
Reproducible deployment for scientific software using GNU Guix

Ludovic Courtès, Konrad Hinsen, Simon Tournier

ludovic.courtes@inria.fr
konrad.hinsen@cnrs.fr

simon.tournier@inserm.fr

December, 14th, 2022

https://hpc.guix.infoOpen Science Days@UGA
tuto Guix

https://hpc.guix.info

Replication and reproducibility crisis

More than 70% of researchers have tried and failed to reproduce another
scientist’s experiments, and more than half have failed to reproduce their own
experiments.

1,500 scientists lift the lid on reproducibility (Nature, 2016) (link)

Many causes. . . one solution?
Open Science helps

(
reproducibility = verification
replicability = validation

)

Open Science Days@UGA Toward reproducible research using Guix 1 / 24

https://www.nature.com/articles/533452a

Open Science

Science = Transparent and Collective
Scientific result = Experiment + Numerical processing

Science in the digital age:

1. Open Article HAL, BioArxiv
2. Open Data Data Repositories, Zenodo
3. Open Source Forges, GitLab, Software Heritage

4. Computational env. ?

How to it all?

today’s topic

“Open science”, a tautology?
Open Science Days@UGA Toward reproducible research using Guix 2 / 24

Open Science

Science = Transparent and Collective
Scientific result = Experiment + Numerical processing

Science in the digital age:

1. Open Article HAL, BioArxiv
2. Open Data Data Repositories, Zenodo
3. Open Source Forges, GitLab, Software Heritage

4. Computational env. ?

How to glue it all?

today’s topic

“Open science”, a tautology?
Open Science Days@UGA Toward reproducible research using Guix 2 / 24

Open Science

Science = Transparent and Collective
Scientific result = Experiment + Numerical processing

Science in the digital age:

1. Open Article HAL, BioArxiv
2. Open Data Data Repositories, Zenodo
3. Open Source Forges, GitLab, Software Heritage
4. Computational env. ?

How to glue it all?

today’s topic

“Open science”, a tautology?
Open Science Days@UGA Toward reproducible research using Guix 2 / 24

Open Science

Science = Transparent and Collective
Scientific result = Experiment + Numerical processing

Science in the digital age:

1. Open Article HAL, BioArxiv
2. Open Data Data Repositories, Zenodo
3. Open Source Forges, GitLab, Software Heritage
4. Computational env. ?

How to glue it all?

today’s topic

“Open science”, a tautology?
Open Science Days@UGA Toward reproducible research using Guix 2 / 24

Redo (reproduce or replicate) a result?

audit opaque depend?

result ←− paper + data + analysis

data ←− protocol + instrument + materials

F

analysis ←− script + data + environment

environment

I audit is the “tractable” part
I opaque is generally the hard part

I how to eliminate depend? from the equations

. . .
. . . try to turn environment into audit

F our issue
(“computer” ≈ instrument and “computation” ≈ measurement

computationnal env. ↔ experimental setup

)

Open Science Days@UGA Toward reproducible research using Guix 3 / 24

Redo (reproduce or replicate) a result?

audit opaque depend?

result ←− paper + data + analysis

data ←− protocol + instrument + materials

F

analysis ←− script + data + environment

environment

I audit is the “tractable” part
I opaque is generally the hard part
I how to eliminate depend? from the equations

. . .
. . . try to turn environment into audit

F our issue
(“computer” ≈ instrument and “computation” ≈ measurement

computationnal env. ↔ experimental setup

)

Open Science Days@UGA Toward reproducible research using Guix 3 / 24

Redo (reproduce or replicate) a result?

audit opaque depend?

result ←− paper + data + analysis

data ←− protocol + instrument + materials
F analysis ←− script + data + environment

environment

I audit is the “tractable” part
I opaque is generally the hard part
I how to eliminate depend? from the equations

. . .
. . . try to turn environment into audit

F our issue

(“computer” ≈ instrument and “computation” ≈ measurement
computationnal env. ↔ experimental setup

)

Open Science Days@UGA Toward reproducible research using Guix 3 / 24

Redo (reproduce or replicate) a result?

audit opaque depend?

result ←− paper + data + analysis

data ←− protocol + instrument + materials
F analysis ←− script + data + environment

I audit is the “tractable” part
I opaque is generally the hard part
I how to eliminate depend? from the equations

. . .
. . . try to turn environment into audit

F our issue
(“computer” ≈ instrument and “computation” ≈ measurement

computationnal env. ↔ experimental setup

)
Open Science Days@UGA Toward reproducible research using Guix 3 / 24

Redo (reproduce or replicate) a result?

audit opaque depend?

result ←− paper + data + analysis

data ←− protocol + instrument + materials
F analysis ←− script + data + environment

I audit is the “tractable” part
I opaque is generally the hard part
I how to eliminate depend? from the equations. . .

. . . try to turn environment into audit

F our issue
(“computer” ≈ instrument and “computation” ≈ measurement

computationnal env. ↔ experimental setup

)
Open Science Days@UGA Toward reproducible research using Guix 3 / 24

Challenges about reproducible research in science

From the “scientific method” viewpoint:
controlling the source of variations

⇒ transparent as with instrument ≈ computer

From the “scientific knowledge” viewpoint: (universal?)
I Independent observer must be able to observe the same result.
I The observation must be sustainable (to some extent).
⇒ collective

In a world where (almost) all is data

how to redo later and elsewhere what has been done here and today?

(implicitly using a “computer”)

Open Science Days@UGA Toward reproducible research using Guix 4 / 24

Challenges about reproducible research in science

From the “scientific method” viewpoint:
controlling the source of variations

⇒ transparent as with instrument ≈ computer

From the “scientific knowledge” viewpoint: (universal?)
I Independent observer must be able to observe the same result.
I The observation must be sustainable (to some extent).
⇒ collective

In a world where (almost) all is data

how to redo later and elsewhere what has been done here and today?

(implicitly using a “computer”)

Open Science Days@UGA Toward reproducible research using Guix 4 / 24

In concrete terms (1/2)

Bessel function J0 in the C programming language

#i n c l u d e <s t d i o . h>
#i n c l u d e <math . h>

i n t main (){
p r i n t f ("%E\n" , j 0 f (0 x1 .33 d152p+1f)) ;

}

Alice sees: 5.643440E-08
Blake sees: 5.963430E-08

Why? In spite of everything being available (“open”).

Determining whether the difference is significant or not is left to experts of each scientific domain.

Open Science Days@UGA Toward reproducible research using Guix 5 / 24

In concrete terms (1/2)

Bessel function J0 in the C programming language

#i n c l u d e <s t d i o . h>
#i n c l u d e <math . h>

i n t main (){
p r i n t f ("%E\n" , j 0 f (0 x1 .33 d152p+1f)) ;

}

Alice sees: 5.643440E-08
Blake sees: 5.963430E-08

Why? In spite of everything being available (“open”).

Determining whether the difference is significant or not is left to experts of each scientific domain.
Open Science Days@UGA Toward reproducible research using Guix 5 / 24

In concrete terms (1/2)

Bessel function J0 in the C programming language

#i n c l u d e <s t d i o . h>
#i n c l u d e <math . h>

i n t main (){
p r i n t f ("%E\n" , j 0 f (0 x1 .33 d152p+1f)) ;

}

Alice sees: 5.643440E-08
Blake sees: 5.963430E-08

Why? In spite of everything being available (“open”).

Determining whether the difference is significant or not is left to experts of each scientific domain.
Open Science Days@UGA Toward reproducible research using Guix 5 / 24

In concrete terms (2/2)

Alice and Blake both run “GCC at version 11.2.0”

still different∗

alice@laptop$

gcc bessel.c && ./a.out

5.643440E-08
blake@desktop$

gcc bessel.c -lm -fno-builtin && ./a.out

5.963430E-08

(due to constant folding∗∗)

Alice and Blake are running two different computationnal environments

We need more than a version number.
∗Not an issue with floating-point computations

∗∗C language is an example, similar issues occur in Python, R, Perl, etc.

Open Science Days@UGA Toward reproducible research using Guix 6 / 24

In concrete terms (2/2)

Alice and Blake both run “GCC at version 11.2.0”

still different∗

alice@laptop$

gcc bessel.c && ./a.out

5.643440E-08
blake@desktop$

gcc bessel.c -lm -fno-builtin && ./a.out

5.963430E-08

(due to constant folding∗∗)

Alice and Blake are running two different computationnal environments

We need more than a version number.

∗Not an issue with floating-point computations

∗∗C language is an example, similar issues occur in Python, R, Perl, etc.

Open Science Days@UGA Toward reproducible research using Guix 6 / 24

In concrete terms (2/2)

Alice and Blake both run “GCC at version 11.2.0”

still different∗

alice@laptop$ gcc bessel.c && ./a.out
5.643440E-08

blake@desktop$ gcc bessel.c -lm -fno-builtin && ./a.out
5.963430E-08

(due to constant folding∗∗)

Alice and Blake are running two different computationnal environments

We need more than a version number.

∗Not an issue with floating-point computations
∗∗C language is an example, similar issues occur in Python, R, Perl, etc.

Open Science Days@UGA Toward reproducible research using Guix 6 / 24

In concrete terms (2/2)

Alice and Blake both run “GCC at version 11.2.0”

still different∗

alice@laptop$ gcc bessel.c && ./a.out
5.643440E-08

blake@desktop$ gcc bessel.c -lm -fno-builtin && ./a.out
5.963430E-08

(due to constant folding∗∗)

Alice and Blake are running two different computationnal environments

We need more than a version number.

∗Not an issue with floating-point computations
∗∗C language is an example, similar issues occur in Python, R, Perl, etc.

Open Science Days@UGA Toward reproducible research using Guix 6 / 24

In concrete terms (2/2)

Alice and Blake both run “GCC at version 11.2.0”

still different∗

alice@laptop$ gcc bessel.c && ./a.out
5.643440E-08

blake@desktop$ gcc bessel.c -lm -fno-builtin && ./a.out
5.963430E-08

(due to constant folding∗∗)

Alice and Blake are running two different computationnal environments

We need more than a version number.
∗Not an issue with floating-point computations

∗∗C language is an example, similar issues occur in Python, R, Perl, etc.
Open Science Days@UGA Toward reproducible research using Guix 6 / 24

Questions about a computational environment

I What is source code?
I What are the tools required for building?
I What are the tools required at run time?
I And recursively for each tool. . .

Answering these questions enables control over sources of variations.

How to capture the answer to these questions?

Usually: package manager (Conda, APT, Brew, . . .); Modulefiles; container; etc.

Open Science Days@UGA Toward reproducible research using Guix 7 / 24

Questions about a computational environment

I What is source code?
I What are the tools required for building?
I What are the tools required at run time?
I And recursively for each tool. . .

Answering these questions enables control over sources of variations.

How to capture the answer to these questions?

Usually: package manager (Conda, APT, Brew, . . .); Modulefiles; container; etc.

Open Science Days@UGA Toward reproducible research using Guix 7 / 24

Questions about a computational environment

I What is source code?
I What are the tools required for building?
I What are the tools required at run time?
I And recursively for each tool. . .

Answering these questions enables control over sources of variations.

How to capture the answer to these questions?

Usually: package manager (Conda, APT, Brew, . . .); Modulefiles; container; etc.

Open Science Days@UGA Toward reproducible research using Guix 7 / 24

Solution(s)

1 package manager: APT (Debian/Ubuntu), YUM (RedHat), etc.
2 environment manager: Conda, Pip, Modulefiles, etc.
3 container: Docker, Singularity

Guix = #1 + #2 + #3

APT, Yum Hard to have several versions or rollback?
Pip/Conda Transparency?

who knows what’s inside PyTorch with pip install torch? (link)

Modulefiles How are they maintained? (who uses them on their laptop?)
Docker Dockerfile based sur APT, YUM, etc.

RUN apt-get update && apt-get install

Open Science Days@UGA Toward reproducible research using Guix 8 / 24

http://hpc.guix.info/blog/2021/09/whats-in-a-package/

Solution(s)

1 package manager: APT (Debian/Ubuntu), YUM (RedHat), etc.
2 environment manager: Conda, Pip, Modulefiles, etc.
3 container: Docker, Singularity

Guix = #1 + #2 + #3

APT, Yum Hard to have several versions or rollback?
Pip/Conda Transparency?

who knows what’s inside PyTorch with pip install torch? (link)

Modulefiles How are they maintained? (who uses them on their laptop?)
Docker Dockerfile based sur APT, YUM, etc.

RUN apt-get update && apt-get install

Open Science Days@UGA Toward reproducible research using Guix 8 / 24

http://hpc.guix.info/blog/2021/09/whats-in-a-package/

Guix: computational environment manager on steroids
a package manager (as APT, Yum, etc.)
transactional and declarative (rollback, concurrent versions)
which produces shareable packs (Docker or Singularity container)
which produces isolated virtual machines (à la Ansible or Packer)
used to build a whole Linux distribution (better than other? :-))
. . . and also a Scheme library. . . (extensibility!)

2 hours. . .
. . . is a quick summary calling for your own experimentation (maybe?)

(this talk is an afternoon snack)

Guix runs on top of a Linux distribution, or standalone.

Easy to try

Open Science Days@UGA Toward reproducible research using Guix 9 / 24

Guix: computational environment manager on steroids
a package manager (as APT, Yum, etc.)
transactional and declarative (rollback, concurrent versions)
which produces shareable packs (Docker or Singularity container)
which produces isolated virtual machines (à la Ansible or Packer)
used to build a whole Linux distribution (better than other? :-))
. . . and also a Scheme library. . . (extensibility!)

2 hours. . .
. . . is a quick summary calling for your own experimentation (maybe?)

(this talk is an afternoon snack)

Guix runs on top of a Linux distribution, or standalone.

Easy to try

Open Science Days@UGA Toward reproducible research using Guix 9 / 24

Guix: computational environment manager on steroids
a package manager (as APT, Yum, etc.)
transactional and declarative (rollback, concurrent versions)
///////which////////////produces///////////////////shareable packs /////////(Docker///or//////////////Singularity/////////////container)
///////which///////////produces//////////////////////////////////isolated virtual machines /////(à la/////////Ansible////or//////////Packer)
/////used////to///////build//a////////whole///////Linux//////////////distribution /////////(better//////than/////////////other? :-))
////////. . . and//////also//a//////////Scheme////////////library. . . /////////////////(extensibility!)

2 hours. . .
. . . is a quick summary calling for your own experimentation (maybe?)

(this talk is an afternoon snack)

Guix runs on top of a Linux distribution, or standalone.

Easy to try

Open Science Days@UGA Toward reproducible research using Guix 9 / 24

Install on foreign distro

Guix runs on any recent Linux distribution

Superuser privileges (root) is only required for installing.

$ cd /tmp
$ wget https://git.savannah.gnu.org/cgit/guix.git/plain/etc/guix-install.sh
$ chmod +x guix-install.sh
$ sudo ./guix-install.sh

(More some minor adjustments, see the manual)

Getting started:

$ guix help

Open Science Days@UGA Toward reproducible research using Guix 10 / 24

Let talk about

I Deployment of scientific software using Guix
I Reproducible from one machine to the other? About time?

1 Introduction

2 Package management
Basics

3 Reproducing a computational environment

4 Summary

Open Science Days@UGA Toward reproducible research using Guix 11 / 24

Guix, yet another package manager!

(Julia is one example, idem for any other)

guix search high-performance dynamic language # 1.
guix show julia # 2.
guix install julia # 3.
guix install julia-pyplot julia-dataframes # 4.
guix remove julia-pyplot # 5.
guix install julia-csv julia-zygote # 6.

alias of guix package, e.g. guix package --install

Transactional
guix package -r julia-pyplot -i julia-csv julia-zygote # 5. & 6.
guix package --roll-back # 4. -> 3.

Open Science Days@UGA Toward reproducible research using Guix 12 / 24

Guix, really yet another package manager?

I Command line interface as many other package managers
I Package install/remove without any special privilege
I Transactional (= no « broken » state)

I Binary substitutes (= fetch pre-compiled components)

I Declarative management
I Isolated environment on-the-fly

The profiles allow to install several versions.
(profile ≈ “environment à la virtualenv”)

Open Science Days@UGA Toward reproducible research using Guix 13 / 24

Declarative approach (1/2) guix shell julia julia-dataframes --export-manifest

declarative = configuration file

The file manifest.scm could contain this declaration:

(specifications->manifest
(list
"julia"
"julia-dataframes"))

guix package --manifest=manifest.scm

equivalent to

guix install julia julia-dataframes

Open Science Days@UGA Toward reproducible research using Guix 14 / 24

Declarative approach (2/2)

Version? We will see later

Language? Domain-Specific Language (DSL) based on Scheme (link)

(a Lisp & a functional language (link))

I (Yes (when (= Lisp parentheses) (baroque)))

I But continuum :
1 configuration (manifest)
2 package definition (or services)
3 extension
4 the core of Guix is Scheme too

Guix is flexible.

Declarative vs Imperative (links) (and not passive Data vs active Program)

Declarative programming = functional (OCaml) or dataflow (Lustre) or logic (Prolog) programming

Open Science Days@UGA Toward reproducible research using Guix 15 / 24

https://fr.wikipedia.org/wiki/Scheme
https://fr.wikipedia.org/wiki/Lisp
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Imperative_programming

Declarative approach (2/2)

Version? We will see later

Language? Domain-Specific Language (DSL) based on Scheme (link)

(a Lisp & a functional language (link))

I (Yes (when (= Lisp parentheses) (baroque)))

I But continuum :
1 configuration (manifest)
2 package definition (or services)
3 extension
4 the core of Guix is Scheme too

Guix is flexible.

Declarative vs Imperative (links) (and not passive Data vs active Program)

Declarative programming = functional (OCaml) or dataflow (Lustre) or logic (Prolog) programming

Open Science Days@UGA Toward reproducible research using Guix 15 / 24

https://fr.wikipedia.org/wiki/Scheme
https://fr.wikipedia.org/wiki/Lisp
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Imperative_programming

Declarative approach (2/2)

Version? We will see later

Language? Domain-Specific Language (DSL) based on Scheme (link)

(a Lisp & a functional language (link))

I (Yes (when (= Lisp parentheses) (baroque)))

I But continuum :
1 configuration (manifest)
2 package definition (or services)
3 extension
4 the core of Guix is Scheme too

Guix is flexible.

Declarative vs Imperative (links) (and not passive Data vs active Program)

Declarative programming = functional (OCaml) or dataflow (Lustre) or logic (Prolog) programming

Open Science Days@UGA Toward reproducible research using Guix 15 / 24

https://fr.wikipedia.org/wiki/Scheme
https://fr.wikipedia.org/wiki/Lisp
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Imperative_programming

Interesting features, but what makes it reproducible?

We need to talk about versions!

Example: Alice and Blake are collaborating

When Alice says “GCC at version 11.2.0” guix graph

Is it the same “version” of GCC if mpfr is replaced by version 4.0?

complete graph: 43 ou 104 ou 125 ou 218 nodes
(depending what we consider as binary seed for bootstrapping)

Open Science Days@UGA Toward reproducible research using Guix 16 / 24

What is my version of Guix? guix describe = state

$ guix describe
Generation 76 Apr 25 2022 12:44:37 (current)

guix eb34ff1
repository URL: https://git.savannah.gnu.org/git/guix.git
branch: master
commit: eb34ff16cc9038880e87e1a58a93331fca37ad92

$ guix --version
guix (GNU Guix) eb34ff16cc9038880e87e1a58a93331fca37ad92

one state pins the complete collection of packages and Guix itself

A state can refer to several channels (= Git repository), pointing to URL, branches or commits different
A channel contains a list of recipes (code source, how to build the packages, etc.)

Open Science Days@UGA Toward reproducible research using Guix 17 / 24

What is my version of Guix? guix describe = state

$ guix describe
Generation 76 Apr 25 2022 12:44:37 (current)

guix eb34ff1
repository URL: https://git.savannah.gnu.org/git/guix.git
branch: master
commit: eb34ff16cc9038880e87e1a58a93331fca37ad92

$ guix --version
guix (GNU Guix) eb34ff16cc9038880e87e1a58a93331fca37ad92

one state pins the complete collection of packages and Guix itself

A state can refer to several channels (= Git repository), pointing to URL, branches or commits different
A channel contains a list of recipes (code source, how to build the packages, etc.)

Open Science Days@UGA Toward reproducible research using Guix 17 / 24

State = Directed Acyclic Graph(DAG)

Each node specifies a recipe defining:

I code source and potentially some ad-hoc modifications (patch)
I build-time tools compilers, build automation, configuration flags etc.
I dependencies other packages (→recursive graph)

Complete graph : Python = 137 nodes, Numpy = 189, Matplotlib = 915, Scipy = 1439 nodes
Open Science Days@UGA Toward reproducible research using Guix 18 / 24

Revision = one specific graph

“GCC at version 11.2.0” = one fixed graph

$ guix describe
Generation 76 Apr 25 2022 12:44:37 (current)

guix eb34ff1
repository URL: https://git.savannah.gnu.org/git/guix.git
branch: master
commit: eb34ff16cc9038880e87e1a58a93331fca37ad92

this revision eb34ff1 captures the complete graph

I Alice says “I used Guix at revision eb34ff1”
I Blake knows all for reproducing the same environment

Open Science Days@UGA Toward reproducible research using Guix 19 / 24

Collaboration in action

package manager ↔ state ↔ graph manager

collaborate = share one computational environment

⇒ share one specific graph

Alice describes her environment :
I the list of the tools using the file manifest.scm

I the revision (Guix itself and potentially all the other channels):
guix describe -f channels > state-alice.scm

spawns her environment e.g.,
guix shell -m manifest.scm

then shares these two files: state-alice.scm and manifest.scm.
Blake spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

Carole can also reproduced the same environment as Alice and Blake.

Open Science Days@UGA Toward reproducible research using Guix 20 / 24

Collaboration in action package manager ↔ state

↔ graph manager

collaborate = share one computational environment

⇒ share one specific graph

Alice describes her environment :
I the list of the tools using the file manifest.scm
I the revision (Guix itself and potentially all the other channels):

guix describe -f channels > state-alice.scm
spawns her environment e.g.,

guix shell -m manifest.scm

then shares these two files: state-alice.scm and manifest.scm.
Blake spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

Carole can also reproduced the same environment as Alice and Blake.

Open Science Days@UGA Toward reproducible research using Guix 20 / 24

Collaboration in action package manager ↔ state

↔ graph manager

collaborate = share one computational environment

⇒ share one specific graph

Alice describes her environment :
I the list of the tools using the file manifest.scm
I the revision (Guix itself and potentially all the other channels):

guix describe -f channels > state-alice.scm
spawns her environment e.g.,

guix shell -m manifest.scm

then shares these two files: state-alice.scm and manifest.scm.
Blake spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

Carole can also reproduced the same environment as Alice and Blake.

Open Science Days@UGA Toward reproducible research using Guix 20 / 24

Collaboration in action package manager ↔ state ↔ graph manager

collaborate = share one computational environment ⇒ share one specific graph

Alice describes her environment :
I the list of the tools using the file manifest.scm
I the revision (Guix itself and potentially all the other channels):

guix describe -f channels > state-alice.scm
spawns her environment e.g.,

guix shell -m manifest.scm

then shares these two files: state-alice.scm and manifest.scm.
Blake spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

Carole can also reproduced the same environment as Alice and Blake.

Open Science Days@UGA Toward reproducible research using Guix 20 / 24

Collaboration in action package manager ↔ state ↔ graph manager

collaborate = share one computational environment ⇒ share one specific graph

Alice describes her environment :
I the list of the tools using the file manifest.scm
I the revision (Guix itself and potentially all the other channels):

guix describe -f channels > state-alice.scm
spawns her environment e.g.,

guix shell -m manifest.scm

then shares these two files: state-alice.scm and manifest.scm.

Blake spawns the same computational environment from these two files
guix time-machine -C state-alice.scm -- shell -m manifest.scm

Carole can also reproduced the same environment as Alice and Blake.

Open Science Days@UGA Toward reproducible research using Guix 20 / 24

Collaboration in action package manager ↔ state ↔ graph manager

collaborate = share one computational environment ⇒ share one specific graph

Alice describes her environment :

I the list of the tools using the file manifest.scm
I the revision (Guix itself and potentially all the other channels):

guix describe -f channels > state-alice.scm
spawns her environment e.g.,

guix shell -m manifest.scm

then shares these two files: state-alice.scm and manifest.scm.
Blake spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

Carole can also reproduced the same environment as Alice and Blake.

Open Science Days@UGA Toward reproducible research using Guix 20 / 24

Collaboration in action package manager ↔ state ↔ graph manager

collaborate = share one computational environment ⇒ share one specific graph

Alice describes her environment :

I the list of the tools using the file manifest.scm
I the revision (Guix itself and potentially all the other channels):

guix describe -f channels > state-alice.scm
spawns her environment e.g.,

guix shell -m manifest.scm

then shares these two files: state-alice.scm and manifest.scm.
Blake spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

Carole can also reproduced the same environment as Alice and Blake.

Open Science Days@UGA Toward reproducible research using Guix 20 / 24

Reproducible = jump to different states guix time-machine

time2018 Carole Alice Blake

d7e57e eb34ff1 3682bd

Dan

c99c3d

Requirements for being reproducible with the passing of time using Guix:
I Preservation of the all source code (≈ 75% archived (link) in Software Heritage (link))

I Backward compatibility of the Linux kernel
I Compatibility of hardware (to some extent)

What is the size of this temporal window where these 3 conditions are satisfied?

To my knowledge, the Guix project is quasi-unique by experimenting since v1.0 in 2019.
Open Science Days@UGA Toward reproducible research using Guix 21 / 24

https://ngyro.com/pog-reports/latest/
https://www.softwareheritage.org/

Before practicing

discussion about the current limitations1 is welcome :-)

1usual question: what if my need is not in the 20k+ packages or in specialized channels?

Guix: computational environment manager on steroids

a declarative package manager guix package (-m manifest)
temporarily extended guix shell (--container)
controlling exactly the state guix time-machine (-C channels)

+ guix describe

Guix precisely controls the complete implicit graph of configurations

guix time-machine -C channels.scm -- command options manifest.scm

manifest.scm is reproducible at the exact same channels.scm

Reproducible from one machine to another with the passing of time

Open Science Days@UGA Toward reproducible research using Guix 22 / 24

Finalizing

the message you should get back to home

How to redo later and elsewhere what has been done here and today?

Open Science

Traceability and transparency

being able, collectively, to study bug-to-bug

Guix should manage everything about the environment

guix time-machine -C channels.scm -- shell -m manifest.scm

if it is specified

“how to build” channels.scm

“what to build” manifest.scm

Open Science Days@UGA Toward reproducible research using Guix 23 / 24

The vision

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Questions?

guix-science@gnu.org

dedicated Mattermost (chat) (link)

https://hpc.guix.info/events/2022/café-guix/

These slides are archived.
(Software Heritage id swh:1:dir:xx)

https://mattermost.univ-nantes.fr/signup_user_complete/?id=njdxbdazafddtq6wsm6cgrr95r
https://hpc.guix.info/events/2022/caf�-guix/
https://archive.softwareheritage.org/swh:1:dir:1b08e6efba8fdee46e32c75b57ce7f95c43da558;origin=https://gitlab.com/zimoun/ens-memolife-seminar;visit=swh:1:snp:ae4d101ab3680129dc980b0eb11226047ab948dc;anchor=swh:1:rev:b36b41a399a4233aafa165d988bda1df3057f786

Appendix

More about

I Extended environment, isolated
I What a package looks like
I What the file capturing the state looks like
I What allows the declarative approach
I Package transformation
I What is the issue about container and how guix pack helps

Temporary profile (1/2)

project-tools.scm

(specifications->manifest
(list
"python"
"python-matplotlib"
"python-numpy"
"python-scipy"))

I Alice would like to quickly jump to a productive environment
I Blake prefers IPython as interpreter

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Temporary profile (2/2) guix shell

guix shell -m project-tools.scm # Alice
guix shell -m project-tools.scm python-ipython -- ipython3 # Blake

I --pure : clear environment variable definitions (from the parent environment)
I --container : spawn isolated container (from the rest of the system)

I --development : include dependencies of the package

guix shell -m project-tools.scm python-ipython # 1.
guix shell -m project-tools.scm python-ipython --pure # 2.
guix shell -m project-tools.scm python-ipython --container # 3.

Bonus: guix shell emacs git git:send-email --development guix

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Temporary profile (2/2) guix shell

guix shell -m project-tools.scm # Alice
guix shell -m project-tools.scm python-ipython -- ipython3 # Blake

I --pure : clear environment variable definitions (from the parent environment)
I --container : spawn isolated container (from the rest of the system)

I --development : include dependencies of the package

guix shell -m project-tools.scm python-ipython # 1.
guix shell -m project-tools.scm python-ipython --pure # 2.
guix shell -m project-tools.scm python-ipython --container # 3.

Bonus: guix shell emacs git git:send-email --development guix

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Temporary profile (2/2) guix shell

guix shell -m project-tools.scm # Alice
guix shell -m project-tools.scm python-ipython -- ipython3 # Blake

I --pure : clear environment variable definitions (from the parent environment)
I --container : spawn isolated container (from the rest of the system)

I --development : include dependencies of the package

guix shell -m project-tools.scm python-ipython # 1.
guix shell -m project-tools.scm python-ipython --pure # 2.
guix shell -m project-tools.scm python-ipython --container # 3.

Bonus: guix shell emacs git git:send-email --development guix

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Temporary profile (2/2) guix shell

guix shell -m project-tools.scm # Alice
guix shell -m project-tools.scm python-ipython -- ipython3 # Blake

I --pure : clear environment variable definitions (from the parent environment)
I --container : spawn isolated container (from the rest of the system)
I --development : include dependencies of the package

guix shell -m project-tools.scm python-ipython # 1.
guix shell -m project-tools.scm python-ipython --pure # 2.
guix shell -m project-tools.scm python-ipython --container # 3.

Bonus: guix shell emacs git git:send-email --development guix

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Recipe for defining a package one node of the graph

(define python
(package

(name "python")
(version "3.9.9")
(source ...) ;points to URL source code
(build-system gnu-build-system) ;./ configure & make
(arguments ...) ; configure flags, etc.
(inputs (list bzip2 expat gdbm libffi sqlite

openssl readline zlib tcl tk))))

Note the terminology (inputs, arguments) as in mathematical function definition

I Each inputs is similarly defined (recursion → graph)
I There is no cycle (bzip2 or its inputs cannot refer to python)

What are the root of the graph? Part of the broad bootstrapping (link) problem
Open Science Days@UGA Toward reproducible research using Guix 24 / 24

https://en.wikipedia.org/wiki/Bootstrapping_(compilers)

Example state-alice.scm guix describe -f channels-sans-intro

(list (channel
(name ’guix)
(url "https: //git.savannah.gnu.org/git/guix.git")
(branch "master")
(commit "00 ff6f7c399670a76efffb91276dea2633cc130c"))

(channel
(name ’guix-cran)
(url "https: // github.com/guix-science/guix-cran")
(branch "master")
(commit "ab70c9b745a0d60a40ab1ce08024e1ebca8f61b9"))

(channel
(name ’my-team)
(url "https: // my-forge.my-institute.xyz/my-custom-channel")
(branch "main")
(commit "ab70c9b745a0d60a40ab1ce08024e1ebca8f61b9")))

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Declarative approach: example of transformation (3/2)
Rube Goldberg machine :-)

(link)

(define python "python")

(specifications->manifest
(append
(list python)
(map (lambda (pkg)

(string-append python "-" pkg))
(list
"matplotlib"
"numpy"
"scipy"))))

(specifications->manifest
(list
"python"
"python-matplotlib"
"python-numpy"
"python-scipy"))

Guix DSL, variables, Scheme et chaîne de caractères.
Open Science Days@UGA Toward reproducible research using Guix 24 / 24

https://en.wikipedia.org/wiki/Rube_Goldberg_machine

Declarative approach: example of transformation (3/2)
Rube Goldberg machine :-)

(link)

(define python "python")

(specifications->manifest
(append
(list python)
(map (lambda (pkg)

(string-append python "-" pkg))
(list
"matplotlib"
"numpy"
"scipy"))))

(specifications->manifest
(list
"python"
"python-matplotlib"
"python-numpy"
"python-scipy"))

Guix DSL, variables, Scheme et chaîne de caractères.
Open Science Days@UGA Toward reproducible research using Guix 24 / 24

https://en.wikipedia.org/wiki/Rube_Goldberg_machine

Package transformation (1/3)

How to build the package python with the compiler GCC@7?

package = recipe for configuring, building and installing a software

(./configure && make && make install)

The recipe defines:
I code source and potentially some ad-hoc modifications (patch)

I build-time tools (compilers, build automation, etc., e.g. gcc, cmake)

I dependencies (= other packages)

package transformation allows to rewrite them

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Package transformation (1/3)

How to build the package python with the compiler GCC@7?

package = recipe for configuring, building and installing a software

(./configure && make && make install)

The recipe defines:
I code source and potentially some ad-hoc modifications (patch)

I build-time tools (compilers, build automation, etc., e.g. gcc, cmake)

I dependencies (= other packages)

package transformation allows to rewrite them

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Package transformation (1/3)

How to build the package python with the compiler GCC@7?

package = recipe for configuring, building and installing a software

(./configure && make && make install)

The recipe defines:
I code source and potentially some ad-hoc modifications (patch)

I build-time tools (compilers, build automation, etc., e.g. gcc, cmake)

I dependencies (= other packages)

package transformation allows to rewrite them

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Package transformation (2/3)

guix package --help-transformations

--with-source use SOURCE when building the corresponding package
--with-branch build PACKAGE from the latest commit of BRANCH
--with-commit build PACKAGE from COMMIT
--with-git-url build PACKAGE from the repository at URL
--with-patch add FILE to the list of patches of PACKAGE
--with-latest use the latest upstream release of PACKAGE
--with-c-toolchain build PACKAGE and its dependents with TOOLCHAIN
--with-debug-info build PACKAGE and preserve its debug info
--without-tests build PACKAGE without running its tests
--with-input replace dependency PACKAGE by REPLACEMENT
--with-graft graft REPLACEMENT on packages that refer to PACKAGE

also available using manifest file

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Package transformation (3/3) using manifest file

(use-modules (guix transformations))

(define transform
(options->transformation
’((with-c-toolchain . "python=gcc-toolchain@7"))))

(packages->manifest
(map (compose transform specification->package)

(list
"python"
"python-matplotlib"
"python-numpy"
"python-scipy")))

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Wait, now we would like to build and share isolated containers.

How to create a container?

Example: Alice wants to share a Docker image

How to capture an environment for sharing? with a container, right?

Container = smoothie :-)

I How to build the container? Dockerfile?
I How the binaries included inside the container are they built?

FROM amd64/debian:stretch
RUN apt-get update && apt-get install git make curl gcc g++ ...
RUN curl -L -O https://... && ... && make -j 4 && ...
RUN git clone https://... && ... && make ... /usr/local/lib/libopenblas.a ...

(seen for nightly automation; maybe used in production?)

Considering one Dockerfile at time t, how to rebuild the image at time t’?

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

How to capture an environment for sharing? with a container, right?

Container = smoothie :-)

I How to build the container? Dockerfile?
I How the binaries included inside the container are they built?

FROM amd64/debian:stretch
RUN apt-get update && apt-get install git make curl gcc g++ ...
RUN curl -L -O https://... && ... && make -j 4 && ...
RUN git clone https://... && ... && make ... /usr/local/lib/libopenblas.a ...

(seen for nightly automation; maybe used in production?)

Considering one Dockerfile at time t, how to rebuild the image at time t’?

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

What is a pack ? again a container, right?

pack = collection of packages stored in one archive format

What is the aim of a pack?
I Alice provides « everything » to Blake,
I Blake does not have Guix but will run the exact same environment.

What does it mean an archive format?
I tar (tarballs)
I Docker
I Singularity
I Debian binary package .deb

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

What is a pack ? again a container, right?

pack = collection of packages stored in one archive format

What is the aim of a pack?
I Alice provides « everything » to Blake,
I Blake does not have Guix but will run the exact same environment.

What does it mean an archive format?
I tar (tarballs)
I Docker
I Singularity
I Debian binary package .deb

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

What does it mean « everything »?

Blake needs transitive closure (= all the dependencies)

$ guix size python-numpy --sort=closure
store item total self
python-numpy-1.20.3 301.5 23.6 7.8%
...
python-3.9.9 155.3 63.7 21.1%
openblas-0.3.18 152.8 40.0 13.3%
...
total: 301.5 MiB

guix pack builds this archive containing « everything »

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Building a pack for sharing guix pack -f docker

I Alice builds a pack using the format Docker

guix pack --format=docker -m project-tools.scm

then shares this Docker container (using some registry or else).

I Blake does not run (yet?) Guix

$ docker run -ti projet-alice python3
Python 3.9.9 (main, Jan 1 1970, 00:00:01)
[GCC 10.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

and is running the exact same computational environment as Alice.

How to rebuild the exact same Docker pack using Guix on 2 machines at 2 different moments (link)

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

https://hpc.guix.info/blog/2021/10/when-docker-images-become-fixed-point/

Building a pack for sharing guix pack -f docker

I Alice builds a pack using the format Docker

guix pack --format=docker -m project-tools.scm

then shares this Docker container (using some registry or else).
I Blake does not run (yet?) Guix

$ docker run -ti projet-alice python3
Python 3.9.9 (main, Jan 1 1970, 00:00:01)
[GCC 10.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

and is running the exact same computational environment as Alice.

How to rebuild the exact same Docker pack using Guix on 2 machines at 2 different moments (link)

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

https://hpc.guix.info/blog/2021/10/when-docker-images-become-fixed-point/

Building a pack for sharing guix pack -f docker

I Alice builds a pack using the format Docker

guix pack --format=docker -m project-tools.scm

then shares this Docker container (using some registry or else).
I Blake does not run (yet?) Guix

$ docker run -ti projet-alice python3
Python 3.9.9 (main, Jan 1 1970, 00:00:01)
[GCC 10.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

and is running the exact same computational environment as Alice.

How to rebuild the exact same Docker pack using Guix on 2 machines at 2 different moments (link)

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

https://hpc.guix.info/blog/2021/10/when-docker-images-become-fixed-point/

Summary, guix pack is

Agnostic concerning the « container » format

I tar (tarballs)
I Docker
I Singularity
I Debian binary package .deb

I relocatable binaries
I without Dockerfile
I using squashfs
I without debian/rule (experimental)

Flexible to contexts

the key point is the full control of binaries going inside the container

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

Running in production https://10years.guix.gnu.org/

Grid’5000 828-nodes (12,000+ cores, 31 clusters) (France)
GliCID (CCIPL) Nantes 392-nodes (7500+ cores) (France)
PlaFrIM Inria Bordeaux 120-nodes (3000+ cores) (France)
GriCAD Grenoble 72-nodes (1000+ cores) (France)
Max Delbrück Center Berlin 250-nodes + workstations (Allemagne)
UMC Utrecht 68-nodes (1000+ cores) (Pays-Bas)
UTHSC Pangenome 11-nodes (264 cores) (USA)

(yours?)

more all laptops and desktops

https://hpc.guix.info
Toward practical transparent verifiable and long-term reproducible research

using Guix (link)

Open Science Days@UGA Toward reproducible research using Guix 24 / 24

https://10years.guix.gnu.org/
https://hpc.guix.info/
https://doi.org/10.1038/s41597-022-01720-9
https://doi.org/10.1038/s41597-022-01720-9

	Introduction
	Package management
	Reproducing a computational environment
	Summary
	Appendix

