Guix and Spack for
Application Deployment

Across Supercomputers

The NumPEx PC5 WP3 Team

Index

* Context and problems to solve

« Package managers: Guix and Spack
» Containers: Singularity

* Performance considerations

* MPI
- CUDA
- ROCM

NumPEx WP3 (Exa-DI) Team

e Lead: Bruno Raffin, INRIA:; Benoit Martin, CEA

 Part time participants: Ludovic Courtes, INRIA; Pierre Neyron, CNRS;
Julien Bigot, CEA

 Full-time dedicated engineers:
« Romain Garbage, Bordeaux
 Fernando Ayats, Grenoble

Regular contacts with national compute centers (Idris, Cines and CCRT)

Sl

Context

Challenge:

« Exascale apps are increasingly difficult to build, deploy,
maintain or test. The complexity of apps grows, as well as the
machines’ complexity. Current software deployment doesn't

scale properly with this complexity.

At stake:

* Need for HPC DevOps tools and methodologies, that
enhance productivity, interoperability and portability.

Our Target

Application developers

« Ease difficulty in building and developing apps.

» Portable solution from laptops to the supercomputers.
* Cl/CD-ready

System administrators
« Ease package administration and testing.
 Introduce Guix in compute centers.

Application users
» Provide turn-key solutions for deployments.

» Fearless migration between machines and updates.

= @

Guix and Spack and the

Problems They Solve

Classical Way to Deploy Software

« Manually installing libraries (git clone, cmake, make install, etc)
X Time-consuming
X Error-prone
X Automation scripts are fragile

#1/bin/sh
tar -xvf vendor/mylibrary.tar.gz
cd mylibrary && make ...

Classical Way to Deploy Software

* module load <packname>
Cleaner solution than manually installing things

X Modules are specific to each cluster, and different between each
other

X Not reproducible, both in the future or with colleagues

X Limited to packages and versions provided by the admin team

#1/bin/sh
module load cuda
module load kokkos

Use a Package Manager!

#!1/bin/sh
tar -xvf vendor/mylibrary.tar.gz
cd mylibrary && make ...

Use a Package Manager!

» Package managers take the task of managing your
dependencies for you

Easy installation of dependencies

Reproducible stack of software, both in the future and with
other contributors

Cl/CD Ready

NumPEXx Strategy with Package Managers

There are many package managers, but Guix and Spack are
HPC-ready:

GNU Guix (https://hpc.quix.info)
» Pure dependency tree, doesn’t use system libraries
« Easier usage and creation of containers

Spack (https://spack.io)
« Can load system libraries, providing some flexibility
* Provides more package versions and variants

https://hpc.guix.info/
https://spack.io/

Installation of Guix and Spack

Guix installation: Guix
Running the installation script
https://quix.gnu.org/manual/en/html_node/Binary-Installation.html
(apt install guix is discouraged)

Spack installation: @

Cloning the Spack repo and sourcing the setup script,
https://spack.readthedocs.io/en/latest/getting_started.html

NumPEx PC5 (Exa-Dl)

https://guix.gnu.org/manual/en/html_node/Binary-Installation.html
https://spack.readthedocs.io/en/latest/getting_started.html

Running Example: Chameleon

Chameleon (https://project.inria.fr/chameleon/)

A dense linear algebra software for heterogeneous architectures,
developed at Inria.

Requires:
- MPI
« StarPU
« CUDA

« Packaged in Guix and Spack
C/ 6 NumPEx PC5 (Exa-DlI)

https://project.inria.fr/chameleon/
https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/chameleon/package.py
https://gitlab.inria.fr/guix-hpc/guix-hpc/-/blob/master/guix-hpc/packages/solverstack.scm#L236

Examples of Package Managers

$ guix search chameleon
$ spack list chameleon

Searching for packages

guix 1install chameleon
spack install chameleon

Installing packages

guix shell -m ./manifest.scm

_ Activating environments
spack env activate ./myenv

Examples of Guix

$ guix install cmake gcc-toolchain openmpi Installing packages globally
$ guix shell cmake gcc-toolchain openmpi Temporary environment
$ guix shell -D chameleon Get the libraries to build chameleon, but not chameleon itself

“Declarative” package management with a manifest.scm (like a requirements.txt)
$ guix shell cmake gcc-toolchain —export-manifest > manifest.scm

$ guix shell -m manifest.scm

(specifications->manifest (list "cmake" "openmpi" "gcc-toolchain"))

NumPEx PC5 (Exa-Dl)

Examples of Spack

Installing packages globally
$ spack install cmake openmpi

Declarative package management with spack.yaml (like requirements.txt)
$ spack env create —dir ./myenv && spacktivate ./myenv

$ spack add cmake openmpi

spack:
specs:
- cmake
- openmpi

NumPEx PC5 (Exa-Dl)

What is a Package Definition?

definition file

GuiXx

$ guix install chameleon
(reads chameleon.scm file)

=> /gnu/store/....-chameleon-1.2.0/bin/chameleon

Package Definitions in Guix

(define-public chameleon
(package

Uses SCheme (name "chameleon")

(version "1.2.8")

(home-page "https://gitlab.inria.fr/solverstack/chameleon")

(synopsis "Dense linear algebra solver")

(description

"Chameleon is a dense linear algebra solver relying on sequential

nght: eXtraCt Of the task-based algorithms where sub-tasks of the overall algorithms are submitted

. PR to a run-time system. Such a system is a layer between the application and
Chameleon deflnltlon the hardware which handles the scheduling and the effective executlon of
tasks on the processing units. A run-time system such as StarPU is able to
manage automatically data transfers between not shared memory
area (CPUs-GPUs, distributed nodes).")
(license license:cecill-c)
(source
(origin
(method git-fetch)
(url (glt-reference
(url home-page)
(commit "v1.2.8")
(recursive? #t)))
(file-name (string-append name "-" version "-checkout"))
(patches (search-patches "guix-hpc/packages/patches/chameleon-cpp.patch"))
(sha256
(base32 "1gcn78611z2xxh43rpfh52ynwe2227033alj5aw1d753aqyxq378"))
(modules '((guix huild utils)))

3 a NumPEx PC5 (Exa-Dl)

Package Definitions for Spack

class Chameleon(CMakePackage, CudaPackage):

l 'SeS Python """Dense Linear Algebra for Scalable Multi-core Architectures and GPGPUs

homepage = "https://gitlab.inria.fr/solverstack/chameleon”
url = "https://gitlab.inria.fr/api/v4/projects/616/packages/generic/source/v1.2.0/cham

wn

git = "https://gitlab.inria.fr/solverstack/chameleon.git"

maintainers("fpruvost")

Right: extraCt Of the Chameleon version("master", branch="master", submodules=True)

version("1.2.0", sha256="h8988ecbff19c603ae9f61441653c21bbal18d040bee9bbB83f7fc9077043e5(

" L] "
de flnltlon version("1.1.0", sha256="e64d0438dfaf5effb3740e53f3ab017d12744b85a138b2ef702a81df55912(

depends_on("c", type="build") # generated
depends_on("cxx", type="build") # generated

depends_on("fortran", type="build") # generated

cmake's specific
variant("shared", default=True, description="Build chameleon as a shared library")

chameleon's specific
variant(
"runtime",
default="starpu",
description="Runtime support"
values=("openmp", "starpu"),
multi=False,
)
variant("mpi", default=True, when="runtime=starpu', description="Enable MPI")
variant("cuda", default=False, when="runtime=starpu", description="Enable CUDA")

variant(

D ﬁ NumPEx PC5 (Exa-DI)

Package Collision

Both Spack, Guix and Nix use hash-based system, in which
packages don't collide between eachother.

$ guix build chameleon
=> /gnu/store/0000000001-chameleon/bin/chameleon

$ guix build —tune=cascadelake chameleon
=> /gnu/store/0000000002-chameleon/bin/chameleon

(Simplified)

Package Managers Summary

X Don’t manually install dependencies

X Not relying on machine-specific modules will be better for
reproducibility

Use a package manager
guix install ... / spack install ...

If a package you need is not available, contact us or the Guix /
Spack maintainers (they will be happy to help)

Supercomputer Support

via Containers

Supercomputer Support

Guix:
Provided by Tier-2 supercomputers, and developer’s laptops
X Not available on Tier-0 or Tier-1 (yet)

Spack:

Can be installed almost anywhere
X Will saturate inodes on supercomputers (too many files)

Supercomputer Support

Containers:
Available on Tier-0, Tier-1 and Tier-2 supercomputers
Generated from Guix and Spack

d’ docker

SINGULARITY

NumPEx PC5 (Exa-Dl)

- Supercomputer Support

[laptop J

@ APPTAINER

&

—

J

— e

&

[Tier-2 J

NumPEx PC5 (Exa-Dl)

Adastra (Tier-1)
Irene (Tier-1)

ean-Zay (Tier-1)

LUMI (Tier-0)

What is a Container?

/usr/bin/cmake
/11b/x86_64-1inux-gnu/libc.so0.6

container.sif

* |solated from the system.

* Near bare-metal performance.

- Easy to use and share. rls @'docker
* Docker: most popular

« Singularity: HPC-ready, Docker compatible SINGULRRITY

NumPEx PC5 (Exa-Dl)

What is a Container?

Example: official PyTorch containers https://hub.docker.com/r/pytorch/pytorch
$ python3

>>> import torch

Traceback (most recent call last):
File '"<stdin>", 1line 1, in <module>

ModuleNotFoundError: No module named 'torch'

$ singularity shell docker://pytorch/pytorch

Singularity> python3
>>> import torch

NumPEx PC5 (Exa-Dl)

https://hub.docker.com/r/pytorch/pytorch

Building Containers

Singularity containers can be built with their official CLI tool, and

definition files:
singularity build container.sif definition.def

Building containers with Spack and Guix is easy:

$ guix pack -f squashfs chameleon

$ spack buildcache push <myregistry> chameleon

Building Containers with Spack and Guix

Library — —— @ Guix SINGULARITY

. Package > .
Library —> Manager Container J

NumPEx PC5 (Exa-Dl)

Building Containers with Spack and Guix

c

@ Guix SINGULARITY

> Facage —> Container
Manager

Why not use APT or DNF to build the container?

« Reproducible and optimized software stack.

* Integration with local workflows with Guix and Spack.
» Access to big HPC software catalog.

= @

Building Containers with Guix

$ guix pack -f squashfs -r ./image.sif bash chameleon

$ singularity shell ./image.sif
Singularity> chameleon_stesting

(Bash is a requirement for Singularity)

Building Containers with Guix

$ guix pack -f squashfs -r ./image.sif bash chameleon

$ scp ./image.sif lumi
$ ssh lumi
$ srun —pty <....> \
singularity shell ./image.sif

Singularity> chameleon_stesting

Building Containers with Spack

Pre-requisite: configure a container registry with Spack:

« Official documentation:
https://spack.readthedocs.io/en/latest/binary caches.html

 Tutorial: https://numpex-pc5.qitlabpages.inria.fr/tutorials/hpc-env/workflow-
example/index.html

$ spack buildcache push --base-image ubuntu:24.04 myregistry chameleon

$ singularity shell docker://myregistry/...chameleon.spack

Singularity> chameleon_stesting

(The Docker registry is compatible with Singularity)

C (o NumPEx PC5 (Exa-DI)

https://spack.readthedocs.io/en/latest/binary_caches.html
https://numpex-pc5.gitlabpages.inria.fr/tutorials/hpc-env/workflow-example/index.html
https://numpex-pc5.gitlabpages.inria.fr/tutorials/hpc-env/workflow-example/index.html

Building Containers with Spack

$ spack buildcache push --base-image ubuntu:24.04 myregistry chameleon

$ srun —pty <....> \
singularity shell docker://myregistry/...chameleon.spack

Singularity> chameleon_stesting

Container Benefits

In summary:
It's preferred to use Guix directly if the supercomputer provides it...

You can use Spack directly, if you don’t have problems with inodes, and
want to use the system’s libraries...

But using containers has the benefits of:
Easily share the container.sif with colleagues, CI/CD, etc.
Turn-key solution for developers
Reproducible software stack
Reproducible experiments for paper authors

Performance

Considerations

Support for MPI

$ guix install openmpi
$ spack install openmpi

Network drivers:
* For Guix, all included by default (fabric, Cray, etc)

« For Spack, might need to change the flags spack install
openmpl fabrics=of1

OpenMPI 4 and 5, and MPICH provided by Guix and Spack

Sl

Support for MPI

Two ways of deployment:
* Bring-Your-Own MPI in the container (\WWhat we do)
* Load MPI from the host (with ABI-matching)

* Guix: lends to BYO-MPI (software purity)

« Spack: lends to MPI loading (flexibility). But with containers, we
are doing the BYQO approach currently.

Support for MPI

chameleon homogeneous SGEMM - 2 nodes Intel-MPI-Benchmark PingPong - 2 nodes

— —T 100000 g———rrm——rvrrm
guix-singularity guix-singularity

guix I uix
modules 10000 3 mod?)les

T T T T

1000 |

100 |

10 |

1 -k

5000 10000 15000 20000 25000 30000

Matrix order n (m=n=k)

TR R T] B S S R T B SR SR T 11 B S ST R TTT] SRS A W N T 17| B S I 171 B S AT

10 100 1000 10000 100000 1e+06 1le+07
Bytes (B)

Reconciling high-performance computing with the use of third-party libraries?
JCAD, November 4-6, 2024, Bordeaux
Emmanuel Agullo

C (o NumPEx PC5 (Exa-DI)
o

Support for CPU tuning

Automatically pass —march to packages and dependencies

$ guix install —tune=cascadelake chameleon
$ spack install chameleon target=cascadelake

Support for CUDA

The cuda package is provided by both Spack and Guix:

$ guix install cuda-toolkit
$ spack install cuda

Singularity requires running the container with the —nv flag
$ singularity exec —nv ...

Support for ROCM

You need to check which packages you need, for example:

$ guix install hipamd
$ spack install rocm-cmake

Spack package names:
https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-
to/spack.html#rocm-packages-in-spack

NumPEx PC5 (Exa-Dl)

https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/spack.html#rocm-packages-in-spack
https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/spack.html#rocm-packages-in-spack

What are package variants?

Similar to CPU tuning, packages can be modified to have
different feature support. For example, variants with MPI or
CUDA support, etc.

Spack:
Specification flags:
$ spack install chameleon +cuda

Guix:
Different package names:
$ guix install chameleon-hip

-y

Which Supercomputers have we tested?

« Jean-Zay (ldris)
CUDA + InfiniBand, Singularity fully supported
* Requires an extra command to put container in “safe” directory

« Adastra (CINES)
ROCM + HPE Slingshot, Singularity fully supported
* Requires containers to be validated by the admin team

* Irene (TGCC)
CUDA + InfiniBand, In-house, Docker-compatible container runtime “pcocc”

* Vega, MeluXina (EuroHPC)
CUDA + MPI InfiniBand, Singularity fully supported

* LUMI (EuroHPC)
ROCM + HPE Slingshot, Singularity fully supported

Sl

Summary

C (o NumPEx PC5 (Exa-DI)

-y

Summary

Use a package manager (Guix or Spack) to install your C/C++
dependencies, it will make things easier.

Use Singularity containers to deploy it to supercomputers.

Get in contact with our team (PC5, WP3) if you need any help
with setting up the new workflow.

Guix provides better reproduciblity, while Spack flexibility.

@ Guix SINGULARITY

“Getting Started” Steps

. Install Guix on your development computer.
. Use guix shell to get your development dependencies.

. Adjust your project to find packages from the package manager, and
remove your bundled dependencies.

. Save your development dependencies to a declarative manifest.scm file,

which is commited.

. Create a container with the development dependencies with guix pack
—m manifest.scm

. Package the application with Guix, and deploy it directly with Singularity.
. Integrate Guix with CI/CD to build, test and generate containers.

NumPEx PC5 (Exa-Dl)

Practical Session at 13:00

» Use Grid’5000 as a platform that:
* Provides Guix and supports Spack

* Provides Singularity
e Can run a Chamelon with CUDA on GPU nodes

Make sure:

* You can connect to Lille site in Grid’5000
ssh lille.g5k

* You ran the guix pull command,as indicated in the email.

Time for questions!

Contact and info:
 Tutorials page: https://numpex-pcS.gitlabpages.inria.fr/tutorials/
» Slack: https://numpex.slack.com/archives/CO/UT0S1H7Y

The slides will be sent in Slack #packaging channel

* Email
 List: numpex-pcS-wp3@inria.fr
* Fernando Ayats Llamas: fernando.ayats-llamas@inria.fr
 Romain Garbage: romain.garbage@inria.fr

NumPEx PC5 (Exa-Dl)

https://numpex-pc5.gitlabpages.inria.fr/tutorials/
https://numpex.slack.com/archives/C07UT051H7Y
mailto:numpex-pc5-wp3@inria.fr
mailto:fernando.ayats-llamas@inria.fr
mailto:romain.garbage@inria.fr

