diff --git a/declearn/model/torch/_model.py b/declearn/model/torch/_model.py
index f8a5dd6f1396d6d6909edbf070ee616e6cc3a6ec..8eefac9cdb0b111f488c29de373bf3f9b7b911dc 100644
--- a/declearn/model/torch/_model.py
+++ b/declearn/model/torch/_model.py
@@ -17,25 +17,21 @@
 
 """Model subclass to wrap PyTorch models."""
 
-import functools
 import io
+import functools
 import warnings
-from typing import Any, Callable, Dict, List, Optional, Set, Tuple
-
-import functorch  # type: ignore
+from typing import Any, Dict, List, Optional, Set, Tuple
 
-try:
-    import functorch.compile  # type: ignore
-except ModuleNotFoundError:
-    COMPILE_AVAILABLE = False
-else:
-    COMPILE_AVAILABLE = True
 import numpy as np
 import torch
 from typing_extensions import Self  # future: import from typing (py >=3.11)
 
 from declearn.model.api import Model
 from declearn.model.torch.utils import AutoDeviceModule, select_device
+from declearn.model.torch._samplewise import (
+    GetGradientsFunction,
+    build_samplewise_grads_fn,
+)
 from declearn.model.torch._vector import TorchVector
 from declearn.model._utils import raise_on_stringsets_mismatch
 from declearn.typing import Batch
@@ -108,8 +104,6 @@ class TorchModel(Model):
             raise TypeError("'loss' should be a torch.nn.Module instance.")
         loss.reduction = "none"  # type: ignore
         self._loss_fn = AutoDeviceModule(loss, device=device)
-        # Compute and assign a functional version of the model.
-        self._func_model, _ = functorch.make_functional(self._model)
 
     @property
     def device_policy(
@@ -281,8 +275,8 @@ class TorchModel(Model):
         max_norm: float,
     ) -> TorchVector:
         """Compute and return batch-averaged sample-wise-clipped gradients."""
-        # Compute sample-wise clipped gradients, using functorch.
-        grads = self._compute_samplewise_gradients(batch, max_norm)
+        # Compute sample-wise clipped gradients, using functional torch.
+        grads = self._compute_samplewise_gradients(batch, clip=max_norm)
         # Batch-average the resulting sample-wise gradients.
         return TorchVector(
             {name: tensor.mean(dim=0) for name, tensor in grads.coefs.items()}
@@ -291,92 +285,48 @@ class TorchModel(Model):
     def _compute_samplewise_gradients(
         self,
         batch: Batch,
-        max_norm: Optional[float],
+        clip: Optional[float],
     ) -> TorchVector:
         """Compute and return stacked sample-wise gradients over a batch."""
-        # Unpack the inputs, gather parameters and list gradients to compute.
         inputs, y_true, s_wght = self._unpack_batch(batch)
-        params = []  # type: List[torch.nn.Parameter]
-        idxgrd = []  # type: List[int]
-        pnames = []  # type: List[str]
-        for index, (name, param) in enumerate(self._model.named_parameters()):
-            params.append(param)
-            if param.requires_grad:
-                idxgrd.append(index + 3)
-                pnames.append(name)
-        # Gather or build the sample-wise clipped gradients computing function.
         grads_fn = self._build_samplewise_grads_fn(
-            idxgrd=tuple(idxgrd),
             inputs=len(inputs),
             y_true=(y_true is not None),
             s_wght=(s_wght is not None),
         )
-        # Call it on the current inputs, with optional clipping.
         with torch.no_grad():
-            grads = grads_fn(inputs, y_true, s_wght, *params, clip=max_norm)
-        # Wrap the results into a TorchVector and return it.
-        return TorchVector(dict(zip(pnames, grads)))
+            grads = grads_fn(inputs, y_true, s_wght, clip=clip)  # type: ignore
+        return TorchVector(grads)
 
     @functools.lru_cache
     def _build_samplewise_grads_fn(
         self,
-        idxgrd: Tuple[int, ...],
         inputs: int,
         y_true: bool,
         s_wght: bool,
-    ) -> Callable[..., List[torch.Tensor]]:
-        """Build a functorch-based sample-wise gradients-computation function.
+    ) -> GetGradientsFunction:
+        """Build an optimizer sample-wise gradients-computation function.
 
         This function is cached, i.e. repeated calls with the same parameters
         will return the same object - enabling to reduce runtime costs due to
         building and (when available) compiling the output function.
 
-        Parameters
-        ----------
-        idxgrd: tuple of int
-            Pre-incremented indices of the parameters that require gradients.
-        inputs: int
-            Number of input tensors.
-        y_true: bool
-            Whether a true labels tensor is provided.
-        s_wght: bool
-            Whether a sample weights tensor is provided.
-
         Returns
         -------
-        grads_fn: callable[inputs, y_true, s_wght, *params, /, clip]
-            Functorch-optimized function to efficiently compute sample-
-            wise gradients based on batched inputs, and optionally clip
-            them based on a maximum l2-norm value `clip`.
+        grads_fn: callable[[inputs, y_true, s_wght, clip], grads]
+            Function to efficiently compute and return sample-wise gradients
+            wrt trainable model parameters based on a batch of inputs, with
+            opt. clipping based on a maximum l2-norm value `clip`.
+
+        Note
+        ----
+        The underlying backend code depends on your Torch version, so as to
+        enable optimizing operations using either `functorch` for torch 1.1X
+        or `torch.func` for torch 2.X.
         """
-
-        def forward(inputs, y_true, s_wght, *params):
-            """Conduct the forward pass in a functional way."""
-            y_pred = self._func_model(params, *inputs)
-            return self._compute_loss(y_pred, y_true, s_wght)
-
-        def grads_fn(inputs, y_true, s_wght, *params, clip=None):
-            """Compute gradients and optionally clip them."""
-            gfunc = functorch.grad(forward, argnums=idxgrd)
-            grads = gfunc(inputs, y_true, None, *params)
-            if clip:
-                for grad in grads:
-                    # future: use torch.linalg.norm when supported by functorch
-                    norm = torch.norm(grad, p=2, keepdim=True)
-                    # false-positive; pylint: disable=no-member
-                    grad.mul_(torch.clamp(clip / norm, max=1))
-                    if s_wght is not None:
-                        grad.mul_(s_wght.to(grad.device))
-            return grads
-
-        # Wrap the former function to compute and clip sample-wise gradients.
-        in_axes = [[0] * inputs, 0 if y_true else None, 0 if s_wght else None]
-        in_axes.extend([None] * sum(1 for _ in self._model.parameters()))
-        grads_fn = functorch.vmap(grads_fn, tuple(in_axes))
-        # Compile the resulting function to decrease runtime costs.
-        if not COMPILE_AVAILABLE:
-            return grads_fn
-        return functorch.compile.aot_function(grads_fn, functorch.compile.nop)
+        return build_samplewise_grads_fn(
+            self._model, self._loss_fn, inputs, y_true, s_wght
+        )
 
     def apply_updates(
         self,
diff --git a/declearn/model/torch/_samplewise/__init__.py b/declearn/model/torch/_samplewise/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1448a18bb210279d99343f8637cc8d7587cf12a5
--- /dev/null
+++ b/declearn/model/torch/_samplewise/__init__.py
@@ -0,0 +1,78 @@
+# coding: utf-8
+
+# Copyright 2023 Inria (Institut National de Recherche en Informatique
+# et Automatique)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Torch-version-dependent code to compute sample-wise gradients."""
+
+from typing import Callable, Dict, List, Optional
+
+import torch
+
+from .shared import GetGradientsFunction
+
+if torch.__version__.startswith("2."):
+    from .torchfunc import build_samplewise_grads_fn_backend
+elif torch.__version__.startswith("1.1"):
+    from .functorch import build_samplewise_grads_fn_backend
+else:
+    # pragma: no cover
+    raise ImportError(f"Unsupported Torch version: {torch.__version__}")
+
+
+__all__ = [
+    "GetGradientsFunction",
+    "build_samplewise_grads_fn",
+]
+
+
+def build_samplewise_grads_fn(
+    model: torch.nn.Module,
+    loss_fn: torch.nn.Module,
+    inputs: int,
+    y_true: bool,
+    s_wght: bool,
+) -> GetGradientsFunction:
+    """Build a torch-specific sample-wise gradients-computation function.
+
+    Parameters
+    ----------
+    model: torch.nn.Module
+        Model that is to be trained.
+    loss_fn: torch.nn.Module
+        Loss-computing module, returning sample-wise loss values.
+    inputs: int
+        Number of input tensors.
+    y_true: bool
+        Whether a true labels tensor is provided.
+    s_wght: bool
+        Whether a sample weights tensor is provided.
+
+    Returns
+    -------
+    grads_fn: callable[[inputs, y_true, s_wght, clip], grads]
+        Function that efficiently computes and returns sample-wise gradients
+        wrt trainable model parameters based on a batch of inputs, with opt.
+        clipping based on a maximum l2-norm value `clip`.
+
+    Note
+    ----
+    The underlying backend code depends on your Torch version, so as to
+    enable optimizing operations using either `functorch` for torch 1.1X
+    or `torch.func` for torch 2.X.
+    """
+    return build_samplewise_grads_fn_backend(
+        model, loss_fn, inputs, y_true, s_wght
+    )
diff --git a/declearn/model/torch/_samplewise/functorch.py b/declearn/model/torch/_samplewise/functorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc8e613b77a3e925676001ac05df5bc347e0e1fd
--- /dev/null
+++ b/declearn/model/torch/_samplewise/functorch.py
@@ -0,0 +1,93 @@
+# coding: utf-8
+
+# Copyright 2023 Inria (Institut National de Recherche en Informatique
+# et Automatique)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Implementation of `build_samplewise_grads_fn` for Torch 2.0."""
+
+from typing import List, Tuple
+
+# fmt: off
+import functorch  # type: ignore
+try:
+    import functorch.compile  # type: ignore
+    COMPILE_AVAILABLE = True
+except ModuleNotFoundError:
+    # pragma: no cover
+    COMPILE_AVAILABLE = False
+import torch
+# fmt: on
+
+from declearn.model.torch._samplewise.shared import (
+    GetGradientsFunction,
+    clip_and_scale_grads_inplace,
+)
+
+__all__ = [
+    "build_samplewise_grads_fn_backend",
+]
+
+
+def build_samplewise_grads_fn_backend(
+    model: torch.nn.Module,
+    loss_fn: torch.nn.Module,
+    inputs: int,
+    y_true: bool,
+    s_wght: bool,
+) -> GetGradientsFunction:
+    """Implementation of `build_samplewise_grads_fn` for Torch 1.1X."""
+
+    func_model, _ = functorch.make_functional(model)
+
+    def run_forward(inputs, y_true, s_wght, *params):
+        """Run the forward pass in a functional way."""
+        y_pred = func_model(params, *inputs)
+        s_loss = loss_fn(y_pred, y_true)
+        if s_wght is not None:
+            s_loss.mul_(s_wght.to(s_loss.device))
+        return s_loss.mean()
+
+    def grads_fn(inputs, y_true, s_wght, clip=None):
+        """Compute gradients and optionally clip them."""
+        params, idxgrd, pnames = get_params(model)
+        gfunc = functorch.grad(run_forward, argnums=tuple(idxgrd))
+        grads = gfunc(inputs, y_true, (None if clip else s_wght), *params)
+        if clip:
+            clip_and_scale_grads_inplace(grads, clip, s_wght)
+        return dict(zip(pnames, grads))
+
+    # Wrap the former function to compute and clip sample-wise gradients.
+    in_dims = ([0] * inputs, 0 if y_true else None, 0 if s_wght else None)
+    grads_fn = functorch.vmap(grads_fn, in_dims)
+    # Compile the resulting function to decrease runtime costs.
+    if not COMPILE_AVAILABLE:
+        # pragma: no cover
+        return grads_fn
+    return functorch.compile.aot_function(grads_fn, functorch.compile.nop)
+
+
+def get_params(
+    model: torch.nn.Module,
+) -> Tuple[List[torch.nn.Parameter], List[int], List[str]]:
+    """Return a model's parameters and the index and name of trainable ones."""
+    params = []  # type: List[torch.nn.Parameter]
+    idxgrd = []  # type: List[int]
+    pnames = []  # type: List[str]
+    for idx, (name, param) in enumerate(model.named_parameters()):
+        params.append(param)
+        if param.requires_grad:
+            idxgrd.append(idx + 3)
+            pnames.append(name)
+    return params, idxgrd, pnames
diff --git a/declearn/model/torch/_samplewise/shared.py b/declearn/model/torch/_samplewise/shared.py
new file mode 100644
index 0000000000000000000000000000000000000000..451ae7c11998c3d337bffe988df2f6e131f5e539
--- /dev/null
+++ b/declearn/model/torch/_samplewise/shared.py
@@ -0,0 +1,56 @@
+# coding: utf-8
+
+# Copyright 2023 Inria (Institut National de Recherche en Informatique
+# et Automatique)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Shared code for torch-version-dependent backend code."""
+
+from typing import Callable, Dict, Iterable, List, Optional
+
+import torch
+
+__all__ = [
+    "GetGradientsFunction",
+    "clip_and_scale_grads_inplace",
+]
+
+
+GetGradientsFunction = Callable[
+    [
+        List[torch.Tensor],
+        Optional[torch.Tensor],
+        Optional[torch.Tensor],
+        Optional[float],
+    ],
+    Dict[str, torch.Tensor],
+]
+"""Signature for sample-wise gradients computation functions."""
+
+
+def clip_and_scale_grads_inplace(
+    grads: Iterable[torch.Tensor],
+    clip: float,
+    wght: Optional[torch.Tensor] = None,
+) -> None:
+    """Clip a collection of tensors in-place, based on their euclidean norm.
+
+    Also apply an optional weight tensor to scale the clipped gradients.
+    """
+    for grad in grads:
+        norm = torch.norm(grad, p=2, keepdim=True)
+        # false-positive; pylint: disable=no-member
+        grad.mul_(torch.clamp(clip / norm, max=1))
+        if wght is not None:
+            grad.mul_(wght.to(grad.device))
diff --git a/declearn/model/torch/_samplewise/torchfunc.py b/declearn/model/torch/_samplewise/torchfunc.py
new file mode 100644
index 0000000000000000000000000000000000000000..d330d4f9f59647a48198b80b231ac5612ce5a6f0
--- /dev/null
+++ b/declearn/model/torch/_samplewise/torchfunc.py
@@ -0,0 +1,76 @@
+# coding: utf-8
+
+# Copyright 2023 Inria (Institut National de Recherche en Informatique
+# et Automatique)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Implementation of `build_samplewise_grads_fn` for Torch 2.0."""
+
+from typing import Dict, Tuple
+
+import torch
+
+from declearn.model.torch._samplewise.shared import (
+    GetGradientsFunction,
+    clip_and_scale_grads_inplace,
+)
+
+__all__ = [
+    "build_samplewise_grads_fn_backend",
+]
+
+
+def build_samplewise_grads_fn_backend(
+    model: torch.nn.Module,
+    loss_fn: torch.nn.Module,
+    inputs: int,
+    y_true: bool,
+    s_wght: bool,
+) -> GetGradientsFunction:
+    """Implementation of `build_samplewise_grads_fn` for Torch 2.0."""
+
+    def run_forward(params, frozen, inputs, y_true, s_wght):
+        """Run the forward pass in a functional way."""
+        y_pred = torch.func.functional_call(model, [params, frozen], *inputs)
+        s_loss = loss_fn(y_pred, y_true)
+        if s_wght is not None:
+            s_loss.mul_(s_wght.to(s_loss.device))
+        return s_loss.mean()
+
+    get_grads = torch.func.grad(run_forward, argnums=0)
+
+    def get_clipped_grads(inputs, y_true, s_wght, clip=None):
+        """Compute gradients and optionally clip them."""
+        params, frozen = get_params(model)
+        grads = get_grads(
+            params, frozen, inputs, y_true, None if clip else s_wght
+        )
+        if clip:
+            clip_and_scale_grads_inplace(grads.values(), clip, s_wght)
+        return grads
+
+    # Wrap the former function to compute and clip sample-wise gradients.
+    in_dims = ([0] * inputs, 0 if y_true else None, 0 if s_wght else None)
+    return torch.func.vmap(get_clipped_grads, in_dims)
+
+
+def get_params(
+    model: torch.nn.Module,
+) -> Tuple[Dict[str, torch.nn.Parameter], Dict[str, torch.nn.Parameter]]:
+    """Return a model's parameters, split between trainable and frozen ones."""
+    params = {}  # type: Dict[str, torch.nn.Parameter]
+    frozen = {}  # type: Dict[str, torch.nn.Parameter]
+    for name, param in model.named_parameters():
+        (params if param.requires_grad else frozen)[name] = param
+    return params, frozen