10])

The system (2.18) is homogeneously stabilizable with µ 6= 0 if and only if
the pair {A,B} is controllable15. For any controllable pair {A,B} one holds

1) the linear algebraic equation

AG0 −G0A+BY0 = A, G0B = 0 (2.19)

has a solution Y0∈Rm×n, G0∈Rn×n and for any solution one hold

– the matrix G0 − In is invertible is invertible;

– Gd =In+µG0 is anti-Hurwitz for µ≤ 1/ñ, where ñ∈N is a minimal
number such that rank[B,AB, ..., Añ−1B] = n;

– the matrix A0 = A+BK0 is nilpotent, K0 =Y0(G0 − In)−1 and

A0Gd = (Gd + µIn)A0, GdB = B; (2.20)

2) the linear algebraic system

A0X+XA>0 +BY +Y >B>+ρ(GdX+XG>d )=0,
GdX+XG>d �0, X=X>�0

(2.21)

has a solution X∈Rn×n, Y ∈Rm×n for any ρ∈R+;

3) the homogeneous norm ‖ · ‖d induced by ‖x‖ =
√
x>X−1x is a Lyapunov

function of the system (2.18) with the feedback law

u(x)=K0x+ ‖x‖1+µ
d Kd(− ln ‖x‖d)x, K=Y X−1, (2.22)

where d is a dilation generated by Gd; moreover,

d
dt‖x‖d = −ρ‖x‖1+µ

d , x 6= 0; (2.23)

4) u∈C∞(Rn\{0}) and |u(x)|≤K0|x|+λmax(X)‖x‖1+µ
d , ∀x∈Rn, ∀µ≥−1;

5) the system (2.18), (2.22) is d-homogeneous of degree µ.
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2.4.4 Homogeneous Observer Design

Let us consider the system

ẋ = Ax+ p(t), t > 0, y = Cx (2.24)

where x ∈ Rn - (unknown) system state, p(t) ∈ Rn - known exogenous input, y ∈ Rk
- measured system output, A ∈ Rn×n and C ∈ Rk×n.

The Problem of Homogeneous Observer Design

Given µ ∈ R we need to design a dilation d in Rn and an observer:

ż = Az + p+ g(Cz − y), z(0) = 0 g : Rk 7→ Rn

such that the error equation

ε̇ = Aε+ g(Cε), ε = z − x

1. is d-homogeneous of degree µ, i.e. for f(ε) = Aε+ g(Cε) one holds

f(d(s)ε) = eµsd(s)f(ε), ∀ε ∈ Rn, ∀s ∈ R;

2. is asymptotically stable.

Theorem 2 (inspired by [2, 7, 15, 10])

The system (2.24) is homogeneously observable with degree µ 6= 0 if and only
if the pair {A,C} is observable. For any observable pair {A,C} one holds

1) the linear algebraic equation

AG0 −G0A+ Y0C = A, CG0 = 0 (2.25)

has a solution Y0 ∈ Rn×k, G0 ∈ Rn×n and for any solution one holds

– the matrix G0 + In is invertible

– the matrix Gd = In + νG0 is anti-Hurwitz for ν ≥ −1/ñ, where ñ is
a minimal natural number such that

rank

[
C
CA
...

CAn−1

]
= n.

– the matrix A0 = A+ L0C is nilpotent, L0 = −(G0 + In)−1Y0 and

A0Gd = (νIn +Gd)A0, CGd = C;

2) the algebraic system

PA0+A>0P+Y C+C>Y >+ρ(PGd+G>dP )=0,
PGd +G>dP � 0, P = P> � 0

(2.26)

has a solution P ∈ Rn×n, Y ∈ Rk×n for any ρ ∈ R+.

15A pair {A,B} is controllable if and only if rank[B,AB, ..., An−1B] = n.
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3) the canonical homogeneous norm ‖ε‖d induced by the weighted Euclidean

norm ‖ε‖ =
√
ε>Pε is a Lyapunov function (at least if ν close to 0) for

the error equation (2.28) of the observer

ż=Az+p+
(
L0+|Cz−y|ν−1d(ln |Cz − y|)L

)
(Cz−y), z(0)=0, (2.27)

where L = P−1Y ;

• the error equation

ε̇ = (A0 + |Cε|ν−1d(ln |Cε|)LC)ε, ε = z − x (2.28)

is continuous for ν > −1/ñ and discontinuous for ν = −1/ñ;

• the error system (2.27) is d-homogeneous of degree ν,

Remarks

• without loss of generality, the identity = 0 in the system of LMIs (2.21) (resp.
(2.26)) can replaced with inequality � 0;

• combing the homogeneous controllers/observers with positive and negative de-
grees, a locally homogeneous fixed-time stable system can be designed:

∃Tmax > 0 : x(t, x0) = 0, ∀t ≥ Tmax, ∀x0 ∈ Rn

(resp., ∃Tmax > 0 : z(t) = x(t, x0), ∀t ≥ Tmax, ∀x0 ∈ Rn)

2.5 On Discretization of Homogeneous Systems

2.5.1 Control Discretization

Due to a digital implementation of controller one holds

u(t) = uj , ∀t ∈ [tj , tj+1), j = 0, 1, 2, ...

where tj+1 − tj ≥ h > 0, t0 = 0. Moreover, the measurements are samples as
well. Let us assume (for simplicity) that the measurements and control samplings are
synchronized, i.e. at time t = tj we can measure xj = x(tj). Several algorithms of
digital implementation of homogeneous controller can be suggested in this case [11].

Explicit discretization of homogeneous control

uj = K0xj + ‖xj‖1+µ
d Kd(− ln ‖xj‖d)xj

Using the so-called semi implicit Euler method the closed-loop system can be
approximated as follows

x(tj+1) ≈ x̃j+1 = xj + h(A+BKj)x̃j+1, Kj = K0 + ‖xj‖1+µKd(− ln ‖xj‖d)
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Hence, x̃j+1 = (In − h(A+BKj)
−1xj the semi-implicit control discritization can be

defined as follows.

Semi-implicit discretization of homogeneous control

uj = Kj(In−(tj+1− tj)(A+BKj))
−1xj , Kj = K0 +‖xj‖1+µ

d Kd(− ln ‖xj‖d)

The methodology of consistent discretization of homogeneous systems are devel-
oped in [16], [19].

2.5.2 Observer Discretization

To implement a homogeneous observer in a digital device the system (2.27) has to
be properly discretized under assumption that the output measurements y and the
exogenous input p are sampled:

y(t) = y(tj), p(t) = p(tj), t ∈ [tj , tj+1), j = 0, 1, 2, ...

where tj+1 − tj ≥ h > 0. The observer’s discretizations are defined using the same
ideas as controllers discretization.

Explicit discretization of homogeneous observer

zj+1 = zj +(tj+1−tj )
(
Azj+pj+(L0+|Czj−yj |ν−1d(ln |Czj−yj |)L)(Czj−yj)

)
where z0 = z(0) and zj ≈ z(tj). The semi-implicit Euler’s method gives

zj+1 = zj + h
(
Azj+1 + pj + (L0 + |Czj − yj |ν−1d(ln |Czj − yj |)L(Czj+1 − yj)

)
Semi-implicit discretization of homogeneous observer

zj+1 = Ã−1
j (zj + (tj+1 − tj) (pj − Ljyj))

where Ãj = In − h(A+ LjC) and

Lj = L0 + |Czj − yj |ν−1d(ln |Czj − yj |)L.
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The presented discretizations have different computational complexity and can
be selected for practical implementation dependently of the available computational
resources.

2.6 Theoretical conclusions

• Homogeneous systems may have faster convergence, better robustness and smaller
overshoots than linear systems.

• Theorems 1 and 2 are constructive and provide a way to define parameters of
homogeneous controllers/ observer by solving certain algebraic systems. All
functions of controllers and observers design are developed in HCS Toolbox
based on the mentioned theorems and their corollaries.

• In the view of the structure of the homogeneous controllers/observers many
existing linear controllers/observers can be easily upgraded/transformed to ho-
mogeneous ones.
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Chapter 3

Homogeneous Systems in
MATLAB

3.1 Controllers

This section surveys functions of HCS Toolbox for homogeneous control design and
implementation in MATLAB. It is essentially based on the concept of the homoge-
neous norm considered in Chapter 2.

3.1.1 Homogeneous Proportional Control (HPC)

Model of the control system:

ẋ = Ax+B(u+ γ(t, x)), x ∈ Rn, u ∈ Rm, A ∈ Rn×m, B ∈ Rn×m

where the pair {A,B} is controllable and γ : R×Rn 7→ Rm is an unknown function.

Homogeneous control:

uhpc = K0x+ ‖x‖1+µ
d Kd(− ln ‖x‖d)x, K0 ∈ Rm×n, K ∈ Rm×n

where µ ≥ −1, d(s) = esGd is a dilation in Rn, Gd ∈ Rn×n and the homogeneous norm

‖x‖d is induced by the weighted Euclidean norm ‖x‖ =
√
x>Px in Rn, P ∈ Rn×n.

Properties:

• finite-time stabilization for negative homogeneity degree µ < 0

x(t) = 0, ∀t ≥ ‖x(0)‖−µd /(−µρ);

• nearly fixed-time stabilization for positive homogeneity degree µ > 0

‖x(t)‖d ≤ r, ∀t ≥ 1

µρrµ
, ∀r > 0, ∀x(0) ∈ Rn;
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• d-homogeneity of the unperturbed system (if γ = 0) ⇒ ISS with respect to
measurement noises in x and additive perturbations in the model;

• rejection of the matched perturbation γ if

|γ(t, x)| ≤ γmax‖x‖1+µ
d .

HPC Design

The function hpc design computes parameters K0,K,Gd and P of HPC for
given A, B, µ ≥ −1, ρ > 0 and γmax ≥ 0

• Input parameters: A, B, µ and ρ (by default ρ = 1) and γmax (by
default γmax = 0)

• Output parameters: K0,K,Gd and P

HPC Implementation

• The function e hpc computes explicit discretization of uhpc

– Input parameters: x, K0,K, µ, Gd, P

– Output parameters: uhpc

• The function si hpc computes semi-implicit discretization of uhpc

– Input parameters: h (sampling period), x, A,B, K0,K, µ, Gd, P

– Output parameters: uhpc

• The function c hpc computes consistent discretization of uhpc if γmax = 0

– Input parameters: h (sampling period), x, A,B, K0,K, µ, Gd, P , ρ

– Output parameters: uhpc

Use1 demo hpc.m from HCS Toolbox as a demo of HPC design

1To open a demo please type ’edit <name of demo>.m’ in the Command Line of MATLAB
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3.1.2 Fixed-time HPC

Model of the control system:

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, A ∈ Rn×m, B ∈ Rn×m

where the pair {A,B} is controllable.

Control law:

ufhpc = K0x+

{
‖x‖1+µ1

d1
Kd1(− ln ‖x‖d1)x if x>Px ≤ 1

‖x‖1+µ2

d2
Kd2(− ln ‖x‖d2

)x if x>Px > 1
(3.1)

where µ1<0<µ2, dk(s)=es(In+µkG0) and ‖x‖dk is induced by ‖x‖=
√
x>Px, k=1, 2

Properties:

• fixed-time stabilization of linear plant:

x(t) = 0, ∀t ≥ Tmax, ∀x(0) ∈ Rn, Tmax =
1

−µ1ρ
+

1

µ2ρ
.

• local homogeneity of closed-loop system (of degree µ1 at 0 and of degree µ2 at
∞) ⇒ ISS with respect to measurement noises in x and additive perturbations
in the model;

Fixed-time HPC Design

The function fhpc design computes parameters K0,K,G0, P, µ1, µ2 and ρ > 0
of Fixed-time HPC for given system matrix A and control matrix B.

• Input parameters: A and B

• Output parameters: K0,K,G0, P, µ1, µ2 and ρ

Fixed-time HPC Implementation

• The function e fhpc computes explicit discretization of ufhpc

– Input parameters: x, K0,K, µ1, µ2, G0, P

– Output parameters: ufhpc

• The function si fhpc computes semi-implicit discretization of uhpc

– Input parameters: h (sampling period), x, A,B, K0,K, µ1, µ2,
G0, P

– Output parameters: ufhpc

Use demo fhpc.m from HCS Toolbox as a demo of Fixed-time HPC design
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3.1.3 Homogeneous Sliding Mode Control (HSMC)

Model of the control system:

ẋ=Ax+B(u+γ(t, x)), y=Cx, x∈Rn, u∈Rm, A∈Rn×m, B∈Rn×m, C∈Rp×n

where y ∈ Rp is a controllable output and γ : R×Rn 7→ Rm is an unknown uniformly
bounded function.

Control law:

uhsmc = K0x+Kd(− ln ‖Cx‖d)Cx, K0 ∈ Rm×n, K ∈ Rm×p,

where d(s) = esGd is a dilation in Rp, Gd ∈ Rp×p and the homogeneous norm ‖x‖d
is induced by the weighted Euclidean norm ‖x‖ =

√
x>Px in Rp, P ∈ Rp×p.

Properties:

• enforces sliding mode on the surface Cx = 0 in a finite time

Cx(t) = 0, ∀t ≥ ‖Cx(0)‖d/ρ;

• the output dynamics ẏ = Cẋ is d-homogeneous of degree −1.

• rejection of the matched perturbation γ if

|γ(t, x)| ≤ γmax.

HSMC Design

The function hsmc design computes parameters K0,K,Gd and P of HPC for
given A, B, ρ > 0 and γmax ≥ 0

• Input parameters: A, B, ρ (by default ρ = 1) and γmax (by default
γmax = 0)

• Output parameters: K0,K,Gd and P

HSMC Implementation

• The function e smc computes explicit discretization of uhsmc

– Input parameters: x, C, K0,K, Gd, P

– Output parameters: uhsmc

• The function si hpc computes semi-implicit discretization of uhsmc

– Input parameters: h (sampling period), x, A,B, C, K0,K, Gd, P

– Output parameters: uhsmc

Use demo hsmc.m from HCS Toolbox as a demo of HSMC design
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3.1.4 Homogeneous Proportional-Integral Control (HPIC)

Model of the control system:

ẋ = Ax+B(u+ γ + p), x ∈ Rn, u ∈ Rm, A ∈ Rn×m, B ∈ Rn×m,

where the pair {A,B} is controllable, γ : R×Rn → Rm is an unknown (vanishing at
x = 0) function and p ∈ Rn is an unknown constant.

Control law:

uhpic = uhpc +

∫ t

0

uint(x(τ))dτ

uhpc = K0x+ ‖x‖1+µ
d Kd(− ln ‖x‖d)x, K0 ∈ Rm×n, K ∈ Rm×n

uint = ‖x‖1+2µ
d

Kid(− ln ‖x‖d)x
x>d>(− ln ‖x‖d)PGdd(− ln ‖x‖d)x

, Ki ∈ Rm×n

where µ ≥ −0.5, d(s) = esGd is a dilation in Rn, Gd ∈ Rn×n and the homogeneous

norm ‖x‖d is induced by the weighted Euclidean norm ‖x‖=
√
x>Px in Rn, P ∈Rn×n.

Properties:

• finite-time stabilization for negative homogeneity degree µ < 0

• nearly fixed-time stabilization for positive homogeneity degree µ > 0

• rejection of the unknown constant perturbation p and matched (vanishing at
x = 0) disturbance γ if |γ(t, x)| ≤ γmax‖x‖1+µ

d ;

• generalized homogeneity of the augmented system for x and xn+1 =p+
∫
uint.

HPIC Design

The function hpic design computes parameters K0,K,Ki, Gd and P of HPC
for given A, B, µ ≥ −0.5, γmax ≥ 0 and ρ > 0 (the parameter ρ > 0 can be
utilized for tuning of convergence time: the larger ρ, the faster convergence).

• Input parameters: A, B, µ and ρ (by default ρ = 1) and γmax (by
default γmax = 0)

• Output parameters: K0,K,Ki, Gd and P

HPIC Implementation

• The function e hpic computes explicit discretization of uhpic

– Input parameters: x, K0,K, µ, Gd, P

– Output parameters: uhpc and uint

Use demo hpc.m from HCS Toolbox as a demo of HPC design
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3.1.5 Fixed-time HPIC

Model of the control system:

ẋ = Ax+B(u+ p), x ∈ Rn, u ∈ Rm, A ∈ Rn×m, B ∈ Rn×m,

where the pair {A,B} is controllable and p ∈ Rn is an unknown constant.

Control law:

uhpic = ufhpc +

∫ t

0

ufint(x(τ))dτ

ufhpc = K0x+

{
‖x‖1+µ1

d1
Kd1(− ln ‖x‖d1)x if x>Px ≤ 1

‖x‖1+µ2

d2
Kd2(− ln ‖x‖d2

)x if x>Px > 1

ufint =


‖x‖1+2µ1

d1
Kid1(− ln ‖x‖d1

)x

x>d>1 (− ln ‖x‖d1
)PGd1

d1(− ln ‖x‖d1
)x

if x>Px ≤ 1

‖x‖1+2µ2
d2

Kid2(− ln ‖x‖d2
)x

x>d>2 (− ln ‖x‖d2
)PGd2

d2(− ln ‖x‖d2
)x

if x>Px > 1

where µ1<0<µ2, dk(s)=es(In+µkG0) and ‖x‖dk is induced by ‖x‖=
√
x>Px, k=1, 2

Properties:

• fixed-time stabilization of linear plant:

∃Tmax > 0 : x(t) = 0, ∀t ≥ Tmax, ∀x(0) ∈ Rn

• rejection of the unknown constant perturbation p;

• local homogeneity of the augmented system for x and xn+1 = p+
∫
ufint.

Fixed-time HPIC Design

The function fhpic design computes parameters K0,K,KiG0, P, µ1, µ2 of
Fixed-time HPC for given system matrix A and control matrix B.

• Input parameters: A and B

• Output parameters: K0,K,KiG0, P, µ1, µ2

Fixed-time HPIC Implementation

• The function e fhpic computes explicit discretization of ufhpic

– Input parameters: x, K0,K,Ki, µ1, µ2, G0, P

– Output parameters: ufhpic and ufint

Use demo fhpic.m from HCS Toolbox as a demo of Fixed-time HPIC design
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3.1.6 HSMC with integral action

Model of the control system:

ẋ=Ax+B(u+γ+p), y=Cx, x∈Rn, u∈Rm, A∈Rn×m, B∈Rn×m, C∈Rp×n

where y ∈ Rp is a controlled output, γ : R × Rn → Rm is an unknown (vanishing at
x = 0) function and p ∈ Rn is an unknown constant.

Control law:

uhsmci = u0 +

∫ t

0

usintdτ

u0 = K0x+ ‖Cx‖0.5d Kd(− ln ‖Cx‖d)Cx, K0 ∈ Rm×n, K ∈ Rm×p,

usint(Cx(τ)) = Kid(− ln ‖Cx‖d)Cx,

where d(s) = esGd is a dilation in Rp, Gd ∈ Rp×p and the homogeneous norm ‖x‖d
is induced by the weighted Euclidean norm ‖x‖ =

√
x>Px in Rp, P ∈ Rp×p.

Properties:

• enforces sliding mode on the surface Cx = 0 in a finite time

∃T = T (x(0)) : Cx(t) = 0, ∀t ≥ T

• rejection of the unknown constant perturbation p and the (vanishing at x = 0)
matched perturbation γ if

|γ(t, x)| ≤ γmax‖x‖1/2d .

Design of HSMC with Integral action

The function hsmc design computes parameters K0,K,Ki, Gd and P of HPC
for given A, B and γmax ≥ 0

• Input parameters: A, B, ρ (by default ρ = 1) and γmax (by default
γmax = 0)

• Output parameters: K0,K,Gd and P

Implementation of HSMC with integral action

• The function e hsmci computes explicit discretization of uhsmci

– Input parameters: x, C, K0,K,Ki, Gd, P

– Output parameters: u0 and usint

Use demo hsmci.m from HCS Toolbox as a demo of HSMC with Integral action
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3.1.7 Upgrading Linear Proportional Controller (LPC) to HPC

Model of the control system:

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, A ∈ Rn×m, B ∈ Rn×m

u = Klinx, (already well-tuned LPC)

where the pair {A,B} is controllable and Klin ∈ Rm×n is such that

the matrix A+BKlin is Hurwitz.

The aim is to upgrade LPC to HPC:

uhpc = K0x+ ‖x‖1+µ
d (Klin −K0)d(− ln ‖x‖d)x (3.2)

where d(s)=es(In+µG0) - dilation, µ∈ [µmin, µmax], ‖x‖d is induced by ‖x‖=
√
x>Px

Upgrading LPC to HPC

The function lpc2hpc computes parameters K0, G0, P and µ1 < 0 < µ2 of
HPC for given A, B and Klin

• Input parameters: A, B and Klin

• Output parameters: K0, G0, P , µmin < 0 < µmax

Implementation of HPC

See Section 3.1.1 for Gd = In + µG0 and K = Klin −K0.

Global Upgrading Algorithm

• Take µ = 0 ⇒ ũhpc = Klinx

• Decrease µ or increase µ while a control quality is improving

Local Upgrading Algorithm

• Use the saturation sata,b(q) = max(a,min(b, q)), where 0 ≤ a ≤ b ≤ +∞
to restrict the homogeneous norm

ũhpc = K0x+ sata,b ‖x‖1+µ
d (Klin −K0)d(− ln sata,b ‖x‖d)x

• Take a = b = 1 ⇒ ũhpc = Klinx

• Decrease a and increase b while a control quality is improving

Use demo lpc2hpc.m from HCS Toolbox as a demo of LPC to HPC upgrade
for Rotary Inverted Pendulum Quanser QUBE Servo-2
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3.1.8 Upgrading Linear Proportional-Integral Controller (LPIC)
to HPIC

Model of the control system:

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, A ∈ Rn×m, B ∈ Rn×m

u = Klinx+

∫ t

0

Kix(τ)dτ, (already well-tuned LPIC)

where the pair {A,B} is controllable and Klin ∈ Rm×n,Ki ∈ Rm×n are such that

the matrix

(
A+BKlin B

Klin 0

)
is Hurwitz.

The aim is to upgrade LPIC to HPIC:

uhpic = uhpc(x) +

∫ t

0

uint(x(τ))dτ

uhpc = K0x+ ‖x‖1+µ
d (Klin −K0)d(− ln ‖x‖d)x

uint =
‖x‖1+2µ

d Knew
i d(− ln ‖x‖d)x

x>d>(− ln ‖x‖d)PGdd(− ln ‖x‖d)x

where d(s) = es(In+µG0) is a dilation in Rn for any µ ∈ [µ1, µ2] and ‖x‖d is induced

by ‖x‖=
√
x>Px

Upgrading LPIC to HPIC

The function lpic2hpic computes parameters K0, G0, P,Knew
i and µ1 < 0 <

µ2 of HPIC for given A, B and Klin,Ki

• Input parameters: A, B and Klin

• Output parameters: K0, G0, P , µ1 < 0 < µ2

Implementation of HPIC

See Section 3.1.4 for Gd = In + µG0 and K = Klin −K0.

Global/Local Upgrading Algorithm

See Section 3.1.7

Use demo lpic2hpic.m from HCS Toolbox as a demo of LPIC to HPIC upgrade
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3.2 Observers

3.2.1 Homogeneous Observer (HO)

Model of the system:

ẋ = Ax+ p, y = Cx x ∈ Rn, u ∈ Rm, A ∈ Rn×m, C ∈ Rk×n

where the pair {A,C} is observable and p ∈ Rn - known exogenous input
Observer:

ż = Az + p+
(
L0 + |Cz − y|ν−1d(ln |Cz − y|)L

)
(Cz − y), L0 ∈ Rn×k, L ∈ Rn×k

where d(s) = esGd is a dilation in Rn and ν ≥ −1/ñ, where ñ ∈ N is a minimal

natural number such that rank

[
C
CA
...

CAn−1

]
= n.

Properties:

• finite-time state observation for ν < 0 :

∀x(0) ∈ Rn, ∃T = T (x(0)) : z(t) = x(t), ∀t ≥ T

• nearly fixed-time state estimation for ν > 0:

∀r > 0, ∃Tr > 0 : ‖z(t)− x(t)‖ ≤ r, ∀t ≥ Tr, ∀x(0) ∈ Rn.

• the error ε = z − x has a d-homogeneous dynamics of degree ν ⇒
ISS (Input-to-State Stability) with respect to measurement noises.

Design of HO

The function ho design computes parameters L0, L and Gd of HO

• Input parameters: A, C and ν > 0

• Output parameters: L0, L and Gd

Implementation of HO

• The function e ho computes explicit discretization of HO

– Input parameters: h(sampling period),z, y, A,C, p, L0, L, Gd, ν

– Output parameters: znew - new estimation of x

• The function si ho computes semi-implicit discretization of HO

– Input parameters: h, z, y, A,C, p, L0, L, Gd, ν

– Output parameters: znew - new estimation of x

Use demo ho.m from HCS Toolbox as a demo of HO design
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3.2.2 Fixed-time HO

Model of the system:

ẋ = Ax+ p, y = Cx x ∈ Rn, u ∈ Rm, A ∈ Rn×m, C ∈ Rk×n

where the pair {A,C} is observable and p ∈ Rn - known exogenous input
Observer:

ż = Az + p+

{ (
L0 + |Cz − y|ν1−1d1(ln |Cz − y|)L

)
(Cz − y) if |Cz − y| ≤ 1(

L0 + |Cz − y|ν2−1d2(ln |Cz − y|)L
)

(Cz − y) if |Cz − y| > 1

where ν1<0<ν2, dk(s)=es(In+νkG0), k=1, 2 and L0 ∈ Rn×k, L ∈ Rn×k
Properties:

• fixed-time state observation:

∃Tmax > 0 : : z(t) = x(t), ∀t ≥ Tmax, ∀x(0) ∈ Rn

• the error ε = z − x has a locally homogeneous dynamics ⇒
ISS (Input-to-State Stability) with respect to measurement noises.

Design of Fixed-time HO

The function fho design computes parameters L0, L and Gd of HO

• Input parameters: A, C

• Output parameters: L0, L, G0, ν1, ν2

Implementation of Fixed-time HO

• The function e fho computes explicit discretization of Fixed-time HO

– Input parameters: h,z, y, A,C, p, L0, L, G0, ν1, ν2

– Output parameters: znew - new estimation of x

• The function si fho computes semi-implicit discretization of Fixed-time HO

– Input parameters: h,z, y, A,C, p, L0, L, G0, ν1, ν2

– Output parameters: znew - new estimation of x

Use demo fho.m from HCS Toolbox as a demo of HO design

39



3.2.3 Upgrading Linear Observer (LO) to HO

Model of the system:

ẋ = Ax+ p, y = Cx x ∈ Rn, u ∈ Rm, A ∈ Rn×m, C ∈ Rk×n

ż = Az + p+ Llin(Cz − y),

where the pair {A,C} is observable and p ∈ Rn - known exogenous input and the
gain of Llin ∈ Rn×k the linear observer is such that

the matrix A+ LlinC is Hurwitz.

The aim is to upgrade LO to HO

ż = Az + p+
(
L0 + |Cz − y|ν−1d(ln |Cz − y|)(Llin − L0)

)
(Cz − y), L0 ∈ Rn×k,

where d(s) = esIn+νG0 is a dilation in Rn and ν ∈ [νmin, νmax].

Upgrading LO to HO

The function lo2ho computes parameters L0, νmin, νmax and G0 of HO

• Input parameters: A, C, Llin,

• Output parameters: L0, G0, νmin, νmax

Implementation of HO

See Section 3.2.1 for Gd = In + νG0 and L = Llin − L0.

Global Upgrading Algorithm

• Take ν = 0 ⇒ HO becomes LO

• Decrease µ or increase µ while a control quality is improving

Local Upgrading Algorithm

• Use the saturation sata,b(q) = max(a,min(b, q)), where 0 ≤ a ≤ b ≤ +∞
to restrict the homogeneous norm

ż = Az+p+
(
L0+sata,b |Cz − y|ν−1d(ln sata,b |Cz−y|)(Llin−L0)

)
(Cz−y),

• Take a = b = 1 ⇒ HO becomes LO

• Decrease a and increase b while a control quality is improving

Use demo lo2ho.m from HCS Toolbox as a demo of upgrading
LO to HO for Rotary Inverted Pendulum Quanser QUBE Servo - 2
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3.3 Miscellaneous functions

This section surveys supporting functions of HCS Toolbox induced by linear dilations.

3.3.1 Homogeneous Curves

Given x ∈ Rn the set
Γd(x) = {d(s)x : s ∈ R}, (3.3)

is called a d-homogeneous curve.

Design of a homogeneous curve

The function hcurve generates an array of points on the homogeneous curve
crossing the point x ∈ Rn.

• Input parameters: x, Gd, sl (array of points si ∈ R, i = 1, 2, ...)

• Output parameters: xl (array of points corresponding to sl)

Use demo hcurve.m from HCS Toolbox as a demo of plotting the homogeneous curve

3.3.2 Homogeneous Spheres

The set
Sd(r) = {z ∈ Rn : ‖z‖d = r} ,

is a d-homogeneous sphere of the radius r > 0, where the dilation d(s) = esGd is a

dilation monotone with respect to the norm ‖z‖ =
√
z>Pz and ‖ · ‖d is the canonical

homogeneous norm induced by ‖ · ‖.

Design of a homogeneous sphere

The function hsphere generates an array of points on a homogeneous sphere
of the radius r.

• Input parameters: r, Gd, P and Nmax (number of points to be ran-
domly generated on the sphere)

• Output parameters: M (array of points on the sphere Sd(r))

Use demo hsphere.m from HCS Toolbox as a demo of plotting the homogeneous spheres

3.3.3 Homogeneous Norm ‖ · ‖d

Computation of homogeneous norm

The function hnorm computes homogeneous norm of the vector x.

• Input parameters: x, Gd, P

• Output parameters: ‖x‖d
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3.3.4 Homogeneous Projection

If d is a continuous dilation in Rn then for any z ∈ Rn\{0} there exist s0 ∈ R and
z0 ∈ S such that z0 = d(s0)z. The corresponding point z0 ∈ S is called a homogeneous
projection of z on the unit sphere S.

x1

-5 0 5

x
2

-5

0

5

x

a homogeneous projection
z1 = d(s1)x, ‖z1‖ = 1

a homogeneous projection
z2 = d(s2)x, ‖z2‖ = 1

d(s)x
s < 0

Figure 3.1: Illustration of homogeneous projection

If d is a monotone dilation then homogeneous projection is unique [15].

Computation of homogeneous projection

The function hproj computes homogeneous projection of the vector x to the
unit sphere S = {x ∈ Rn : ‖x‖ = 1} for a monotone dilation.

• Input parameters: x, Gd, P

• Output parameters: z ∈ S (homogeneous projection of x)
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Chapter 4

Use Case

Int his chapter a procedure of upgrading linear controller to homogeneous one for an
existing/operating system ( Rotary Inverted Pendulum Quanser QUBE Servo - 2) is
demonstrated.

4.1 Model of the system

A schematic representation of the rotary inverted pendulum (IP) is shown in Figure
4.1. The generalized coordinates θ and α describe the angular positions of the rotary
arm and the pendulum, respectively. To obtain motion equations, the pendulum is
considered as a lumped mass at its center.

Figure 4.1: Schematic diagram of inverted pendulum (IP)

Table 4.1 presents the notation utilized for model description.
The dynamic model of the inverted pendulum is derived by means of the Euler-

Lagrange method:
∂2L

∂t∂q̇i
− ∂L

∂qi
= Qi. (4.1)
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Symbol Description

mp Mass of the pendulum
Lp Length of the pendulum
Jp Inertia of the pendulum
Dp Pendulum damping coefficient
Lr Length of the rotary arm
Jr Rotary arm inertia
Dr Viscous damping coefficient
g Gravitational acceleration

Table 4.1: Parameters of the rotary inverted pendulum

The Lagrangian of the pendulum is described as:

L = T − V (4.2)

where T is the total kinetic energy of the inverted pendulum and V is the total
potential energy of the system.

The variable qi represents the generalized coordinates, in our case, given by

q(t) :=
[
θ(t) α(t)

]>
(4.3)

Considering the defined generalized coordinates (4.3), the Euler-Lagrange equations
become:

∂2L

∂t∂θ̇
− ∂L

∂θ
= Q1

∂2L

∂t∂α̇
− ∂L

∂α
= Q2 (4.4)

The generalized forces Qi describe non-conservative forces applied to the system.
In our case, the generalized forces acting on the IP are:

Q1 = τ −Dr θ̇ Q2 = −Dpα̇ (4.5)

Once the kinetic and potential energy are obtained, then the Lagrangian is found,
the nonlinear dynamic equations of motion for the inverted pendulum are:(

ψ + 0.25ζ − 0.25ζ cos(α)2 + Jr
)
θ̈ − 0.5$ cos(α)α̈

+0.5ζ sin(α) cos(α)θ̇α̇+ 0.5$ sin(α)α̇2 = τ −Dr θ̇

(4.6)

and
−0.5$ cos(α)θ̈ + (Jp + 0.25ζ) α̈− 0.25ζ cos(α) sin(α)θ̇2

−0.5mpLpg sin(α) = −Dpα̇
(4.7)

where ζ = mpL
2
p, ψ = mpL

2
r and $ = mpLpLr.

A torque generated by the servo motor and applied to the rotary arm is described
by the following equation:

τ = km(Vm−kmθ̇)
Rm

, (4.8)
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where km is the motor back EMF (electromotive force) constant, Rm is the terminal
resistance and Vm is the control input (the input voltage for the servo motor).

Notice that for a generalized coordinate vector q(t), the equations (4.6) and (4.7)
can be transformed in the following matrix form:

J(q)q̈ + C(q, q̇)q̇ + w(q) = φ (4.9)

where

J(q) =

[
Jr + ψ + 1

4 (ζ − ζ cos2(α)) − 1
2$ cos(α)

− 1
2$ cos(α) Jp + 1

4ζ

]

w(q) =

[
0

− 1
2gmpLp sin(α)

]
, φ =

[
τ
0

]

C(q) =

[
1
2ζ sin(α) cos(α)α̇+Dr

1
2$ sin(α)α̇

− 1
4ζ sin(α) cos(α)θ̇ Dp

]
(4.10)

The control aim is to stabilize the pendulum arm at the upper position (α=0)

The conventional approach [3] to solving this control problem is switching between
two control strategies:

• swing-up control accumulates an kinetic energy (increases oscillation amplitude)
of the pendulum to bring it close to the upper position

• a stabilizing feedback operating locally (close to the upper position)

The swing-up control is usually defined as an optimal feed-forward (or feedback)
algorithm [3], so a stabilizing controller is needed to be designed only.

To design the stabilizing feedback the nonlinear model of the inverted pendulum is
usually linearized around the operating point α = 0 (upper position of the pendulum)
using the equations (4.6) and (4.7).

Let x1 = θ, x2 = α, x3 = θ̇ and x4 = α̇. From the equation (4.9) for α close to
zero we have sin(x2) ≈ 0, cos(x2) ≈ 1, then the linearized state-space representation
for the inverted pendulum satisfies the following differential equations:

ẋ1 = x3, ẋ2 = x4

ẋ3 =
− (Jp + 0.25ζ)Drx3 − 0.5$Dpx4 + 0.25ϑgx2 + (Jp + 0.25ζ) τ

JT

ẋ4 =
0.5$Drx3 − (Jr + ψ)Dpx4 + 0.5mpLpg (Jr + ψ)x2 + 0.5$τ

JT

(4.11)

where JT = Jpζ + JrJp + 0.25Jrζ and ϑ = m2
pL

2
pLr and

τ = km(u−kmx3)
Rm

, (4.12)

with u = Vm being a control input (voltage).
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Therefore, the linearized model of the inverted pendulum admits the following
state-space representation:

ẋ(t) = Ax(t) +Bu(t) (4.13)

where x(t) = (x1(t), x2(t), x3(t), x4(t))> ∈ R4 is the state vector, u(t) ∈ R is the
control signal, A ∈ R4×4, B ∈ R4×1. In the equation (4.13), the matrices A, B are
defined as:

A = 1
JT

( 0 0 1 0
0 0 0 1
0 a3,2 a3,3 a3,4
0 a4,2 a4,3 a4,4

)
, B = km

JTRm
( 0, 0, (Jp+0.25ζ), 0.5$ )

>
(4.14)

The elements of the matrix A are given by:

a3,2 = 0.25ϑg, a3,3 = (Jp + 0.25ζ) (k2
m/Rm −Dr)

a3,4 = −0.25$Dp, a4,2 = 0.25mpLpg(Jr + ψ)
a4,3 = 0.25$(Dr − k2

m/Rm), a4,4 = − (Jr + ψ)Dp

(4.15)

The pair {A,B} is controllable in any realistic scenario.

4.2 Description of Experimental Setup

The platform QUBE- Servo 2 of Quanse (see Fig. 4.2) is utilized for the control
upgrading experiment.

Figure 4.2: Rotary IP Quanser QUBE - Servo 2

The parameters of the experimental platform are given by the manufacturer and
listed in the Table 4.2. The control input (voltage) is saturated by ±10V , i.e.
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Parameter Value

mp 0.024 Kg
Lp 0.129 m
Jp 3.3x10−5 Kg m2

Dp 0.0015 N m s/rad
Lr 0.085 m
Jr 5.7x10−5 Kg m2

Dr 0.0005 N m s/rad
g 9.81 m/s2

Table 4.2: Parameters of Quanser QUBE-Servo 2

u ∈ [−10, 10].

The Quanser’s platform is supported with both a swing-up controller and a linear
stabilizing controller realized in MATLAB. Our aim is to upgrade the linear stabi-
lizing controller. The gains of the linear feedback (given by the manufacturer) are as
follows

Klin =
(

2 −35 1.5 −3
)

(4.16)

4.3 Upgrading linear controller via HCS Toolbox

The demo1 of an upgrading linear Quanser’s controller to homogeneous one is given
in demo lpc2hpc.m of HCS Toolbox.

1) The first part of the code defines the parameters of the rotary inverted pendu-
lum (according to Table 4.2 provided by the manufacturer).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Pendulum model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Motor

% Resistance

Rm = 8.4;

% Current-torque (N-m/A)

kt = 0.042;

% Back-emf constant (V-s/rad)

km = 0.042;

%% Rotary Arm

1To open a demo, please type ’edit <name of demo>.m’ in the Command Line of MATLAB
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% Mass (kg)

mr = 0.095;

% Total length (m)

r = 0.085;

% Moment of inertia about pivot (kg-m^2)

Jr = mr*r^2/3;

% Equivalent Viscous Damping Coefficient (N-m-s/rad)

br = 1e-3; % damping tuned heuristically to match QUBE-Sero 2 response

%% Pendulum Link

% Mass (kg)

mp = 0.024;

% Total length (m)

Lp = 0.129;

% Pendulum center of mass (m)

l = Lp/2;

% Moment of inertia about pivot (kg-m^2)

Jp = mp*Lp^2/3;

% Equivalent Viscous Damping Coefficient (N-m-s/rad)

bp = 5e-5; % damping tuned heuristically to match QUBE-Sero 2 response

% Gravity Constant

g = 9.81;

% Total Inertia

Jt = Jr*Jp - mp^2*r^2*l^2;

2) Next, the parameters linearized model of the system (4.13) are computed.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Linearized model of the rotary inverted pendulum in the upper position

%%

%% dx/dt=Ax+Bu, x=(x1,x2,x3,x4)’

%%

%% where x1 - angle of the pentulum arm

%% x2 - angle of the rotary arm

%% x3 - angular velocity of the pendulum arm

%% x4 - angular velocity of the rotary arm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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A = [0 0 1 0;

0 0 0 1;

0 mp^2*l^2*r*g/Jt -br*Jp/Jt -mp*l*r*bp/Jt

0 mp*g*l*Jr/Jt -mp*l*r*br/Jt -Jr*bp/Jt];

%

B = [0; 0; Jp/Jt; mp*l*r/Jt];

% adding a model of actuator dynamics

A(3,3) = A(3,3) - km*km/Rm*B(3);

A(4,3) = A(4,3) - km*km/Rm*B(4);

B = km * B / Rm;

% the linear feedback gain (provided by manufacturer)

Klin=[2 -35 1.5 -3];

The system matrix A is

>> A

A =

0 0 1.0000 0

0 0 0 1.0000

0 152.0057 -12.2542 -0.5005

0 264.3080 -12.1117 -0.8702

The control matrix B is

>> B

B =

0

0

50.6372

50.0484

3) Finally, the parameters of the homogeneous controller are obtained using the
function lpc2hpc of HCS Toolbox.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% HPC/FHPC design by upgrading a linear controller

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[K0 G0 P mu_min mu_max]=lpc2hpc(A,B,Klin); % upgrade linear control to HPC

%selection of the homogeneity degree mu_min<= mu <=mu_max

Gd=eye(4)+mu_min*G0; mu=mu_min; % for HCP with negative homogeneity degree

%Gd=eye(4)+mu_max*G0; mu=mu_max; % for HCP with positive homogeneity degree

% for FHCP use G0 mu_min mu_max
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K=Klin-K0;

%K0 - homogenization feedback gain

%K - control gain

%Gd - generator of dilation

%P - shape matrix of the weighted Euclidean norm

The obtained parameters of homogeneous controller are

>> K0

K0 =

-0.0000 -5.2811 0.2420 0.0174

>> G0

G0 =

-3.0000 2.0248 -0.0033 0.0033

0.0000 -1.0000 0.0000 -0.0000

-0.0000 0.3800 -2.0000 2.0235

-0.0000 -0.0000 0.0000 -0.0000

>> P

P =

3.1581 -7.2001 0.5908 -0.6077

-7.2001 96.7019 -6.8570 7.4704

0.5908 -6.8570 0.5539 -0.5856

-0.6077 7.4704 -0.5856 0.6472

>> mu_min

mu_min =

-1

>> mu_max

mu_max =

0.1607
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4) The rest of the code of demo lpc2hpc is devoted to comparison of linear and
homogeneous controllers on simulations

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Numerical Simulation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t=0; Tmax=3;

h=0.001; % sampling period

x=[1;1;0;0];

tl=[t];xl=[x];ul=[];

%alpha and beta are tuning parameters (alpha=beta=1 => linear control)

alpha=0.1; beta=1; %for HPC with negative degree (upgrade close to zero)

%alpha=1;beta=100; %for HPC with positive degree (upgrade close to Inf)

%alpha=0.1;beta=100; %for FHPC (global upgrade)

noise=0; %magnitude of measurement noises (may be changed for comparison)

disp(’Run numerical simulation...’);

[Ah Bh]=ZOH(h,A,B); %discretization of linear plant by ZOH

while t<Tmax

xm=x+2*noise*(rand(4,1)-0.5); %modeling of noised measurement

%u=Klin*xm; %linear control (for comparison)

u=e_hpc(xm,K0,K,Gd,P,mu,alpha,beta); %explicit HPC

%simulation of the system (with control saturation as in QUBE Servo-2)

x=Ah*x+Bh*min(10,max(-10,u));

t=t+h; tl=[tl t]; xl=[xl x]; ul=[ul u];

end;

ul=[ul u];

disp(’Done!’);

%%norm of the state at the time instant Tmax

disp([’||x(Tmax)||=’,num2str(norm(x))])

51



The comparison of the simulation results for linear control (LC)

>> demo_lpc2hpc

Run numerical simulation...

Done!

||x(Tmax)||=0.0057923

with locally homogeneous controller (HPC)

>> demo_lpc2hpc

Run numerical simulation...

Done!

||x(Tmax)||=4.6229e-08

shows an essential improvement (in times, see above) of stabilization precision |x(T )|
at the terminal instant of time without any degradation of the system transient (see
Fig.4.3 and Fig.4.4). The upgrade was done locally (close to 0). That is why trajec-
tories of system with linear and homogeneous controller simply coincide on the time
interval [0, 1]. The zoomed plots for the time interval [1, 3] are depicted in Fig.4.5
and Fig.4.6, which clearly show faster convergence of the system with homogeneous
controller.
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Figure 4.3: Simulation of linear proportional control (LPC) u = Klinx for linearized
system (4.13)
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Figure 4.4: Simulation of locally homogeneous proportional controller (HPC) (3.2)
for linearized system (4.13)
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Figure 4.5: Simulation of linear proportional control (LPC) u = Klinx for linearized
system (4.13) (zoom for the time interval [1, 3])
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Figure 4.6: Simulation of locally homogeneous proportional controller (HPC) (3.2)
for linearized system (4.13) (zoom for the time interval [1, 3])
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4.4 Comparison on real experiment in ControlHub

The setup for real control experiments with rotary inverted pendulum is available
on-line (see Fig. 4.7) and http://valse-pendulum.lille.inria.fr:5000 as a part of the
ControlHub platform (under construction in Inria Lille).

Figure 4.7: Home page of rotary inverted pendulum control experiment

The platform is aimed at remote rapid prototyping, demonstration and comparison
of various control algorithms on real experimental setups.

The user can upload its own control algorithm to the platform in order to test it on
a real setup (Rotary Inverted Pendulum Quanser QUBE Servo - 2). The description
of the experimental setup (provided by the manufacturer) and a Simulink model of
the system for off-line validation of user-defined controllers can be found in the tab
”Download”.

To make an experiment, first, the user need to select a control task on which the
user-defined control algorithm should be tested. There tasks are presently available:

• Task 1: stabilization (α→ 0, θ → 0)

• Task 2: set-point tracking (α→ 0, θ → step signal):

θref =


0 if t ≤ 5
π/5 if 5 < t ≤ 10
−π/5 if 10 < t ≤ 15

0 if t > 15

• Task 3: continuous trajectory tracking (α→ 0, θ → sinusoidal signal)

θref (t) = 0.3 sin(t)

55

http://valse-pendulum.lille.inria.fr:5000


Next, the control/observer algorithm should be uploaded or directly typed (pasted)
in the forms on the bottom of the page (see Fig. 4.8).

Figure 4.8: Submission of the control law for a testing

The control algorithm has to be realized as m-function of MATLAB in a certain
format. By default, the linear (Quanser’s) controller is implemented:

function [u, C_out]=control(t, x, x_ref, C_in)

%---------------------------------------------------------------------------------

%t - time

%x=(theta,alpha,d_theta,d_alpha) is the system state (estimated by the observer),

%where the angle alpha=0 corresponds to the lower position of the pendulum.

%the variable C_in(out) is the internal variable of the controller

%C_in corresponds to C_out at the previous instant of time.

%The command C_out=C_in has to be included if the controller does not need an

% internal state.

%--------------------------------------------------------------------------------

%The following change of coordinate makes the state x(2)=0 corresponding to

%the upper position of the pendulum.

x(2)=mod (x(2),2*pi)-pi;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% THE USER-DEFINED CONTROLLER HAS TO BE REALIZED BELOW

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C_out=C_in;

%The static linear feedback u=K(x-x^ref) stabilizes the pendulum in

%the upper position and tracks the reference theta^ref(t)=0.3sin(t).

u=[2 -35 1.5 -3]*(x-x_ref);

Click on the button ’Submit’ on the bottom of the page to send your control solution
for testing. To identify your own control solution in the list of other submission, it is
recommended put some name to the field ’Insert your submission name’.
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The user’s controller/observer will be first tested on simulator and next on the
real experimental setup (Quanser QUBE Servo-2). The whole process takes about 3
minutes. In the tab ”Show room” the user can survey the testing progress on-line
using the web-camera installed in the lab. The results will be added to the database
(the tab ’Table of results’). The user can download the results and compare the
results of the submitted controller with the results for other controllers stored in the
database.

Since the HCS Toolbox is already installed on the pendulum platform, then its
functions can be utilized for implementation of HPC2:

function [u, C_out]=control(t, x, x_ref, C_in)

%---------------------------------------------------------------------------------

%t - time

%x=(theta,alpha,d_theta,d_alpha) is the system state (estimated by the observer),

%where the angle alpha=0 corresponds to the lower position of the pendulum.

%the variable C_in(out) is the internal variable of the controller

%C_in corresponds to C_out at the previous instant of time.

%The command C_out=C_in has to be included if the controller does not need an

% internal state.

%--------------------------------------------------------------------------------

%The following change of coordinate makes the state x(2)=0 corresponding to

%the upper position of the pendulum.

x(2)=mod (x(2),2*pi)-pi;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% THE USER-DEFINED CONTROLLER HAS TO BE REALIZED BELOW

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C_out=C_in;

%The static linear feedback u=K(x-x_ref) stabilizes the pendulum in

%the upper position and tracks the reference theta^ref(t)=0.3sin(t).

K0=[-0.0000 -5.2811 0.2420 0.0174];

Gd=[ 4.0000 -2.0248 0.0033 -0.0033;

-0.0000 2.0000 -0.0000 0.0000;

0.0000 -0.3800 3.0000 -2.0235;

0.0000 0.0000 -0.0000 1.0000];

K=[2.0000 -29.7189 1.2580 -3.0174];

P=[

3.1581 -7.2001 0.5908 -0.6077;

-7.2001 96.7019 -6.8570 7.4704;

0.5908 -6.8570 0.5539 -0.5856;

-0.6077 7.4704 -0.5856 0.6472];

u=e_hpc(x-x_ref,K0,K,Gd,P,-1,0.8,1);

2The HPC discretization algorithms from HCS Toolbox are not optimized for implementation in
low performance control devices. Concerning industrial implementation of homogeneous algorithms
please contact the HCS Toolbox developer andrey.polyakov@inria.fr
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The LPC and HPC controllers are locally stabilizing controllers (for the rotary pen-
dulum), so they start to operate that the swing-up controller bring the system close to
the upper position of the pendulum. That is why the comparison is made only on the
time interval [3, 20]. If a stabilizing controller cannot hold the pendulum close to the
upper position for t ≥ 3 then the quality of the stabilizing controller is unacceptable.
Both LPC and (upgraded) HPC solves successfully all three control tasks without
any a-priori knowledge about reference trajectories. Both controllers are saturated
by ±10 V (due to physical restrictions of the motor’s input voltage). The control
input and output measurements are sampled with the period 0.002. Notice that only
the angles α and θ are directly measured by encoder having certain quantization, but
their derivatives are obtained by an observer/filter. For both controller the same state
observer (provided by Quanser) is utilized.

The comparison results for LPC and HPC control application in the real device
(Qunser QUBE Servro-2) are shown in Fig. 4.9 (Task 1), in Fig . 4.10 (Task 2) and in
Fig . 4.11 (Task 3). In all three cases the tracking error of HPC is twice smaller than
the tracking error of LPC. HPC also demonstrates smaller overshoots Fig . 4.10).
However, the homogeneous controller consumes a bit more energy. Both L2 and L∞
norms of HPC signal are larger than in the case of LPC. This is also expectable, since
faster transient needs additional power. There always exists a trade of between fast
response+high precision and a consumption of control energy. Homogeneity provides
a possible way to adjust this in practice (using the saturation parameters a, b, see
Section 3.1.7).
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Figure 4.9: Comparison of LPC and HPC for Task 1
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Figure 4.10: Comparison of LPC and HPC for Task 2
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Figure 4.11: Comparison of LPC and HPC for Task 3

4.5 Conclusions

• Theoretical conclusions of Chapter 2 (about faster convergence, better robust-
ness and smaller overshoots) for homogeneous systems are confirmed by practi-
cal control experiments.

• HCS Toolbox provides simple-in-use functions for design of homogeneous con-
trollers/observer and upgrading existing linear algorithms to homogeneous ones.
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Chapter 5

List of Acronyms

• HCS (Homogeneous Control System)

• HO (Homogeneous Observer)

• HPC (Homogeneous Proportional Control)

• HPIC (Homogeneous Proportional-Integral Control)

• HSMC (Homogeneous Sliding Mode Control)

• HSMCI (Homogeneous Sliding Mode Control with Integral action)

• LO (Linear Observer)

• LPC (Linear Proportional Control)

• LPIC (Linear Proportional-Integral Control)

• MIMO (Multiply-Input Multiply-Output)

• SISO (Single Inout Single Output)

• ZOH (Zero-Order-Hold)
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Chapter 6

List of Functions of HCS Toolbox

(for more info type help <name of function> in the Command Line of MATLAB)

Homogeneous Objects induced by Linear Dilation:

• hnorm - computation of homogeneous norm

• hproj - computation of homogeneous projection

• hcurve - generation of points of a homogeneous curve

• hsphere - generation of a random grid on a homogeneous sphere

Homogeneous Control Design:

• hpc design - Homogeneous Proportional Control (HPC) design

• hpci design - Homogeneous Proportional-Integral Control (HPIC) design

• hsmc design - Homogeneous Sliding Mode Controller (HSMC) design

• hsmci design - design of HSMC with Integral action

• fhpc design - Fixed-time HPC design

• fhpic design - Fixed-time HPIC design

• lpc2hpc - upgrading Linear Proportional Control (LPC) to HPC

• lpic2hpc - upgrading Linear PI control (LPIC) to HPIC

Discretization of Homogeneous Control :

• e hpc - explicit discretization of HPC

• si hpc - semi-implicit discretization of HPC
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• c hpc - consistent discretization of HPC

• e hpic - explicit discretization of HPIC

• e hsmc - explicit discretization of HSMC

• si hsmc - semi-implicit explicit discretization of HSMC

• e hsmci - explicit discretization of HSMC with Integral action

• e fhpc - explicit discretization of Fixed-time HPC

• si fhpc - semi-implicit discretization of Fixed-time HPC

• e fhpic - explicit discretization of Fixed-time HPIC

Homogeneous Observer Design:

• ho design - Homogeneous Observer (HO) design

• fho design - Fixed-time HO design

• lo2ho - upgrading Linear Observer (LO) to HO

Discretization of Homogeneous Observer :

• e ho - explicit Euler discretization of HO

• si ho - semi-implicit discretization of HO

• e fho - explicit Euler discretization of FHO

• si fho - semi-implicit discretization of HO

Block forms:

• block con - transformation to block controlability form

• bloc obs - transformation to block observability form

• trans con - transformation to partial block controlability form

• trans con - transformation to partial block observability form

• output form - transformation to reduced order output control system

Examples (to open type edit <name of example> in Command Line of MATLAB):

• demo hnorm - demo of computation of a homogeneous norm

• demo hsphere - plot of homogeneous spheres in 2D
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• demo hcurve - plot of homogeneous curves in 2D

• demo hpc - demo of HPC design and simulation

• demo hpic - demo of HPIC design and simulation

• demo hsmc - demo of HSMC design and simulation

• demo hsmci - demo of HSMCI design and simulation

• demo fhpc - demo of FHPC design and simulation

• demo fhpic - demo of FHPIC design and simulation

• demo lpc2hpc - demo of upgrading LPC to HPC/FHPC

• demo lpic2hpic - demo of upgrading LPIC to HPIC/FHPIC

• demo ho - demo of HO design and simulation

• demo fho - demo of FHO design and simulation

• demo lo2ho - demo of upgrading LO to HO/FHO
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