From 82174e1eed2766f3530ba9b89df8f1393094e48e Mon Sep 17 00:00:00 2001
From: Paul Andrey <paul.andrey@inria.fr>
Date: Wed, 26 Apr 2023 09:35:52 +0200
Subject: [PATCH] Update mnist-quickrun example and add a readme file.

---
 examples/mnist_quickrun/mnist.ipynb | 1067 +++++++++++++--------------
 examples/mnist_quickrun/readme.md   |   31 +
 2 files changed, 539 insertions(+), 559 deletions(-)
 create mode 100644 examples/mnist_quickrun/readme.md

diff --git a/examples/mnist_quickrun/mnist.ipynb b/examples/mnist_quickrun/mnist.ipynb
index 7753314d..a55dc891 100644
--- a/examples/mnist_quickrun/mnist.ipynb
+++ b/examples/mnist_quickrun/mnist.ipynb
@@ -1,576 +1,525 @@
 {
-  "cells": [
-    {
-      "attachments": {},
-      "cell_type": "markdown",
-      "metadata": {},
-      "source": [
-        "This notebook is meant to be run in google colab. You can find import your local copy of the file in the the [colab welcome page](https://colab.research.google.com/)."
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "s9bpLdH5ThpJ"
-      },
-      "source": [
-        "# Setting up your declearn "
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "Clzf4NTja121"
-      },
-      "source": [
-        "We first clone the repo, to have both the package itself and the `examples` folder we will use in this tutorial, then naviguate to the package directory, and finally install the required dependencies"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "u2QDwb0_QQ_f",
-        "outputId": "cac0761c-b229-49b0-d71d-c7b5cef919b3"
-      },
-      "outputs": [
-        {
-          "name": "stdout",
-          "output_type": "stream",
-          "text": [
-            "Cloning into 'declearn2'...\n",
-            "warning: redirecting to https://gitlab.inria.fr/magnet/declearn/declearn2.git/\n",
-            "remote: Enumerating objects: 4997, done.\u001b[K\n",
-            "remote: Counting objects: 100% (79/79), done.\u001b[K\n",
-            "remote: Compressing objects: 100% (79/79), done.\u001b[K\n",
-            "remote: Total 4997 (delta 39), reused 0 (delta 0), pack-reused 4918\u001b[K\n",
-            "Receiving objects: 100% (4997/4997), 1.15 MiB | 777.00 KiB/s, done.\n",
-            "Resolving deltas: 100% (3248/3248), done.\n"
-          ]
-        }
-      ],
-      "source": [
-        "!git clone -b experimental https://gitlab.inria.fr/magnet/declearn/declearn2"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "9kDHh_AfPG2l",
-        "outputId": "74e2f85f-7f93-40ae-a218-f4403470d72c"
-      },
-      "outputs": [
-        {
-          "name": "stdout",
-          "output_type": "stream",
-          "text": [
-            "/content/declearn2\n"
-          ]
-        }
-      ],
-      "source": [
-        "cd declearn2"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "Un212t1GluHB",
-        "outputId": "0ea67577-da6e-4f80-a412-7b7a79803aa1"
-      },
-      "outputs": [
-        {
-          "name": "stdout",
-          "output_type": "stream",
-          "text": [
-            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
-            "Processing /content/declearn2\n",
-            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
-            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
-            "  Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n",
-            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
-            "Requirement already satisfied: cryptography>=35.0 in /usr/local/lib/python3.9/dist-packages (from declearn==2.1.0) (40.0.1)\n",
-            "Requirement already satisfied: scikit-learn>=1.0 in /usr/local/lib/python3.9/dist-packages (from declearn==2.1.0) (1.2.2)\n",
-            "Requirement already satisfied: requests~=2.18 in /usr/local/lib/python3.9/dist-packages (from declearn==2.1.0) (2.27.1)\n",
-            "Requirement already satisfied: pandas>=1.2 in /usr/local/lib/python3.9/dist-packages (from declearn==2.1.0) (1.5.3)\n",
-            "Requirement already satisfied: tomli>=2.0 in /usr/local/lib/python3.9/dist-packages (from declearn==2.1.0) (2.0.1)\n",
-            "Collecting fire>=0.4\n",
-            "  Downloading fire-0.5.0.tar.gz (88 kB)\n",
-            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m88.3/88.3 kB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
-            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
-            "Requirement already satisfied: typing-extensions>=4.0 in /usr/local/lib/python3.9/dist-packages (from declearn==2.1.0) (4.5.0)\n",
-            "Collecting websockets~=10.1\n",
-            "  Downloading websockets-10.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106 kB)\n",
-            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m106.5/106.5 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
-            "\u001b[?25hRequirement already satisfied: cffi>=1.12 in /usr/local/lib/python3.9/dist-packages (from cryptography>=35.0->declearn==2.1.0) (1.15.1)\n",
-            "Requirement already satisfied: six in /usr/local/lib/python3.9/dist-packages (from fire>=0.4->declearn==2.1.0) (1.16.0)\n",
-            "Requirement already satisfied: termcolor in /usr/local/lib/python3.9/dist-packages (from fire>=0.4->declearn==2.1.0) (2.2.0)\n",
-            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas>=1.2->declearn==2.1.0) (2022.7.1)\n",
-            "Requirement already satisfied: numpy>=1.20.3 in /usr/local/lib/python3.9/dist-packages (from pandas>=1.2->declearn==2.1.0) (1.22.4)\n",
-            "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas>=1.2->declearn==2.1.0) (2.8.2)\n",
-            "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests~=2.18->declearn==2.1.0) (2.0.12)\n",
-            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests~=2.18->declearn==2.1.0) (1.26.15)\n",
-            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests~=2.18->declearn==2.1.0) (2022.12.7)\n",
-            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests~=2.18->declearn==2.1.0) (3.4)\n",
-            "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.9/dist-packages (from scikit-learn>=1.0->declearn==2.1.0) (1.10.1)\n",
-            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from scikit-learn>=1.0->declearn==2.1.0) (3.1.0)\n",
-            "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.9/dist-packages (from scikit-learn>=1.0->declearn==2.1.0) (1.2.0)\n",
-            "Requirement already satisfied: pycparser in /usr/local/lib/python3.9/dist-packages (from cffi>=1.12->cryptography>=35.0->declearn==2.1.0) (2.21)\n",
-            "Building wheels for collected packages: fire, declearn\n",
-            "  Building wheel for fire (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
-            "  Created wheel for fire: filename=fire-0.5.0-py2.py3-none-any.whl size=116952 sha256=ab01943c400d3267450974ec56a6572193bed40710845edd44623e56c7757799\n",
-            "  Stored in directory: /root/.cache/pip/wheels/f7/f1/89/b9ea2bf8f80ec027a88fef1d354b3816b4d3d29530988972f6\n",
-            "  Building wheel for declearn (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
-            "  Created wheel for declearn: filename=declearn-2.1.0-py3-none-any.whl size=276123 sha256=4969a91ded8b704c8c9497bcda8f514f847c49098715d659cc8e96a947ec887f\n",
-            "  Stored in directory: /tmp/pip-ephem-wheel-cache-fgkx9jiw/wheels/cc/79/79/6586306a117d40a1f8b251a22e50583b8abb2d7e855a62ecf7\n",
-            "Successfully built fire declearn\n",
-            "Installing collected packages: websockets, fire, declearn\n",
-            "Successfully installed declearn-2.1.0 fire-0.5.0 websockets-10.4\n"
-          ]
-        }
-      ],
-      "source": [
-        "!pip install .[websockets]"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "hC8Fty8YTy9P"
-      },
-      "source": [
-        "# Running your first experiment"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "rcWcZJdob1IG"
-      },
-      "source": [
-        "We are going to train a common model between three simulated clients on the classic [MNIST dataset](http://yann.lecun.com/exdb/mnist/). The input of the model is a set of images of handwritten digits, and the model needs to determine which number between 0 and 9 each image corresponds to."
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "KlY_vVtFHv2P"
-      },
-      "source": [
-        "## The model\n",
-        "\n",
-        "To do this, we will use a simple CNN, defined in `examples/mnist_quickrun/model.py`"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "C7D52a8_dEr7",
-        "outputId": "a25223f8-c8eb-4998-d7fd-4b8bfde92486"
-      },
-      "outputs": [
-        {
-          "name": "stdout",
-          "output_type": "stream",
-          "text": [
-            "Model: \"sequential\"\n",
-            "_________________________________________________________________\n",
-            " Layer (type)                Output Shape              Param #   \n",
-            "=================================================================\n",
-            " conv2d (Conv2D)             (None, 26, 26, 8)         80        \n",
-            "                                                                 \n",
-            " max_pooling2d (MaxPooling2D  (None, 13, 13, 8)        0         \n",
-            " )                                                               \n",
-            "                                                                 \n",
-            " dropout (Dropout)           (None, 13, 13, 8)         0         \n",
-            "                                                                 \n",
-            " flatten (Flatten)           (None, 1352)              0         \n",
-            "                                                                 \n",
-            " dense (Dense)               (None, 64)                86592     \n",
-            "                                                                 \n",
-            " dropout_1 (Dropout)         (None, 64)                0         \n",
-            "                                                                 \n",
-            " dense_1 (Dense)             (None, 10)                650       \n",
-            "                                                                 \n",
-            "=================================================================\n",
-            "Total params: 87,322\n",
-            "Trainable params: 87,322\n",
-            "Non-trainable params: 0\n",
-            "_________________________________________________________________\n"
-          ]
-        },
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "/content/declearn2/declearn/model/tensorflow/utils/_gpu.py:66: UserWarning: Cannot use a GPU device: either CUDA is unavailable or no GPU is visible to tensorflow.\n",
-            "  warnings.warn(\n"
-          ]
-        }
-      ],
-      "source": [
-        "from examples.mnist_quickrun.model import model\n",
-        "model.summary()"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "HoBcOs9hH2QA"
-      },
-      "source": [
-        "## The data\n",
-        "\n",
-        "We start by splitting the MNIST dataset between 3 clients and storing the output in the `examples/mnist_quickrun` folder. For this we use an experimental utility provided by `declearn`. "
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "quduXkpIWFjL",
-        "outputId": "ddf7d45d-acf0-44ee-ce77-357c0987a2a1"
-      },
-      "outputs": [
-        {
-          "name": "stdout",
-          "output_type": "stream",
-          "text": [
-            "Downloading MNIST source file train-images-idx3-ubyte.gz.\n",
-            "Downloading MNIST source file train-labels-idx1-ubyte.gz.\n",
-            "Splitting data into 3 shards using the 'iid' scheme.\n"
-          ]
-        }
-      ],
-      "source": [
-        "from declearn.dataset import split_data\n",
-        "split_data(folder=\"examples/mnist_quickrun\")"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "3-2hKmz-2RF4"
-      },
-      "source": [
-        "Here is what the first image of the first client looks like:"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 430
-        },
-        "id": "MLVI9GOZ1TGd",
-        "outputId": "f34a6a93-cb5f-4a45-bc24-4146ea119d1a"
-      },
-      "outputs": [
-        {
-          "data": {
-            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbo0lEQVR4nO3df2zV9fXH8dct0itoe7ta29tKy1r8gYrUDKR2Kv6goXQJESQLikvAGJxYjMicpkZBtiXdMPPrNAz/cTATUcQJRDNJsNgStxZDlRCmVsq6UQYtwsK9pUhh7fv7B+HqhfLjc7m3597yfCQ3offe03v8eO3Ty7188DnnnAAAGGBp1gsAAC5OBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJi4xHqBU/X19Wnv3r3KyMiQz+ezXgcA4JFzTl1dXSooKFBa2plf5yRdgPbu3avCwkLrNQAAF6i9vV0jRow44+1JF6CMjAxJJxbPzMw03gYA4FU4HFZhYWHk5/mZJCxAy5Yt04svvqiOjg6Vlpbq1Vdf1YQJE845d/K33TIzMwkQAKSwc72NkpAPIaxevVoLFy7U4sWL9dlnn6m0tFSVlZXav39/Ih4OAJCCEhKgl156SXPnztVDDz2kG264Qa+99pqGDx+uP/3pT4l4OABACop7gI4dO6bm5mZVVFR89yBpaaqoqFBjY+Np9+/p6VE4HI66AAAGv7gH6MCBA+rt7VVeXl7U9Xl5eero6Djt/rW1tQoEApELn4ADgIuD+R9ErampUSgUilza29utVwIADIC4fwouJydHQ4YMUWdnZ9T1nZ2dCgaDp93f7/fL7/fHew0AQJKL+yug9PR0jRs3TnV1dZHr+vr6VFdXp/Ly8ng/HAAgRSXkzwEtXLhQs2fP1vjx4zVhwgS9/PLL6u7u1kMPPZSIhwMApKCEBGjmzJn65ptvtGjRInV0dOjmm2/Whg0bTvtgAgDg4uVzzjnrJb4vHA4rEAgoFApxJgQASEHn+3Pc/FNwAICLEwECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGDiEusFAJyfnp4ezzMHDhyI6bFef/31mOa8+vjjjz3P1NfXe57x+XyeZ2IVyz/TnXfemYBNkh+vgAAAJggQAMBE3AP0wgsvyOfzRV1Gjx4d74cBAKS4hLwHdOONN+qjjz767kEu4a0mAEC0hJThkksuUTAYTMS3BgAMEgl5D2jnzp0qKChQSUmJHnzwQe3evfuM9+3p6VE4HI66AAAGv7gHqKysTCtXrtSGDRu0fPlytbW16Y477lBXV1e/96+trVUgEIhcCgsL470SACAJxT1AVVVV+ulPf6qxY8eqsrJSf/3rX3Xo0CG98847/d6/pqZGoVAocmlvb4/3SgCAJJTwTwdkZWXp2muvVWtra7+3+/1++f3+RK8BAEgyCf9zQIcPH9auXbuUn5+f6IcCAKSQuAfoqaeeUkNDg/71r3/p73//u6ZPn64hQ4bogQceiPdDAQBSWNx/C27Pnj164IEHdPDgQV155ZW6/fbb1dTUpCuvvDLeDwUASGFxD9Dbb78d728JJLXe3l7PMxs3bvQ8s2TJEs8zn376qeeZZJeWltxnEAuFQtYrpIzk/jcJABi0CBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATCf8L6ZD8nHMxzfX19XmeGagTScaymyR98803nmeqqqo8z2zfvt3zDAbekCFDPM8UFRUlYJPBiVdAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMMHZsKEdO3bENHfzzTd7nvnHP/7heebbb7/1PDN+/HjPM0gNGRkZnmdGjx4d02P95S9/8Txz1VVXxfRYFyNeAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJjgZ6SDzz3/+0/PMrFmzErBJ//bv3+95pqamJgGbXBwuvfTSmOYefPDBOG/SvyeeeMLzTFZWlucZThCanHgFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4GSkg8yBAwc8z3zxxRcxPZbP5/M809TU5Hlmy5YtnmfS0mL7f6thw4bFNOfVzJkzPc/cf//9nmfKyso8z0jS5ZdfHtMc4AWvgAAAJggQAMCE5wBt3rxZU6dOVUFBgXw+n9atWxd1u3NOixYtUn5+voYNG6aKigrt3LkzXvsCAAYJzwHq7u5WaWmpli1b1u/tS5cu1SuvvKLXXntNW7Zs0WWXXabKykodPXr0gpcFAAwenj+EUFVVpaqqqn5vc87p5Zdf1nPPPad7771XkvTGG28oLy9P69ati+lNVADA4BTX94Da2trU0dGhioqKyHWBQEBlZWVqbGzsd6anp0fhcDjqAgAY/OIaoI6ODklSXl5e1PV5eXmR205VW1urQCAQuRQWFsZzJQBAkjL/FFxNTY1CoVDk0t7ebr0SAGAAxDVAwWBQktTZ2Rl1fWdnZ+S2U/n9fmVmZkZdAACDX1wDVFxcrGAwqLq6ush14XBYW7ZsUXl5eTwfCgCQ4jx/Cu7w4cNqbW2NfN3W1qZt27YpOztbRUVFWrBggX7zm9/ommuuUXFxsZ5//nkVFBRo2rRp8dwbAJDiPAdo69atuvvuuyNfL1y4UJI0e/ZsrVy5Uk8//bS6u7v1yCOP6NChQ7r99tu1YcMGXXrppfHbGgCQ8nzOOWe9xPeFw2EFAgGFQiHeD4rBrFmzPM+sXr06psfKzs72PBPLiU+//vprzzN+v9/zjCSNHz8+pjkA3znfn+Pmn4IDAFycCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYMLzX8cAnPTf//7X88zUqVM9z6xatcrzTElJiecZAAOLV0AAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAmfc85ZL/F94XBYgUBAoVBImZmZ1uuknMbGRs8zt99+ewI2iZ/hw4d7npkzZ05Mj7VkyRLPM7HsN3ToUM8zQ4YM8TwDWDjfn+O8AgIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATHAy0kEmHA57nlm+fHlMj/Xss8/GNJfMrr76as8ze/bs8Txzzz33eJ6JZbdYTZ8+3fPMrbfe6nkmPT3d8wySHycjBQAkNQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABCcjhfr6+mKae+qppzzPvPvuu55n/vOf/3iewcD7+c9/7nlm0aJFnmeCwaDnGQwsTkYKAEhqBAgAYMJzgDZv3qypU6eqoKBAPp9P69ati7p9zpw58vl8UZcpU6bEa18AwCDhOUDd3d0qLS3VsmXLznifKVOmaN++fZHLW2+9dUFLAgAGn0u8DlRVVamqquqs9/H7/bxRCAA4q4S8B1RfX6/c3Fxdd911mjdvng4ePHjG+/b09CgcDkddAACDX9wDNGXKFL3xxhuqq6vT7373OzU0NKiqqkq9vb393r+2tlaBQCByKSwsjPdKAIAk5Pm34M7l/vvvj/z6pptu0tixYzVq1CjV19dr0qRJp92/pqZGCxcujHwdDoeJEABcBBL+MeySkhLl5OSotbW139v9fr8yMzOjLgCAwS/hAdqzZ48OHjyo/Pz8RD8UACCFeP4tuMOHD0e9mmlra9O2bduUnZ2t7OxsLVmyRDNmzFAwGNSuXbv09NNP6+qrr1ZlZWVcFwcApDbPAdq6davuvvvuyNcn37+ZPXu2li9fru3bt+vPf/6zDh06pIKCAk2ePFm//vWv5ff747c1ACDlcTJSDKhjx455nvnf//7neebNN9/0PCNJX331leeZP/zhD55nkuw/OzOvvvqq55nHHnssAZsgnjgZKQAgqREgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEZ8MGLtDWrVs9z7z77rueZ7788kvPMx9++KHnGUnq7e2Nac6r4cOHe57ZsWOH55mRI0d6nkHsOBs2ACCpESAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmLrFeAEh148ePH5CZWHz99dcxzV1//fVx3qR/R44c8TzT2dnpeYaTkSYnXgEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACY4GSkwiF111VXWK5xVVlaW55mSkpL4LwITvAICAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAExwMlIMqD179nieGT58uOeZ7OxszzMDqaenx/NMW1ub55nf//73nmcG0oQJEzzP5OTkJGATWOAVEADABAECAJjwFKDa2lrdcsstysjIUG5urqZNm6aWlpao+xw9elTV1dW64oordPnll2vGjBnq7OyM69IAgNTnKUANDQ2qrq5WU1OTNm7cqOPHj2vy5Mnq7u6O3OfJJ5/U+++/rzVr1qihoUF79+7VfffdF/fFAQCpzdOHEDZs2BD19cqVK5Wbm6vm5mZNnDhRoVBIr7/+ulatWqV77rlHkrRixQpdf/31ampq0q233hq/zQEAKe2C3gMKhUKSvvvEUXNzs44fP66KiorIfUaPHq2ioiI1Njb2+z16enoUDoejLgCAwS/mAPX19WnBggW67bbbNGbMGElSR0eH0tPTT/t73vPy8tTR0dHv96mtrVUgEIhcCgsLY10JAJBCYg5QdXW1duzYobfffvuCFqipqVEoFIpc2tvbL+j7AQBSQ0x/EHX+/Pn64IMPtHnzZo0YMSJyfTAY1LFjx3To0KGoV0GdnZ0KBoP9fi+/3y+/3x/LGgCAFObpFZBzTvPnz9fatWu1adMmFRcXR90+btw4DR06VHV1dZHrWlpatHv3bpWXl8dnYwDAoODpFVB1dbVWrVql9evXKyMjI/K+TiAQ0LBhwxQIBPTwww9r4cKFys7OVmZmph5//HGVl5fzCTgAQBRPAVq+fLkk6a677oq6fsWKFZozZ44k6f/+7/+UlpamGTNmqKenR5WVlfrjH/8Yl2UBAIOHzznnrJf4vnA4rEAgoFAopMzMTOt1cBaffvqp55nvf0T/fF122WWeZ4qKijzPDKSuri7PM6eedWQwaG5u9jxz8803x38RxNX5/hznXHAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwEdPfiIrB5ciRIzHN/fjHP/Y8E8vJ17u7uz3P7N+/3/MMLkxbW5vnmcLCwgRsglTBKyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQnI4XWr18f01wsJxbFwLr11ltjmlu2bJnnmdzcXM8zPp/P8wwGD14BAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmOBkpVFpaar3CRWfmzJkDMjN58mTPM5I0bNiwmOYAL3gFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4GSk0A033BDTXG9vb5w3AXAx4RUQAMAEAQIAmPAUoNraWt1yyy3KyMhQbm6upk2bppaWlqj73HXXXfL5fFGXRx99NK5LAwBSn6cANTQ0qLq6Wk1NTdq4caOOHz+uyZMnq7u7O+p+c+fO1b59+yKXpUuXxnVpAEDq8/QhhA0bNkR9vXLlSuXm5qq5uVkTJ06MXD98+HAFg8H4bAgAGJQu6D2gUCgkScrOzo66/s0331ROTo7GjBmjmpoaHTly5Izfo6enR+FwOOoCABj8Yv4Ydl9fnxYsWKDbbrtNY8aMiVw/a9YsjRw5UgUFBdq+fbueeeYZtbS06L333uv3+9TW1mrJkiWxrgEASFE+55yLZXDevHn68MMP9cknn2jEiBFnvN+mTZs0adIktba2atSoUafd3tPTo56ensjX4XBYhYWFCoVCyszMjGU1AIChcDisQCBwzp/jMb0Cmj9/vj744ANt3rz5rPGRpLKyMkk6Y4D8fr/8fn8sawAAUpinADnn9Pjjj2vt2rWqr69XcXHxOWe2bdsmScrPz49pQQDA4OQpQNXV1Vq1apXWr1+vjIwMdXR0SJICgYCGDRumXbt2adWqVfrJT36iK664Qtu3b9eTTz6piRMnauzYsQn5BwAApCZP7wH5fL5+r1+xYoXmzJmj9vZ2/exnP9OOHTvU3d2twsJCTZ8+Xc8999x5v59zvr93CABITgl5D+hcrSosLFRDQ4OXbwkAuEhxLjgAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgIlLrBc4lXNOkhQOh403AQDE4uTP75M/z88k6QLU1dUlSSosLDTeBABwIbq6uhQIBM54u8+dK1EDrK+vT3v37lVGRoZ8Pl/UbeFwWIWFhWpvb1dmZqbRhvY4DidwHE7gOJzAcTghGY6Dc05dXV0qKChQWtqZ3+lJuldAaWlpGjFixFnvk5mZeVE/wU7iOJzAcTiB43ACx+EE6+Nwtlc+J/EhBACACQIEADCRUgHy+/1avHix/H6/9SqmOA4ncBxO4DicwHE4IZWOQ9J9CAEAcHFIqVdAAIDBgwABAEwQIACACQIEADCRMgFatmyZfvjDH+rSSy9VWVmZPv30U+uVBtwLL7wgn88XdRk9erT1Wgm3efNmTZ06VQUFBfL5fFq3bl3U7c45LVq0SPn5+Ro2bJgqKiq0c+dOm2UT6FzHYc6cOac9P6ZMmWKzbILU1tbqlltuUUZGhnJzczVt2jS1tLRE3efo0aOqrq7WFVdcocsvv1wzZsxQZ2en0caJcT7H4a677jrt+fDoo48abdy/lAjQ6tWrtXDhQi1evFifffaZSktLVVlZqf3791uvNuBuvPFG7du3L3L55JNPrFdKuO7ubpWWlmrZsmX93r506VK98soreu2117RlyxZddtllqqys1NGjRwd408Q613GQpClTpkQ9P956660B3DDxGhoaVF1draamJm3cuFHHjx/X5MmT1d3dHbnPk08+qffff19r1qxRQ0OD9u7dq/vuu89w6/g7n+MgSXPnzo16PixdutRo4zNwKWDChAmuuro68nVvb68rKChwtbW1hlsNvMWLF7vS0lLrNUxJcmvXro183dfX54LBoHvxxRcj1x06dMj5/X731ltvGWw4ME49Ds45N3v2bHfvvfea7GNl//79TpJraGhwzp34dz906FC3Zs2ayH2+/PJLJ8k1NjZarZlwpx4H55y788473RNPPGG31HlI+ldAx44dU3NzsyoqKiLXpaWlqaKiQo2NjYab2di5c6cKCgpUUlKiBx98ULt377ZeyVRbW5s6Ojqinh+BQEBlZWUX5fOjvr5eubm5uu666zRv3jwdPHjQeqWECoVCkqTs7GxJUnNzs44fPx71fBg9erSKiooG9fPh1ONw0ptvvqmcnByNGTNGNTU1OnLkiMV6Z5R0JyM91YEDB9Tb26u8vLyo6/Py8vTVV18ZbWWjrKxMK1eu1HXXXad9+/ZpyZIluuOOO7Rjxw5lZGRYr2eio6NDkvp9fpy87WIxZcoU3XfffSouLtauXbv07LPPqqqqSo2NjRoyZIj1enHX19enBQsW6LbbbtOYMWMknXg+pKenKysrK+q+g/n50N9xkKRZs2Zp5MiRKigo0Pbt2/XMM8+opaVF7733nuG20ZI+QPhOVVVV5Ndjx45VWVmZRo4cqXfeeUcPP/yw4WZIBvfff3/k1zfddJPGjh2rUaNGqb6+XpMmTTLcLDGqq6u1Y8eOi+J90LM503F45JFHIr++6aablJ+fr0mTJmnXrl0aNWrUQK/Zr6T/LbicnBwNGTLktE+xdHZ2KhgMGm2VHLKysnTttdeqtbXVehUzJ58DPD9OV1JSopycnEH5/Jg/f74++OADffzxx1F/fUswGNSxY8d06NChqPsP1ufDmY5Df8rKyiQpqZ4PSR+g9PR0jRs3TnV1dZHr+vr6VFdXp/LycsPN7B0+fFi7du1Sfn6+9SpmiouLFQwGo54f4XBYW7ZsueifH3v27NHBgwcH1fPDOaf58+dr7dq12rRpk4qLi6NuHzdunIYOHRr1fGhpadHu3bsH1fPhXMehP9u2bZOk5Ho+WH8K4ny8/fbbzu/3u5UrV7ovvvjCPfLIIy4rK8t1dHRYrzagfvGLX7j6+nrX1tbm/va3v7mKigqXk5Pj9u/fb71aQnV1dbnPP//cff75506Se+mll9znn3/u/v3vfzvnnPvtb3/rsrKy3Pr169327dvdvffe64qLi923335rvHl8ne04dHV1uaeeeso1Nja6trY299FHH7kf/ehH7pprrnFHjx61Xj1u5s2b5wKBgKuvr3f79u2LXI4cORK5z6OPPuqKiorcpk2b3NatW115ebkrLy833Dr+znUcWltb3a9+9Su3detW19bW5tavX+9KSkrcxIkTjTePlhIBcs65V1991RUVFbn09HQ3YcIE19TUZL3SgJs5c6bLz8936enp7qqrrnIzZ850ra2t1msl3Mcff+wknXaZPXu2c+7ER7Gff/55l5eX5/x+v5s0aZJraWmxXToBznYcjhw54iZPnuyuvPJKN3ToUDdy5Eg3d+7cQfc/af3980tyK1asiNzn22+/dY899pj7wQ9+4IYPH+6mT5/u9u3bZ7d0ApzrOOzevdtNnDjRZWdnO7/f766++mr3y1/+0oVCIdvFT8FfxwAAMJH07wEBAAYnAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMDE/wPgnA/bT9IQRgAAAABJRU5ErkJggg==",
-            "text/plain": [
-              "<Figure size 640x480 with 1 Axes>"
-            ]
-          },
-          "metadata": {},
-          "output_type": "display_data"
-        }
-      ],
-      "source": [
-        "import matplotlib.pyplot as plt\n",
-        "import numpy as np\n",
-        "\n",
-        "images = np.load(\"examples/mnist_quickrun/data_iid/client_0/train_data.npy\")\n",
-        "sample_img = images[0]\n",
-        "sample_fig = plt.imshow(sample_img,cmap='Greys')\n"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "1vNWNGjefSfH"
-      },
-      "source": [
-        "For more information on how the `split_data` function works, you can look at the documentation. "
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "-wORmq5DYfRF",
-        "outputId": "4d79da63-ccad-4622-e600-ac36fae1ff3f"
-      },
-      "outputs": [
-        {
-          "name": "stdout",
-          "output_type": "stream",
-          "text": [
-            "Randomly split a dataset into shards.\n",
-            "\n",
-            "    The resulting folder structure is :\n",
-            "        folder/\n",
-            "        └─── data*/\n",
-            "            └─── client*/\n",
-            "            │      train_data.* - training data\n",
-            "            │      train_target.* - training labels\n",
-            "            │      valid_data.* - validation data\n",
-            "            │      valid_target.* - validation labels\n",
-            "            └─── client*/\n",
-            "            │    ...\n",
-            "\n",
-            "    Parameters\n",
-            "    ----------\n",
-            "    folder: str, default = \".\"\n",
-            "        Path to the folder where to add a data folder\n",
-            "        holding output shard-wise files\n",
-            "    data_file: str or None, default=None\n",
-            "        Optional path to a folder where to find the data.\n",
-            "        If None, default to the MNIST example.\n",
-            "    target_file: str or int or None, default=None\n",
-            "        If str, path to the labels file to import. If int, column of\n",
-            "        the data file to be used as labels. Required if data is not None,\n",
-            "        ignored if data is None.\n",
-            "    n_shards: int\n",
-            "        Number of shards between which to split the data.\n",
-            "    scheme: {\"iid\", \"labels\", \"biased\"}, default=\"iid\"\n",
-            "        Splitting scheme(s) to use. In all cases, shards contain mutually-\n",
-            "        exclusive samples and cover the full raw training data.\n",
-            "        - If \"iid\", split the dataset through iid random sampling.\n",
-            "        - If \"labels\", split into shards that hold all samples associated\n",
-            "        with mutually-exclusive target classes.\n",
-            "        - If \"biased\", split the dataset through random sampling according\n",
-            "        to a shard-specific random labels distribution.\n",
-            "    perc_train:  float, default= 0.8\n",
-            "        Train/validation split in each client dataset, must be in the\n",
-            "        ]0,1] range.\n",
-            "    seed: int or None, default=None\n",
-            "        Optional seed to the RNG used for all sampling operations.\n",
-            "    \n"
-          ]
-        }
-      ],
-      "source": [
-        "print(split_data.__doc__)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "kZtbxlwUftKd"
-      },
-      "source": [
-        "## Quickrun\n",
-        "\n",
-        "We can now run our experiment. As explained in the section 2.1 of the [quickstart documentation](https://magnet.gitlabpages.inria.fr/declearn/docs/2.1/quickstart), using the mode `declearn-quickrun` requires a configuration file, some data, and a model:\n",
-        "\n",
-        "* A TOML file, to store your experiment configurations. Here: \n",
-        "`examples/mnist_quickrun/config.toml`.\n",
-        "* A folder with your data, split by client. Here: `examples/mnist_quickrun/data_iid`\n",
-        "* A model file, to store your model wrapped in a `declearn` object. Here: `examples/mnist_quickrun/model.py`.\n",
-        "\n",
-        "We then only have to run the `quickrun` util with the path to the TOML file:"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "1n_mvTIIWpRf"
-      },
-      "outputs": [],
-      "source": [
-        "from declearn.quickrun import quickrun\n",
-        "quickrun(config=\"examples/mnist_quickrun/config.toml\")"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "O0kuw7UxJqKk"
-      },
-      "source": [
-        "The output obtained is the combination of the CLI output of our server and our clients, going through: \n",
-        "\n",
-        "* `INFO:Server:Starting clients registration process.` : a first registration step, where clients register with the server\n",
-        "* `INFO:Server:Sending initialization requests to clients.`: the initilization of the object needed for training on both the server and clients side.\n",
-        "* `Server:INFO: Initiating training round 1`: the training starts, where each client makes its local update(s) and send the result to the server which aggregates them\n",
-        "* `INFO: Initiating evaluation round 1`: the model is evaluated at each round\n",
-        "* `Server:INFO: Stopping training`: the training is finalized  "
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "wo6NDugiOH6V"
-      },
-      "source": [
-        "## Results \n",
-        "\n",
-        "You can have a look at the results in the `examples/mnist_quickrun/result_*` folder, including the metrics evolution during training. "
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "zlm5El13SvnG"
-      },
-      "outputs": [],
-      "source": [
-        "import pandas as pd\n",
-        "import glob\n",
-        "import os \n",
-        "\n",
-        "res_file = glob.glob('examples/mnist_quickrun/result*') \n",
-        "res = pd.read_csv(os.path.join(res_file[0],'server/metrics.csv'))\n",
-        "res_fig = res.plot()"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "Kd_MBQt9OJ40"
-      },
-      "source": [
-        "# Experiment further\n",
-        "\n",
-        "\n",
-        "You can change the TOML config file to experiment with different strategies."
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "E3OOeAYJRGqU"
-      },
-      "source": [
-        "For instance, try splitting the data in a very heterogenous way, by distributing digits in mutually exclusive way between clients. "
-      ]
+ "cells": [
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "This notebook is meant to be run in google colab. You can find import your local copy of the file in the the [colab welcome page](https://colab.research.google.com/)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "s9bpLdH5ThpJ"
+   },
+   "source": [
+    "# Setting up your declearn "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "Clzf4NTja121"
+   },
+   "source": [
+    "We first clone the repo, to have both the package itself and the `examples` folder we will use in this tutorial, then naviguate to the package directory, and finally install the required dependencies"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
     },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "BNPLnpQuQ8Au"
-      },
-      "outputs": [],
-      "source": [
-        "split_data(folder=\"examples/mnist_quickrun\",scheme='labels')"
-      ]
+    "id": "u2QDwb0_QQ_f",
+    "outputId": "cac0761c-b229-49b0-d71d-c7b5cef919b3"
+   },
+   "outputs": [],
+   "source": [
+    "# you may want to specify a release branch or tag\n",
+    "!git clone https://gitlab.inria.fr/magnet/declearn/declearn2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
     },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "Xfs-3wH-3Eio"
-      },
-      "source": [
-        "And change the `examples/mnist_quickrun/config.toml` file with:\n",
-        "\n",
-        "```\n",
-        "[data] \n",
-        "    data_folder = \"examples/mnist_quickrun/data_labels\" \n",
-        "```"
-      ]
+    "id": "9kDHh_AfPG2l",
+    "outputId": "74e2f85f-7f93-40ae-a218-f4403470d72c"
+   },
+   "outputs": [],
+   "source": [
+    "cd declearn2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
     },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "ZZVFNO07O1ry"
-      },
-      "source": [
-        "If you run the model as is, you should see a drop of performance\n",
-        "\n"
-      ]
+    "id": "Un212t1GluHB",
+    "outputId": "0ea67577-da6e-4f80-a412-7b7a79803aa1"
+   },
+   "outputs": [],
+   "source": [
+    "# Install the package, with TensorFlow and Websockets extra dependencies.\n",
+    "# You may want to work in a dedicated virtual environment.\n",
+    "!pip install .[tensorflow,websockets]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "hC8Fty8YTy9P"
+   },
+   "source": [
+    "# Running your first experiment"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "rcWcZJdob1IG"
+   },
+   "source": [
+    "We are going to train a common model between three simulated clients on the classic [MNIST dataset](http://yann.lecun.com/exdb/mnist/). The input of the model is a set of images of handwritten digits, and the model needs to determine which number between 0 and 9 each image corresponds to."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "KlY_vVtFHv2P"
+   },
+   "source": [
+    "## The model\n",
+    "\n",
+    "To do this, we will use a simple CNN, defined in `examples/mnist_quickrun/model.py`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
     },
+    "id": "C7D52a8_dEr7",
+    "outputId": "a25223f8-c8eb-4998-d7fd-4b8bfde92486"
+   },
+   "outputs": [
     {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "7kFa0EbINJXq"
-      },
-      "outputs": [],
-      "source": [
-        "quickrun(config=\"examples/mnist_quickrun/config.toml\")"
-      ]
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Model: \"sequential\"\n",
+      "_________________________________________________________________\n",
+      " Layer (type)                Output Shape              Param #   \n",
+      "=================================================================\n",
+      " conv2d (Conv2D)             (None, 26, 26, 8)         80        \n",
+      "                                                                 \n",
+      " max_pooling2d (MaxPooling2D  (None, 13, 13, 8)        0         \n",
+      " )                                                               \n",
+      "                                                                 \n",
+      " dropout (Dropout)           (None, 13, 13, 8)         0         \n",
+      "                                                                 \n",
+      " flatten (Flatten)           (None, 1352)              0         \n",
+      "                                                                 \n",
+      " dense (Dense)               (None, 64)                86592     \n",
+      "                                                                 \n",
+      " dropout_1 (Dropout)         (None, 64)                0         \n",
+      "                                                                 \n",
+      " dense_1 (Dense)             (None, 10)                650       \n",
+      "                                                                 \n",
+      "=================================================================\n",
+      "Total params: 87,322\n",
+      "Trainable params: 87,322\n",
+      "Non-trainable params: 0\n",
+      "_________________________________________________________________\n"
+     ]
+    }
+   ],
+   "source": [
+    "from examples.mnist_quickrun.model import network\n",
+    "network.summary()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "HoBcOs9hH2QA"
+   },
+   "source": [
+    "## The data\n",
+    "\n",
+    "We start by splitting the MNIST dataset between 3 clients and storing the output in the `examples/mnist_quickrun` folder. For this we use an experimental utility provided by `declearn`. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
     },
+    "id": "quduXkpIWFjL",
+    "outputId": "ddf7d45d-acf0-44ee-ce77-357c0987a2a1"
+   },
+   "outputs": [
     {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "XV6JfaRzR3ee"
-      },
-      "source": [
-        "Now try modifying the `examples/mnist_quickrun/config.toml` file like this, to implement the [scaffold algorithm](https://arxiv.org/abs/1910.06378) and running the experiment again. \n",
-        "\n",
-        "```\n",
-        "  [optim]\n",
-        "\n",
-        "      [optim.client_opt]\n",
-        "      lrate = 0.005 \n",
-        "      modules = [\"scaffold-client\"] \n",
-        "\n",
-        "      [optim.server_opt]\n",
-        "      lrate = 1.0 \n",
-        "      modules = [\"scaffold-client\"]\n",
-        "```"
-      ]
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Downloading MNIST source file train-images-idx3-ubyte.gz.\n",
+      "Downloading MNIST source file train-labels-idx1-ubyte.gz.\n",
+      "Splitting data into 3 shards using the 'iid' scheme.\n"
+     ]
+    }
+   ],
+   "source": [
+    "from declearn.dataset import split_data\n",
+    "\n",
+    "split_data(folder=\"examples/mnist_quickrun\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The python code above is equivalent to running `declearn-split examples/mnist_quickrun/` in a shell command-line."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "3-2hKmz-2RF4"
+   },
+   "source": [
+    "Here is what the first image of the first client looks like:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 430
     },
+    "id": "MLVI9GOZ1TGd",
+    "outputId": "f34a6a93-cb5f-4a45-bc24-4146ea119d1a"
+   },
+   "outputs": [
     {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "FK6c9HDjSdGZ"
-      },
-      "outputs": [],
-      "source": [
-        "quickrun(config=\"examples/mnist_quickrun/config.toml\")"
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbo0lEQVR4nO3df2zV9fXH8dct0itoe7ta29tKy1r8gYrUDKR2Kv6goXQJESQLikvAGJxYjMicpkZBtiXdMPPrNAz/cTATUcQJRDNJsNgStxZDlRCmVsq6UQYtwsK9pUhh7fv7B+HqhfLjc7m3597yfCQ3offe03v8eO3Ty7188DnnnAAAGGBp1gsAAC5OBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJi4xHqBU/X19Wnv3r3KyMiQz+ezXgcA4JFzTl1dXSooKFBa2plf5yRdgPbu3avCwkLrNQAAF6i9vV0jRow44+1JF6CMjAxJJxbPzMw03gYA4FU4HFZhYWHk5/mZJCxAy5Yt04svvqiOjg6Vlpbq1Vdf1YQJE845d/K33TIzMwkQAKSwc72NkpAPIaxevVoLFy7U4sWL9dlnn6m0tFSVlZXav39/Ih4OAJCCEhKgl156SXPnztVDDz2kG264Qa+99pqGDx+uP/3pT4l4OABACop7gI4dO6bm5mZVVFR89yBpaaqoqFBjY+Np9+/p6VE4HI66AAAGv7gH6MCBA+rt7VVeXl7U9Xl5eero6Djt/rW1tQoEApELn4ADgIuD+R9ErampUSgUilza29utVwIADIC4fwouJydHQ4YMUWdnZ9T1nZ2dCgaDp93f7/fL7/fHew0AQJKL+yug9PR0jRs3TnV1dZHr+vr6VFdXp/Ly8ng/HAAgRSXkzwEtXLhQs2fP1vjx4zVhwgS9/PLL6u7u1kMPPZSIhwMApKCEBGjmzJn65ptvtGjRInV0dOjmm2/Whg0bTvtgAgDg4uVzzjnrJb4vHA4rEAgoFApxJgQASEHn+3Pc/FNwAICLEwECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGDiEusFAJyfnp4ezzMHDhyI6bFef/31mOa8+vjjjz3P1NfXe57x+XyeZ2IVyz/TnXfemYBNkh+vgAAAJggQAMBE3AP0wgsvyOfzRV1Gjx4d74cBAKS4hLwHdOONN+qjjz767kEu4a0mAEC0hJThkksuUTAYTMS3BgAMEgl5D2jnzp0qKChQSUmJHnzwQe3evfuM9+3p6VE4HI66AAAGv7gHqKysTCtXrtSGDRu0fPlytbW16Y477lBXV1e/96+trVUgEIhcCgsL470SACAJxT1AVVVV+ulPf6qxY8eqsrJSf/3rX3Xo0CG98847/d6/pqZGoVAocmlvb4/3SgCAJJTwTwdkZWXp2muvVWtra7+3+/1++f3+RK8BAEgyCf9zQIcPH9auXbuUn5+f6IcCAKSQuAfoqaeeUkNDg/71r3/p73//u6ZPn64hQ4bogQceiPdDAQBSWNx/C27Pnj164IEHdPDgQV155ZW6/fbb1dTUpCuvvDLeDwUASGFxD9Dbb78d728JJLXe3l7PMxs3bvQ8s2TJEs8zn376qeeZZJeWltxnEAuFQtYrpIzk/jcJABi0CBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATCf8L6ZD8nHMxzfX19XmeGagTScaymyR98803nmeqqqo8z2zfvt3zDAbekCFDPM8UFRUlYJPBiVdAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMMHZsKEdO3bENHfzzTd7nvnHP/7heebbb7/1PDN+/HjPM0gNGRkZnmdGjx4d02P95S9/8Txz1VVXxfRYFyNeAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJjgZ6SDzz3/+0/PMrFmzErBJ//bv3+95pqamJgGbXBwuvfTSmOYefPDBOG/SvyeeeMLzTFZWlucZThCanHgFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4GSkg8yBAwc8z3zxxRcxPZbP5/M809TU5Hlmy5YtnmfS0mL7f6thw4bFNOfVzJkzPc/cf//9nmfKyso8z0jS5ZdfHtMc4AWvgAAAJggQAMCE5wBt3rxZU6dOVUFBgXw+n9atWxd1u3NOixYtUn5+voYNG6aKigrt3LkzXvsCAAYJzwHq7u5WaWmpli1b1u/tS5cu1SuvvKLXXntNW7Zs0WWXXabKykodPXr0gpcFAAwenj+EUFVVpaqqqn5vc87p5Zdf1nPPPad7771XkvTGG28oLy9P69ati+lNVADA4BTX94Da2trU0dGhioqKyHWBQEBlZWVqbGzsd6anp0fhcDjqAgAY/OIaoI6ODklSXl5e1PV5eXmR205VW1urQCAQuRQWFsZzJQBAkjL/FFxNTY1CoVDk0t7ebr0SAGAAxDVAwWBQktTZ2Rl1fWdnZ+S2U/n9fmVmZkZdAACDX1wDVFxcrGAwqLq6ush14XBYW7ZsUXl5eTwfCgCQ4jx/Cu7w4cNqbW2NfN3W1qZt27YpOztbRUVFWrBggX7zm9/ommuuUXFxsZ5//nkVFBRo2rRp8dwbAJDiPAdo69atuvvuuyNfL1y4UJI0e/ZsrVy5Uk8//bS6u7v1yCOP6NChQ7r99tu1YcMGXXrppfHbGgCQ8nzOOWe9xPeFw2EFAgGFQiHeD4rBrFmzPM+sXr06psfKzs72PBPLiU+//vprzzN+v9/zjCSNHz8+pjkA3znfn+Pmn4IDAFycCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYMLzX8cAnPTf//7X88zUqVM9z6xatcrzTElJiecZAAOLV0AAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAmfc85ZL/F94XBYgUBAoVBImZmZ1uuknMbGRs8zt99+ewI2iZ/hw4d7npkzZ05Mj7VkyRLPM7HsN3ToUM8zQ4YM8TwDWDjfn+O8AgIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATHAy0kEmHA57nlm+fHlMj/Xss8/GNJfMrr76as8ze/bs8Txzzz33eJ6JZbdYTZ8+3fPMrbfe6nkmPT3d8wySHycjBQAkNQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABCcjhfr6+mKae+qppzzPvPvuu55n/vOf/3iewcD7+c9/7nlm0aJFnmeCwaDnGQwsTkYKAEhqBAgAYMJzgDZv3qypU6eqoKBAPp9P69ati7p9zpw58vl8UZcpU6bEa18AwCDhOUDd3d0qLS3VsmXLznifKVOmaN++fZHLW2+9dUFLAgAGn0u8DlRVVamqquqs9/H7/bxRCAA4q4S8B1RfX6/c3Fxdd911mjdvng4ePHjG+/b09CgcDkddAACDX9wDNGXKFL3xxhuqq6vT7373OzU0NKiqqkq9vb393r+2tlaBQCByKSwsjPdKAIAk5Pm34M7l/vvvj/z6pptu0tixYzVq1CjV19dr0qRJp92/pqZGCxcujHwdDoeJEABcBBL+MeySkhLl5OSotbW139v9fr8yMzOjLgCAwS/hAdqzZ48OHjyo/Pz8RD8UACCFeP4tuMOHD0e9mmlra9O2bduUnZ2t7OxsLVmyRDNmzFAwGNSuXbv09NNP6+qrr1ZlZWVcFwcApDbPAdq6davuvvvuyNcn37+ZPXu2li9fru3bt+vPf/6zDh06pIKCAk2ePFm//vWv5ff747c1ACDlcTJSDKhjx455nvnf//7neebNN9/0PCNJX331leeZP/zhD55nkuw/OzOvvvqq55nHHnssAZsgnjgZKQAgqREgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEZ8MGLtDWrVs9z7z77rueZ7788kvPMx9++KHnGUnq7e2Nac6r4cOHe57ZsWOH55mRI0d6nkHsOBs2ACCpESAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmLrFeAEh148ePH5CZWHz99dcxzV1//fVx3qR/R44c8TzT2dnpeYaTkSYnXgEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACY4GSkwiF111VXWK5xVVlaW55mSkpL4LwITvAICAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAExwMlIMqD179nieGT58uOeZ7OxszzMDqaenx/NMW1ub55nf//73nmcG0oQJEzzP5OTkJGATWOAVEADABAECAJjwFKDa2lrdcsstysjIUG5urqZNm6aWlpao+xw9elTV1dW64oordPnll2vGjBnq7OyM69IAgNTnKUANDQ2qrq5WU1OTNm7cqOPHj2vy5Mnq7u6O3OfJJ5/U+++/rzVr1qihoUF79+7VfffdF/fFAQCpzdOHEDZs2BD19cqVK5Wbm6vm5mZNnDhRoVBIr7/+ulatWqV77rlHkrRixQpdf/31ampq0q233hq/zQEAKe2C3gMKhUKSvvvEUXNzs44fP66KiorIfUaPHq2ioiI1Njb2+z16enoUDoejLgCAwS/mAPX19WnBggW67bbbNGbMGElSR0eH0tPTT/t73vPy8tTR0dHv96mtrVUgEIhcCgsLY10JAJBCYg5QdXW1duzYobfffvuCFqipqVEoFIpc2tvbL+j7AQBSQ0x/EHX+/Pn64IMPtHnzZo0YMSJyfTAY1LFjx3To0KGoV0GdnZ0KBoP9fi+/3y+/3x/LGgCAFObpFZBzTvPnz9fatWu1adMmFRcXR90+btw4DR06VHV1dZHrWlpatHv3bpWXl8dnYwDAoODpFVB1dbVWrVql9evXKyMjI/K+TiAQ0LBhwxQIBPTwww9r4cKFys7OVmZmph5//HGVl5fzCTgAQBRPAVq+fLkk6a677oq6fsWKFZozZ44k6f/+7/+UlpamGTNmqKenR5WVlfrjH/8Yl2UBAIOHzznnrJf4vnA4rEAgoFAopMzMTOt1cBaffvqp55nvf0T/fF122WWeZ4qKijzPDKSuri7PM6eedWQwaG5u9jxz8803x38RxNX5/hznXHAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwEdPfiIrB5ciRIzHN/fjHP/Y8E8vJ17u7uz3P7N+/3/MMLkxbW5vnmcLCwgRsglTBKyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQnI4XWr18f01wsJxbFwLr11ltjmlu2bJnnmdzcXM8zPp/P8wwGD14BAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmOBkpVFpaar3CRWfmzJkDMjN58mTPM5I0bNiwmOYAL3gFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4GSk0A033BDTXG9vb5w3AXAx4RUQAMAEAQIAmPAUoNraWt1yyy3KyMhQbm6upk2bppaWlqj73HXXXfL5fFGXRx99NK5LAwBSn6cANTQ0qLq6Wk1NTdq4caOOHz+uyZMnq7u7O+p+c+fO1b59+yKXpUuXxnVpAEDq8/QhhA0bNkR9vXLlSuXm5qq5uVkTJ06MXD98+HAFg8H4bAgAGJQu6D2gUCgkScrOzo66/s0331ROTo7GjBmjmpoaHTly5Izfo6enR+FwOOoCABj8Yv4Ydl9fnxYsWKDbbrtNY8aMiVw/a9YsjRw5UgUFBdq+fbueeeYZtbS06L333uv3+9TW1mrJkiWxrgEASFE+55yLZXDevHn68MMP9cknn2jEiBFnvN+mTZs0adIktba2atSoUafd3tPTo56ensjX4XBYhYWFCoVCyszMjGU1AIChcDisQCBwzp/jMb0Cmj9/vj744ANt3rz5rPGRpLKyMkk6Y4D8fr/8fn8sawAAUpinADnn9Pjjj2vt2rWqr69XcXHxOWe2bdsmScrPz49pQQDA4OQpQNXV1Vq1apXWr1+vjIwMdXR0SJICgYCGDRumXbt2adWqVfrJT36iK664Qtu3b9eTTz6piRMnauzYsQn5BwAApCZP7wH5fL5+r1+xYoXmzJmj9vZ2/exnP9OOHTvU3d2twsJCTZ8+Xc8999x5v59zvr93CABITgl5D+hcrSosLFRDQ4OXbwkAuEhxLjgAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgIlLrBc4lXNOkhQOh403AQDE4uTP75M/z88k6QLU1dUlSSosLDTeBABwIbq6uhQIBM54u8+dK1EDrK+vT3v37lVGRoZ8Pl/UbeFwWIWFhWpvb1dmZqbRhvY4DidwHE7gOJzAcTghGY6Dc05dXV0qKChQWtqZ3+lJuldAaWlpGjFixFnvk5mZeVE/wU7iOJzAcTiB43ACx+EE6+Nwtlc+J/EhBACACQIEADCRUgHy+/1avHix/H6/9SqmOA4ncBxO4DicwHE4IZWOQ9J9CAEAcHFIqVdAAIDBgwABAEwQIACACQIEADCRMgFatmyZfvjDH+rSSy9VWVmZPv30U+uVBtwLL7wgn88XdRk9erT1Wgm3efNmTZ06VQUFBfL5fFq3bl3U7c45LVq0SPn5+Ro2bJgqKiq0c+dOm2UT6FzHYc6cOac9P6ZMmWKzbILU1tbqlltuUUZGhnJzczVt2jS1tLRE3efo0aOqrq7WFVdcocsvv1wzZsxQZ2en0caJcT7H4a677jrt+fDoo48abdy/lAjQ6tWrtXDhQi1evFifffaZSktLVVlZqf3791uvNuBuvPFG7du3L3L55JNPrFdKuO7ubpWWlmrZsmX93r506VK98soreu2117RlyxZddtllqqys1NGjRwd408Q613GQpClTpkQ9P956660B3DDxGhoaVF1draamJm3cuFHHjx/X5MmT1d3dHbnPk08+qffff19r1qxRQ0OD9u7dq/vuu89w6/g7n+MgSXPnzo16PixdutRo4zNwKWDChAmuuro68nVvb68rKChwtbW1hlsNvMWLF7vS0lLrNUxJcmvXro183dfX54LBoHvxxRcj1x06dMj5/X731ltvGWw4ME49Ds45N3v2bHfvvfea7GNl//79TpJraGhwzp34dz906FC3Zs2ayH2+/PJLJ8k1NjZarZlwpx4H55y788473RNPPGG31HlI+ldAx44dU3NzsyoqKiLXpaWlqaKiQo2NjYab2di5c6cKCgpUUlKiBx98ULt377ZeyVRbW5s6Ojqinh+BQEBlZWUX5fOjvr5eubm5uu666zRv3jwdPHjQeqWECoVCkqTs7GxJUnNzs44fPx71fBg9erSKiooG9fPh1ONw0ptvvqmcnByNGTNGNTU1OnLkiMV6Z5R0JyM91YEDB9Tb26u8vLyo6/Py8vTVV18ZbWWjrKxMK1eu1HXXXad9+/ZpyZIluuOOO7Rjxw5lZGRYr2eio6NDkvp9fpy87WIxZcoU3XfffSouLtauXbv07LPPqqqqSo2NjRoyZIj1enHX19enBQsW6LbbbtOYMWMknXg+pKenKysrK+q+g/n50N9xkKRZs2Zp5MiRKigo0Pbt2/XMM8+opaVF7733nuG20ZI+QPhOVVVV5Ndjx45VWVmZRo4cqXfeeUcPP/yw4WZIBvfff3/k1zfddJPGjh2rUaNGqb6+XpMmTTLcLDGqq6u1Y8eOi+J90LM503F45JFHIr++6aablJ+fr0mTJmnXrl0aNWrUQK/Zr6T/LbicnBwNGTLktE+xdHZ2KhgMGm2VHLKysnTttdeqtbXVehUzJ58DPD9OV1JSopycnEH5/Jg/f74++OADffzxx1F/fUswGNSxY8d06NChqPsP1ufDmY5Df8rKyiQpqZ4PSR+g9PR0jRs3TnV1dZHr+vr6VFdXp/LycsPN7B0+fFi7du1Sfn6+9SpmiouLFQwGo54f4XBYW7ZsueifH3v27NHBgwcH1fPDOaf58+dr7dq12rRpk4qLi6NuHzdunIYOHRr1fGhpadHu3bsH1fPhXMehP9u2bZOk5Ho+WH8K4ny8/fbbzu/3u5UrV7ovvvjCPfLIIy4rK8t1dHRYrzagfvGLX7j6+nrX1tbm/va3v7mKigqXk5Pj9u/fb71aQnV1dbnPP//cff75506Se+mll9znn3/u/v3vfzvnnPvtb3/rsrKy3Pr169327dvdvffe64qLi923335rvHl8ne04dHV1uaeeeso1Nja6trY299FHH7kf/ehH7pprrnFHjx61Xj1u5s2b5wKBgKuvr3f79u2LXI4cORK5z6OPPuqKiorcpk2b3NatW115ebkrLy833Dr+znUcWltb3a9+9Su3detW19bW5tavX+9KSkrcxIkTjTePlhIBcs65V1991RUVFbn09HQ3YcIE19TUZL3SgJs5c6bLz8936enp7qqrrnIzZ850ra2t1msl3Mcff+wknXaZPXu2c+7ER7Gff/55l5eX5/x+v5s0aZJraWmxXToBznYcjhw54iZPnuyuvPJKN3ToUDdy5Eg3d+7cQfc/af3980tyK1asiNzn22+/dY899pj7wQ9+4IYPH+6mT5/u9u3bZ7d0ApzrOOzevdtNnDjRZWdnO7/f766++mr3y1/+0oVCIdvFT8FfxwAAMJH07wEBAAYnAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMDE/wPgnA/bT9IQRgAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
       ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
     }
-  ],
-  "metadata": {
+   ],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "\n",
+    "images = np.load(\"examples/mnist_quickrun/data_iid/client_0/train_data.npy\")\n",
+    "sample_img = images[0]\n",
+    "sample_fig = plt.imshow(sample_img,cmap='Greys')\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "1vNWNGjefSfH"
+   },
+   "source": [
+    "For more information on how the `split_data` function works, you can look at the documentation. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
     "colab": {
-      "collapsed_sections": [
-        "s9bpLdH5ThpJ",
-        "KlY_vVtFHv2P",
-        "HoBcOs9hH2QA",
-        "kZtbxlwUftKd",
-        "wo6NDugiOH6V",
-        "Kd_MBQt9OJ40"
-      ],
-      "provenance": []
+     "base_uri": "https://localhost:8080/"
     },
-    "kernelspec": {
-      "display_name": "Python 3",
-      "name": "python3"
-    },
-    "language_info": {
-      "name": "python"
+    "id": "-wORmq5DYfRF",
+    "outputId": "4d79da63-ccad-4622-e600-ac36fae1ff3f"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Randomly split a dataset into shards.\n",
+      "\n",
+      "    The resulting folder structure is :\n",
+      "        folder/\n",
+      "        └─── data*/\n",
+      "            └─── client*/\n",
+      "            │      train_data.* - training data\n",
+      "            │      train_target.* - training labels\n",
+      "            │      valid_data.* - validation data\n",
+      "            │      valid_target.* - validation labels\n",
+      "            └─── client*/\n",
+      "            │    ...\n",
+      "\n",
+      "    Parameters\n",
+      "    ----------\n",
+      "    folder: str, default = \".\"\n",
+      "        Path to the folder where to add a data folder\n",
+      "        holding output shard-wise files\n",
+      "    data_file: str or None, default=None\n",
+      "        Optional path to a folder where to find the data.\n",
+      "        If None, default to the MNIST example.\n",
+      "    target_file: str or int or None, default=None\n",
+      "        If str, path to the labels file to import, or name of a `data`\n",
+      "        column to use as labels (only if `data` points to a csv file).\n",
+      "        If int, index of a `data` column of to use as labels).\n",
+      "        Required if data is not None, ignored if data is None.\n",
+      "    n_shards: int\n",
+      "        Number of shards between which to split the data.\n",
+      "    scheme: {\"iid\", \"labels\", \"biased\"}, default=\"iid\"\n",
+      "        Splitting scheme(s) to use. In all cases, shards contain mutually-\n",
+      "        exclusive samples and cover the full raw training data.\n",
+      "        - If \"iid\", split the dataset through iid random sampling.\n",
+      "        - If \"labels\", split into shards that hold all samples associated\n",
+      "        with mutually-exclusive target classes.\n",
+      "        - If \"biased\", split the dataset through random sampling according\n",
+      "        to a shard-specific random labels distribution.\n",
+      "    perc_train: float, default= 0.8\n",
+      "        Train/validation split in each client dataset, must be in the\n",
+      "        ]0,1] range.\n",
+      "    seed: int or None, default=None\n",
+      "        Optional seed to the RNG used for all sampling operations.\n",
+      "    \n"
+     ]
     }
+   ],
+   "source": [
+    "print(split_data.__doc__)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "kZtbxlwUftKd"
+   },
+   "source": [
+    "## Quickrun\n",
+    "\n",
+    "We can now run our experiment. As explained in the section 2.1 of the [quickstart documentation](https://magnet.gitlabpages.inria.fr/declearn/docs/latest/quickstart), using the `declearn-quickrun` entry-point requires a configuration file, some data, and a model:\n",
+    "\n",
+    "* A TOML file, to store your experiment configurations. Here: \n",
+    "`examples/mnist_quickrun/config.toml`.\n",
+    "* A folder with your data, split by client. Here: `examples/mnist_quickrun/data_iid`\n",
+    "* A model python file, to declare your model wrapped in a `declearn` object. Here: `examples/mnist_quickrun/model.py`.\n",
+    "\n",
+    "We then only have to run the `quickrun` util with the path to the TOML file:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "id": "1n_mvTIIWpRf"
+   },
+   "outputs": [],
+   "source": [
+    "from declearn.quickrun import quickrun\n",
+    "\n",
+    "quickrun(config=\"examples/mnist_quickrun/config.toml\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The python code above is equivalent to running `declearn-quickrun examples/mnist_quickrun/config.toml` in a shell command-line."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "O0kuw7UxJqKk"
+   },
+   "source": [
+    "The output obtained is the combination of the CLI output of our server and our clients, going through: \n",
+    "\n",
+    "* `INFO:Server:Starting clients registration process.` : a first registration step, where clients register with the server\n",
+    "* `INFO:Server:Sending initialization requests to clients.`: the initilization of the object needed for training on both the server and clients side.\n",
+    "* `Server:INFO: Initiating training round 1`: the training starts, where each client makes its local update(s) and send the result to the server which aggregates them\n",
+    "* `INFO: Initiating evaluation round 1`: the model is evaluated at each round\n",
+    "* `Server:INFO: Stopping training`: the training is finalized  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "wo6NDugiOH6V"
+   },
+   "source": [
+    "## Results \n",
+    "\n",
+    "You can have a look at the results in the `examples/mnist_quickrun/result_*` folder, including the metrics evolution during training. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "id": "zlm5El13SvnG"
+   },
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "import glob\n",
+    "import os \n",
+    "\n",
+    "res_file = glob.glob('examples/mnist_quickrun/result*') \n",
+    "res = pd.read_csv(os.path.join(res_file[0],'server/metrics.csv'))\n",
+    "res_fig = res.plot()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "Kd_MBQt9OJ40"
+   },
+   "source": [
+    "# Experiment further\n",
+    "\n",
+    "\n",
+    "You can change the TOML config file to experiment with different strategies."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "E3OOeAYJRGqU"
+   },
+   "source": [
+    "For instance, try splitting the data in a very heterogenous way, by distributing digits in mutually exclusive way between clients. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "id": "BNPLnpQuQ8Au"
+   },
+   "outputs": [],
+   "source": [
+    "split_data(folder=\"examples/mnist_quickrun\",scheme='labels')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "Xfs-3wH-3Eio"
+   },
+   "source": [
+    "And change the `examples/mnist_quickrun/config.toml` file with:\n",
+    "\n",
+    "```\n",
+    "[data] \n",
+    "    data_folder = \"examples/mnist_quickrun/data_labels\" \n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "ZZVFNO07O1ry"
+   },
+   "source": [
+    "If you run the model as is, you should see a drop of performance\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "id": "7kFa0EbINJXq"
+   },
+   "outputs": [],
+   "source": [
+    "quickrun(config=\"examples/mnist_quickrun/config.toml\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "XV6JfaRzR3ee"
+   },
+   "source": [
+    "Now try modifying the `examples/mnist_quickrun/config.toml` file like this, to implement the [scaffold algorithm](https://arxiv.org/abs/1910.06378) and running the experiment again. \n",
+    "\n",
+    "```\n",
+    "  [optim]\n",
+    "\n",
+    "      [optim.client_opt]\n",
+    "      lrate = 0.005 \n",
+    "      modules = [\"scaffold-client\"] \n",
+    "\n",
+    "      [optim.server_opt]\n",
+    "      lrate = 1.0 \n",
+    "      modules = [\"scaffold-client\"]\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "id": "FK6c9HDjSdGZ"
+   },
+   "outputs": [],
+   "source": [
+    "quickrun(config=\"examples/mnist_quickrun/config.toml\")"
+   ]
+  }
+ ],
+ "metadata": {
+  "colab": {
+   "collapsed_sections": [
+    "s9bpLdH5ThpJ",
+    "KlY_vVtFHv2P",
+    "HoBcOs9hH2QA",
+    "kZtbxlwUftKd",
+    "wo6NDugiOH6V",
+    "Kd_MBQt9OJ40"
+   ],
+   "provenance": []
+  },
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
   },
-  "nbformat": 4,
-  "nbformat_minor": 0
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
 }
diff --git a/examples/mnist_quickrun/readme.md b/examples/mnist_quickrun/readme.md
new file mode 100644
index 00000000..afcc573c
--- /dev/null
+++ b/examples/mnist_quickrun/readme.md
@@ -0,0 +1,31 @@
+# Demo training task : MNIST in Quickrun Mode
+
+## Overview
+
+**We are going to use the declearn-quickrun tool to easily run a simulated
+federated learning experiment on the classic
+[MNIST dataset](http://yann.lecun.com/exdb/mnist/)**. The input of the model
+is a set of images of handwritten digits, and the model needs to determine to
+which digit between $0$ and $9$ each image corresponds.
+
+## Setup
+
+A Jupyter Notebook tutorial is provided, that you may import and run on Google
+Colab so as to avoid having to set up a local python environment.
+
+Alternatively, you may run the notebook on your personal computer, or follow
+its instructions to install declearn and operate the quickrun tools directly
+from a shell command-line.
+
+## Contents
+
+This example's folder is structured the following way:
+
+```
+mnist/
+│    config.toml - configuration file for the quickrun FL experiment
+|    mnist.ipynb - tutorial for this example, as a jupyter notebook
+|    model.py    - python file declaring the model to be trained
+└─── data_iid    - mnist data generated with `declearn-split`
+└─── results_*   - results generated after running `declearn-quickrun`
+```
-- 
GitLab