LibVerticalParallelization
Vertical Parallelization using memory access classification

Maxime Mogé — Inria teams CAMUS and MIMESIS
Project partners: J. Gustedt, P. Clauss, S. Cotin, H. Courtecuisse
03/08/2018

1 — General idea

A detailed description of the underlying theory as well as the implementation can be found
in « Jens Gustedt, Maxime Mogé. Memory access classification for vertical task
parallelism. [Research Report] RR-9182, Inria Nancy - Grand Est. 2018, pp.1-20. »

Target programs should have the following properties:
* They have an outer iteration loop (e.g. time loop).

* Each iteration consists of multiple computing tasks with a constant data access
pattern over the iterations.

This situation can be found in FEM codes: computations on a mesh with unchanged
topology at each iteration

Using the assumption of a constant data access pattern, we detect dependencies and
derive an implicit scheduling at runtime using Ordered Read-Write Locks (ORWL). We use
the EiLck library that implements this concept of ORWL.

With libVerticalParallization (which corresponds to the C++ implementation described
in the paper), the computing tasks should be enclosed in a function call.

2 — Sofa implementation

To use libVerticalParallization in Sofa, very few changes are necessary :
* Compile using -std=c++14
* Define a custom parallel version of Visitor::for _each r
* Define a flag in Simulation to allow parallel execution of current step

e Use DataVectorWrapper to overload operator[] for the data vector that are shared
between the tasks (or for the all data vector). This can be done in a plugin if one
defines a new vector type (ex: ParallelVec3d)

* Set the size of the meta-steps / parallel phases (the number of memory accesses in
a meta-step)

The key changes are in Visitor::for_each r.

Original sequential code:

/// Helper method to enumerate objects in the given list. The callback gets the pointer to node

template < class Visit, class VContext, class Container, class Object >
Visitor::Result for_each_r (Visit* visitor, VContext* ctx, const Containers list,
Visitor::Result (Visit::*fn) (VContext*, Object¥))
{
Visitor::Result res = Visitor::RESULT CONTINUE;
for (typename Container::iterator it=list.begin(); it != list.end(); ++it)
{
typename Container: :pointed_type* ptr = &*(*it);
if (testTags (ptr))
{
debug_write_state_before (ptr);
ctime_t t=begin(ctx, ptr);
std::cout << "—-—for_each_r launch task" << std::endl;
res = (visitor->*fn) (ctx, ptr);
end(ctx, ptr, t);
debug_write_state_after (ptr);
}
3

return res;

Parallel code using libVerticalParallization:

/// Helper method to enumerate objects in the given list. The callback gets the pointer to node
template < class Visit, class VContext, class Container, class Object >
Visitor::Result for_each_r_para (Visit* visitor, VContext* ctx, const Containers& list,
Visitor::Result (Visit::*fn) (VContext*, Object¥))
{

Result (*fn_wrapper) (Visit*,VContext*,Object*) = reinterpret_cast< Result (*)
(Visit*,VContext*,Object*)> (visitor->*£fn);

//Parallel section definition

std::tuple< std::uintptr t, std::uintptr t, std::uintptr t, const char* >
psid((std::uintptr t) ctx, (std::uintptr t) fn_wrapper, (std::uintptr t) &list, visitor-
>getClassName ()) ;

std::vector< std::function<Result ()>* > computefunctions;

if(sofa::simulation::sofaParallelization::parallelExecAllowed)

{

sofa::verticalparallelization::startParallelization< std::tuple< std::uintptr t,

std::uintptr t, std::uintptr t, const char* > >(psid);

I3

sofa::verticalparallelization::beginParallelSection< Result, std::tuple< std::uintptr t,
std::uintptr t, std::uintptr t, const char* > >(psid);

int counter = 0;
Visitor::Result res = Visitor::RESULT CONTINUE;
for (typename Container::iterator it=list.begin(); it != list.end(); ++it)

{
typename Container::pointed_type* ptr = &*(*it);
if (testTags (ptr))
{

if(sofa::simulation::sofaParallelization::parallelExecAllowed)

//Task creation
computefunctions.push back (new
std::function<Result () >(std::bind(fn_wrapper,visitor,ctx,ptr))

)i
sofa::verticalparallelization::xrunTask< Result >(* (computefunctions.back()),
res);
}
else
{
res = fn_wrapper (visitor,ctx,ptr);
I3
}
}

sofa::verticalparallelization::endParallelSection< Result, std::tuple< std::uintptr t,

std::uintptr t, std::uintptr t, const char* > >(psid, res);
for (std::vector< std::function<Result ()>* >::iterator it = computefunctions.begin ()

; it != computefunctions.end() ; ++it)
delete *it;
return res;

In directory sofaplugin are the file needed to use libVerticalParallization in Sofa.
It consists in
1. aplugin ParallelVectors: It defines a new vector type (ParallelVec3d, etc.) that is
just a wrapper around Vec3d with operator[] overloaded (using
libverticalparallelization::DataWrapper) + the instantiation of all necessary
classes.
2. aslightly modified version of Simulation.cpp: creation of the ThreadPool, set flags
to enable parallel execution when initialization steps are done
3. Visitor.h: function for _each r_para to execute the visitor on multiple components
in parallel using libverticalparallelization

3 — General Usage

1. Identify a section of code with multiple tasks you want to execute in parallel. This
will define a parallel section, i.e. a subpart of the program that is repeated at each
iteration with the same data access pattern.

A Task corresponds to a function call, so you should encapsulate the tasks in
functions.
WARNING: The return value of the task is not valid at the moment...

2. ldentify the data vectors/arrays that are shared between the tasks, and wrap them
using DataWrapper so that the operator[] is overloaded to track memory accesses
and manage locks.

WARNING: when your data is a multidimensional array (e.g. a matrix), overloading
the operator[] on the "innermost" dimension can least to degraded performances.
Overloading a "outer" dimension can lead to better performances. See example
rodinia/hotspot3D para.cpp, where we wrap the 2nd dimension of a
3—-dimensional matrix.

3. Define a unique identifier for your parallel section. Call startParallelization and
beginParallelSection to get the ParallelSection object and set the flags to
enable parallelization.

WARNING: if there are initialization steps in your program before the memory
access become constant across iterations, Call startParallelization only after
the initialization iterations are done.

4. Bind the values of the functions/Tasks parameters, using std: : ref for reference
parameters, to get a function of type Result(void). Call runTask() to add the Task
to the ThreadPool and start its execution.

5. Call endParallelSection to resume sequential execution at the end of the parallel
section.

Remark : As stated in the paper, we have to group step in meta-steps (also called
ParallelPhase in libVerticalParallelization) to decrease the overhead induced by the
FIFO mechanism and the locks. The optimal size of the meta-steps/phases is not
computed by libVerticalParallelization, and with current implementation the size is set
arbitrarily in memory var.cpp. It needs to be tuned and the lib recompiled, for each
application.

4 — Performances on classical benchmarks

These results can also be found in the paper, with more precise description and
comments.
We use classical benchmarking suites : rodinia (hotspot3D) and polybench (seidel2D,
heat3d, adi). These are simple and computation intensive benchmarks.

In the original code, we have only 1 or 2 tasks that can be parallelized in an iteration, so |
unroll the loops to have more tasks and parallelism opportunities.

seidel 2d

hotspot3D

heat3d

2,5

adi

2,04
1,54

1,0

0,5

@lﬁl

unroll 2x

unroll 4x

unroll 10x

0’0 1 1

seq

unroll 2x
unroll 4x

1,2

1,0
0,8
0,6
0,4

0,2+

seq

/| 2 tasks
unroll 2x

0,0 L

unroll 4x
c++
c++

c++ 2X

adi is actually slower using the parallel version. There are multiple reasons for that:
* The tasks are not well balanced.

* The overhead of operator[] overloading is too high: too many accesses compared

to computing work, and it prevents some compiler optimizations.

5 — Performances on a simple simulation in Sofa

We did not find any realistic scenario in Sofa where vertical parallelization could be
successfully applied.

So the tests were done using a simple meaningless simulation of a 3D cubic object on

which we apply 4 identical force fields: TetrahedronFEMForceField.

We define our parallel section as the execution of the addMBKDxVisitor on the Force
Fields. This gives us 4 identical tasks: TetrahedronFEMForceField: :AddDForce.

Each Task in decomposed in 32 meta-steps (ParallelPhases) of ~60000 vector accesses.

Sofa Master sequential

Vertical parallelization
1 Thread

Vertical parallelization
4 Threads

Exec time

63.44 s.

71.47 s.

30.80 s.

speedup

0.89

2.06

Note that a sequential execution of our simulation using our modified version of Sofa with
a custom vector type with operator[] overloading leads to degraded performances.

Indeed, the additional operations performed prevent some compiler optimization, notably
vectorization in some cases.

To compensate for the overhead, we need to extract sufficient parallelism from our parallel

section.

For this simulation, we have a speedup of 2.06 when using 4 threads to run our 4 parallel

tasks.

6 — Conclusion

We have mixed results. We have encouraging results on some cases, but the overhead of
the overloading of operator[] and the prevented optimizations can be to high to get any
speedup.

Before releasing this library, two things should be improved :
1. The size of the meta-steps should be computed automatically.
2. There should be a way to set the number of threads to use without having to
compile the library again.

