Commit c16c1e79 authored by BELCOUR Arnaud's avatar BELCOUR Arnaud

Add padmet stats.

parent 81e1888d
#!/usr/bin/env python
# -*- coding: utf-8 -*-
This file is part of padmet-utils.
padmet-utils is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
padmet-utils is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with padmet-utils. If not, see <>.
Create a padmet stats file containing the number of pathways, reactions,
genes and compounds inside the padmet.
The input is a padmet file or a folder containing multiple padmets.
Create a tsv file named padmet_stats.tsv where the script have been
import argparse
import csv
import os
import pandas as pa
import sys
from padmet.classes import PadmetSpec
def main():
parser = argparse.ArgumentParser(usage="python -p padmet_file_folder")
parser.add_argument("-p", "--padmet", dest = "padmet_file_folder", help = "Padmet file or folder containing padmet.")
parser_args = parser.parse_args(sys.argv[1:])
padmet_file_folder = parser_args.padmet_file_folder
if os.path.isdir(padmet_file_folder):
padmet_type = "dir"
elif os.path.isfile(padmet_file_folder):
padmet_type = "file"
raise TypeError("%s is not a dir or a file" %(padmet_file_folder))
output_file = open('padmet_stats.tsv', 'w')
output_writer = csv.writer(output_file, delimiter='\t')
output_writer.writerow(['padmet_file', 'pathways', 'reactions', 'genes', 'compounds'])
df_orthologs = pa.DataFrame()
if padmet_type == "dir":
padmet_names = [padmet_file.replace('.padmet', '').upper() for padmet_file in os.listdir(padmet_file_folder)]
for padmet_file in os.listdir(padmet_file_folder):
padmet_path = padmet_file_folder + '/' + padmet_file
stats = padmet_stat(padmet_path)
padmet_name = padmet_file.replace('.padmet', '').upper()
df_temp = orthology_result(padmet_path, padmet_names, padmet_name)
df_orthologs = df_orthologs.append(df_temp)
if padmet_type == "file":
stats = padmet_stat(padmet_file_folder)
padmet_name = padmet_file_folder.replace('.padmet', '').upper()
padmet_names = [padmet_name]
df_temp = orthology_result(padmet_file_folder, padmet_names, padmet_name)
df_orthologs = df_orthologs.append(df_temp)
df_orthologs.to_csv('padmet_orthologs_stats.tsv', sep='\t')
def padmet_stat(padmet_file):
padmetSpec = PadmetSpec(padmet_file)
total_pwy_id = set()
total_cpd_id = set()
all_rxns = [node for node in padmetSpec.dicOfNode.values() if node.type == "reaction"]
all_genes = [node for node in padmetSpec.dicOfNode.values() if node.type == "gene"]
for rxn_node in all_rxns:
total_cpd_id.update([rlt.id_out for rlt in padmetSpec.dicOfRelationIn[] if rlt.type in ["consumes","produces"]])
pathways_ids = set([rlt.id_out for rlt in padmetSpec.dicOfRelationIn[] if rlt.type == "is_in_pathway"])
all_pwys = [node for (node_id, node) in padmetSpec.dicOfNode.items() if node_id in total_pwy_id]
all_cpds = [node for (node_id, node) in padmetSpec.dicOfNode.items() if node_id in total_cpd_id]
return [padmet_file, len(all_pwys), len(all_rxns), len(all_genes), len(all_cpds)]
def orthology_result(padmet_file, padmet_names, padmet_name):
ortholog_species_counts = dict.fromkeys(padmet_names)
for species, count in ortholog_species_counts.items():
if count is None:
ortholog_species_counts[species] = 0
padmetSpec = PadmetSpec(padmet_file)
for node in padmetSpec.dicOfNode.values():
if node.type == 'suppData':
ortholog_species ='FROM_')[1]
ortholog_species_counts[ortholog_species] += 1
df = pa.DataFrame([ortholog_species_counts],columns=ortholog_species_counts.keys(), index=[padmet_name])
return df
if __name__ == "__main__":
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment