
Deisa
Dask-enabled in situ analytics
Analyze your MPI Simulation Outputs with Dask

Benoît Martin
Julien Bigot
Amal Gueroudji
Bruno Raffin

HPC Numerical simulations

● Typically numerical simulation
○ No data analysis
○ Number crunching

● Written in Fortran/C++
○ MPI for parallelization over multiple nodes
○ OpenMP for shared memory parallelism
○ sometimes GPU

● Iterate over time
● Manipulate very structured data

○ multi-dimensional arrays
○ compute next state from time-step to time-step

2

Data at exascale: a challenge in hardware

• Increasing gap between compute and
I/O performance on large-scale systems
• Ratio of I/O to computing power divided by ~10

over the last 10 years on the top 3 supercomputers

• … and data deluge!
• At NERSC, data volume x41 in 10 years

• New storage tiers and advanced
architectures to try to mitigate this
increasing bottleneck

• More complex on-node memory layout

• Emerging complex applications and workflows
have to adapt

3

Compute node
Compute node w/ node-local storage
[Network/PCIe]-attached storage
Burst-buffer / Dedicated nodes
Gateway nodes / IO forwarding nodes
Flash-based PFS / Short-term
HDD-based PFS / [Medium/long]-term

Trend in storage technologies available on extreme-scale systems

The example of GYSELA

4

● A gyrokinetic code for plasma simulation
○ Developed @ CEA/DRF/IRFM (lead developer: Virginie Grandgirard)
○ Non-linear 5D simulations (3D in space + 2D in velocity) + multiscale problem in space and time
○ requires state-of-the-art HPC techniques (~10k to ~100k CPUs)

● Fortran 90 code with hybrid MPI/OpenMP parallelisation
○ Optimized up to 1,460,000 threads
○ Relative efficiency of 85% on more than 1M threads

■ 63% on 1.46M threads
■ on CEA-HF (AMD EPYC 7763)

● Intensive use of petascale resources:
○ ~ 150M hour.core / year
○ GENCI + PRACE + HPC Fusion resources

ITER project GYSELA simulation

Data in GYSELA

In GYSELA, 3D means “small”

● ~GB or so

5D is where the real space usage is

● 1 single variable f fills ¼ of RAM
○ Of the full cluster
○ That’s ~100TB on Joliot Curie

● 2 or 3 copies fill the whole RAM

● You don’t write to disk
○ (or not too often)
○ Diagnostics instead

3D

5

5D

Diagnostics in GYSELA

● In the code (in Fortran)
○ Reduce data from 5D to 3D, 2D, 1D, 0D…
○ To a single node each

● Write the result to files
○ HDF5

● Analyze the files post hoc
○ In python
○ Interactively
○ FFTs, more reductions, combining data
○ generating graphs, images, videos, …

6

limiter

In 2020, a new diagnostic?

Principal Component Analysis computation on 5D distribution function

● Yuuichi Asahi et al.
● Done on GT5D code

Hard to implement in C++/Fortran + MPI + OpenMP

● Parallel PCA already available in Scikit-learn
● ⇒ Let’s reuse it!

Asahi, Yuuichi & Fujii, Keisuke & Heim, Dennis & Maeyama, Shinya & Garbet, Xavier & Grandgirard,
Virginie & Sarazin, Yanick & Dif-Pradalier, G. & Idomura, Yasuhiro & Yagi, Masatoshi. (2021).
Compressing the time series of five dimensional distribution function data from gyrokinetic simulation
using principal component analysis. Physics of Plasmas. 28. 012304. 10.1063/5.0023166.

7

Sequential python using scikit-learn for PCA

Post hoc data analytics with python

Requires a single node

computer with ~100TB RAM

8

Dask

9

- Task-based model
- A scheduler/workers (+client) model
- Dask array: distributed Numpy array
- Many tools ported to Dask

- Numpy / SciPy
- Scikit-learn
- Pandas
- …

Post hoc data analytics with Dask

10

Dask for post hoc analytics

Dask
scheduler

Analytics
client

Worker #1 Worker #NWorker #2 …

3. task-graph
submission

4. tasks
execution

PFS

2. metadata
read

5. data read

M
P

I
P0

P1

PM

PDI

PDI

PDI

...

HDF5

HDF5

HDF5 1. data write

● File-system requirements are huge
● File-system IO performance is still an issue

○ Let’s run simulation & analysis at the same time
○ Erase files as soon as they are not required

anymore

h5py

11

Can we do better? In situ analytics

12

Usually MPI-based
Complex to setup

Damaris
Sensei
SmartSim
Visit[libsim]
Paraview[catalyst]
ADIOS [I, II]
…

12

General context

● Python analytics are nice and many tools are available :)
○ Dask offers a great parallel task-based programming model :)
○ But file-system performance is a bottleneck :/

● In situ analytics solve performance issues :)
○ Typically close to the application (MPI) programming mode
○ MPI is not well suited for writing data analytics :/

Let’s combine these!

Dask-Enabled In Situ Analytics

● PhD work by Amal Gueroudji, advised by J. Bigot & B. Raffin

Can we do even better? Deisa!

Amal Gueroudji. Distributed Task-Based In Situ Data
Analytics for High-Performance Simulations. Université
Grenoble Alpes [2020-..], 2023. English.

13

Dask for post hoc analytics

Dask
scheduler

Analytics
client

Worker #1 Worker #NWorker #2 …

3. task-graph
submission

4. tasks
execution

PFS

2. metadata
read

5. data read
M

P
I

P0

P1

PM

PDI

PDI

PDI

...

HDF5

HDF5

HDF5 1. data write

h5py

14

P0

P1

PM

...

Deisa

Dask
scheduler

Analytics
client

…

DEISA
Bridge

DEISA
Bridge

DEISA
Bridge

3. task-graph
submission

5. tasks
execution

DEISA
Metadata
adapter

1. metadata
send

5. data send

2. metadata
fetch

PDI

PDI

PDI

Worker #1 Worker #NWorker #2

M
P

I

15

4. contract
send

*

• IRENE supercomputer @ TGCC
• Nodes:

• 2x24-cores Intel Skylake@2.7GHz
• 180GB RAM

• InfiniBand network (100Gb/s)
• Scratch disks: 300GB/s transfer rate
• Mini App 2D heat solver

16

Performance evaluation

16

17

(reading data
+ Analytics)

(waiting data
+ Analytics)

(Single-graph)
(Multi-graph) (Multi-graph)

(Single-graph)

(Multi-graph)
(Single-graph)

x3

x7

x1.8

x2.5

x3

DEISA vs Post hoc Weak Scalability

17

18

x16

x7

x2

x2.4

x3

DEISA vs Post hoc efficiency in hour.core

18

Tutorial: 2D heat simulation + in-situ image generation

19

Motivation: automatic detection using AI

20

- ↘ stress on file system: only write
interest zone

- automatic notification
- feedback to simulation

- parameters: i/o frequency,
resolution, …

- replay from previous snapshot

Deisa architecture

AI:
training/inference

21

P0

P1

PM

... Dask
scheduler

…

DEISA
Bridge

DEISA
Bridge

DEISA
BridgePDI

PDI

PDI

Worker #1 Worker #NWorker #2

M
P

I

yaml

Hands-on: in-situ visualization

22

P0

P1
DEISA
Bridge

DEISA
BridgePDI

PDI

M
P

I

P2
DEISA
BridgePDI

P3
DEISA
BridgePDI

Partial images by MPI subdomain

Global image from subdomains

Hands-on: environment

23

● ssh ruche
● . /gpfs/workdir/shared/pdi-deisa/setup-env.sh # setup environment

● git clone https://github.com/pdidev/tutorial.git && cd tutorial/ex_deisa
● mkdir build && cd build # create build directory
● cmake .. && make ex0 # build
● mpirun -np 4 ./ex0 # run code

https://github.com/pdidev/tutorial.git

Hands-on: PDI yaml configuration

24

pdi:
 metadata:
 ii: int
 [...]
 data:
 main_field: {type: array, subtype: double, size: ['$dsize[0]', '$dsize[1]']}

 plugins:
 [...]

 deisa:
 scheduler_info: scheduler.json # Dask generated config file
 init_on: initialization # PDI event called after sharing all metdata
 time_step: $ii # Timestep variable
 deisa_arrays: # Deisa virtual arrays equivalent to Dask arrays
 global_t: # Name associated to the virtual array
 type: array
 subtype: double
 size: [1001, '$dsize[0]*$psize[0]', '$dsize[1]*$psize[1]']
 subsize: [1, '$dsize[0]', '$dsize[1]'] # Size of each chunk
 start: [$ii, '$dsize[0]*$pcood[0]', '$dsize[1]*$pcood[1]'] # Start of each chunk
 +timedim: 0 # Index of the time dimension
 map_in: # Map local data to the Deisa array
 main_field: global_t

What’s next in Deisa? NumPEx !

● Make Deisa production-grade (in progress)
○ Improve scalability & performance
○ Upstream Dask modifications
○ Improve packaging

● Validate PDI + Deisa + AI for event detection
● Integrate in GYSELA rewrite

○ New analytics based on PDI/Deisa, support post hoc / in situ transparently

● New features
○ Triggers & feedback from analytics to simulation
○ Prevent data copy
○ Standardized AI pipeline (training + inference)

25

