From e7de8a209b75f8038895d338505f872f004671ce Mon Sep 17 00:00:00 2001 From: Baptiste Jonglez <baptiste.jonglez@inria.fr> Date: Mon, 23 May 2022 13:10:26 +0200 Subject: [PATCH] Regenerate ReST README --- README.rst | 90 +++++++++++++----------------------------------------- 1 file changed, 21 insertions(+), 69 deletions(-) diff --git a/README.rst b/README.rst index cef81d9..f28e73f 100644 --- a/README.rst +++ b/README.rst @@ -88,9 +88,10 @@ conform with the Grid5000 API models (with an ’s’!) password: MYPASSWORD ' > ~/.python-grid5000.yaml -- When accessing the API from a Grid’5000 frontend, providing the username and - password is optionnal. Nevertheless you’ll need to deal with SSL verification - by specifying the path to the certificate to use: +- When accessing the API from a Grid’5000 frontend, providing the username + and password is optionnal. Authentication should work out-of-the-box; if + it fails, try updating python-grid5000, or specify the path to the + certificate to use: :: @@ -614,51 +615,7 @@ connected to other testbeds for experiments involving wide area layer2 networks. 5.8 Metrics API ~~~~~~~~~~~~~~~ -5.8.1 Get the timeseries corresponding to a job -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -Credits to ``lturpin``. - -.. code:: python - - import logging - import os - - from grid5000 import Grid5000 - - - logging.basicConfig(level=logging.DEBUG) - - - def get_job_consumption(job_id, gk, site): - metrics = gk.sites[site].metrics - job = gk.sites[site].jobs[job_id] - # nodes as list : "cluster-number.site.grid5000.fr" - nodes_dom = job.assigned_nodes - # nodes as list : "cluster-number" - nodes = map(lambda node_dom: node_dom.split('.')[0], nodes_dom) - # nodes as string : "cluster-number,cluster-number,..." - nodes_str = ','.join(nodes) - - start = job.started_at - end = job.stopped_at - kwargs = { - "only": nodes_str, - "resolution": 1, - "from": start, - "to": end - } - timeseries = metrics["power"].timeseries.list(**kwargs) - return timeseries - - - conf_file = os.path.join(os.environ.get("HOME"), ".python-grid5000.yaml") - gk = Grid5000.from_yaml(conf_file) - - timeseries = get_job_consumption("1092446", gk, "lyon") - print(timeseries) - -5.8.2 Get some timeseries (and plot them) +5.8.1 Get some timeseries (and plot them) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For this example you’ll need ``matplotlib``, ``seaborn`` and ``pandas``. @@ -675,45 +632,40 @@ For this example you’ll need ``matplotlib``, ``seaborn`` and ``pandas``. import seaborn as sns import time - logging.basicConfig(level=logging.DEBUG) + logging.basicConfig(level=logging.INFO) conf_file = os.path.join(os.environ.get("HOME"), ".python-grid5000.yaml") gk = Grid5000.from_yaml(conf_file) - metrics = gk.sites["lyon"].metrics + metrics = gk.sites["lyon"].clusters["nova"].metrics print("--- available metrics") - print(metrics.list()) - - print("---- power metric") - print(metrics["power"]) + print(metrics) print("----- a timeserie") now = time.time() + # NOTE that you can pass a job_id here kwargs = { - "only": "nova-1,nova-2,nova-3", - "resolution": 1, - "from": int(now - 600), - "to": int(now) + "nodes": "nova-1,nova-2,nova-3", + "metrics": "wattmetre_power_watt", + "start_time": int(now - 600), } - timeseries = metrics["power"].timeseries.list(**kwargs) + metrics = gk.sites["lyon"].metrics.list(**kwargs) # let's visualize this df = pd.DataFrame() - for timeserie in timeseries: - print(timeserie) - timestamp = timeserie.timestamps - value = timeserie.values - measurement = timeserie.uid + for metric in metrics: + timestamp = metric.timestamp + value = metric.value + device_id = metric.device_id df = pd.concat([df, pd.DataFrame({ - "timestamp": timestamp, - "value": value, - "measurement": [measurement]*len(timestamp) + "timestamp": [timestamp], + "value": [value], + "device_id": [device_id] })]) - sns.relplot(data=df, x="timestamp", y="value", - hue="measurement", + hue="device_id", kind="line") plt.show() -- GitLab