
Kadeploy 3: Installation, con�guration and use

June 28, 2021

1

Copyright c©by Inria, 2008-2021
KADEPLOY 3.6.0.rc3 , CECILL 2.0 license, All rights reserved.

Contents

0 Overview 5
0.1 What is it? . 5
0.2 How it works? . 5
0.3 How does Kadeploy control the boot of the nodes ? 5

1 Installation 7
1.1 Requirements . 7

1.1.1 Packages . 7
1.1.2 DHCP and TFTP . 7
1.1.3 HTTP server (optional) . 9
1.1.4 MySQL . 9
1.1.5 TakTuk . 9

1.2 Kadeploy installation . 10
1.2.1 Installation with Rake . 10
1.2.2 Build packages . 10
1.2.3 RedHat packages . 11

1.3 Launching the Kadeploy server . 12
1.3.1 Automatic launch on a Debian and a RedHat based distribution 12

2 Server side con�guration 13
2.1 General con�guration �le . 15

2.1.1 Example of a general con�guration �le . 15
2.1.2 Explanation of the �elds used in the general con�guration �le 18

2.2 Booting over the network . 24
2.3 Clusters �le . 25

2.3.1 Example of a clusters �le
. 26

2.3.2 Explanation of the �elds used in the clusters �le
. 26

2.4 Cluster-speci�c con�guration �les . 26
2.4.1 Example of a cluster-speci�c con�guration �le 27
2.4.2 Explanation of the �elds used in the cluster-speci�c con�guration �le 30

2.5 Bootloader install script . 39
2.6 Partitioning script . 40

2

CONTENTS 3

2.7 Formating script . 40
2.8 Speci�c commands con�guration �les . 40

2.8.1 Example of a commands �le
. 40

2.8.2 Explanation of the �elds used in the commands �le
. 40

2.9 Deployment environment . 41
2.9.1 Con�guration of the production environment 41
2.9.2 Creation of the dedicated environment . 41
2.9.3 Creation of the NFSRoot environment . 42

2.10 Con�guration of the deploy user . 43
2.11 Con�guration of SSH-agent . 43

3 Client side con�guration 44

4 User guide 46
4.1 Overview of the Kadeploy tools . 46

4.1.1 Kadeploy . 46
4.1.2 Kareboot . 46
4.1.3 Kaenv . 46
4.1.4 Kaconsole . 46
4.1.5 Kastat . 46
4.1.6 Kanodes . 46
4.1.7 Kapower . 46
4.1.8 Karights . 47

4.2 Use the Kadeploy tools . 47
4.2.1 Kadeploy server . 47
4.2.2 Kadeploy client . 47
4.2.3 Kareboot . 52
4.2.4 Kaenv . 53
4.2.5 Kaconsole . 57
4.2.6 Kastat . 58
4.2.7 Kanodes . 59
4.2.8 Kapower . 60
4.2.9 Karights . 60

4.3 What you should know if you want to do kernel development on deployed nodes . . 61
4.3.1 Kadeploy 3 behavior . 61
4.3.2 Tips to simply use your new kernel . 62

4.4 Extra . 63
4.4.1 Kadeploy3 Environment variables . 63
4.4.2 Specifying �les to the server . 64
4.4.3 Build a custom pre-install . 64
4.4.4 Do a custom partitioning . 65
4.4.5 Fsarchiver environements . 66

CONTENTS 4

About this document

This is the Kadeploy 3.6.0.rc3 documentation �le.

It contains a short Overview of Kadeploy, followed by the Installation instructions, a descrip-
tion of the Server side con�guration and the Client side con�guration , to �nish with the User guide.

For a better understanding of how Kadeploy3 works see this publication:
http://hal.inria.fr/docs/00/71/06/38/PDF/RR-8002.pdf

More informations, souce code and bug tracker available here:
https://kadeploy.gitlabpages.inria.fr

http://hal.inria.fr/docs/00/71/06/38/PDF/RR-8002.pdf
https://kadeploy.gitlabpages.inria.fr

Chapter 0

Overview

0.1 What is it?

Kadeploy is a scalable, e�cient and reliable deployment system (cluster provisioning solution) for
cluster and grid computing. It provides a set of tools for cloning, con�guring (post installation) and
managing cluster nodes. It can deploy a 300-nodes cluster in a few minutes, without intervention
from the system administrator. It can deploy Linux, *BSD, Windows, Solaris.

It plays a key role on the Grid'5000 testbed, where it allows users to recon�gure the software
environment on the nodes.

0.2 How it works?

This is how Kadeploy works:

1. Minimal environment setup The nodes reboot into a trusted minimal environment that con-
tains all the tools required for the deployment (partitioning tools, archive management, . . .)
and the required partitioning is performed.

2. Environment installation The environment is sent to all the nodes and extracted on the disks.
Some post-installations operations can also be performed.

3. Reboot on the deployed environment

Kadeploy3 takes as input an archive containing the operating system to deploy, called an en-
vironment, and copies it on the target nodes. As a consequence, Kadeploy3 does not install an
operating system following a classical installation procedure and the user has to provide an archive
of the operating system's �lesystem (as a tarball, for Linux environments).

0.3 How does Kadeploy control the boot of the nodes ?

This is how Kadeploy controls the boot process of the nodes in order to be able to perform the
installation tasks:

5

CHAPTER 0. OVERVIEW 6

1. Kadeploy writes PXE pro�les on a TFTP or HTTP server

2. Kadeploy triggers the reboot of compute nodes using SSH, IPMI or a manageable PDU

3. Nodes get their con�guration using DHCP

4. Nodes retrieve their PXE pro�le using TFTP

5. Nodes boot on the speci�ed system (which can either be located on the node's hard disk or
on the network)

Chapter 1

Installation

1.1 Requirements

1.1.1 Packages

Kadeploy requires the following softwares (the given packages names are valid for the De-
bian/Wheezy distribution):

• ruby >= 1.8.7

• ruby-mysql

• taktuk >= 3.6

• isc-dhcp-server

• syslinux

• tftpd-hpa

1.1.2 DHCP and TFTP

The DHCP service
A DHCP server (isc-dhcp-server on Debian for instance) must be con�gured to provide a static IP

address to the set of nodes that must be deployed. Furthermore, the DHCP response must contain
the hostname of the node (see the use-host-decl-names on; option in dhcpd.conf).

Here is an example of a con�guration for PXELinux:

default-lease-time 28800;
max-lease-time 86400;
allow booting;
allow bootp;
not-authoritative;
use-host-decl-names on;

7

CHAPTER 1. INSTALLATION 8

subnet 192.168.0.0 netmask 255.255.255.0 {
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.0.255;
option routers 192.168.0.254;
option domain-name "testbed.lan";
�lename "pxelinux.0";
next-server 192.168.0.1;

host node-1.testbed.lan {
hardware ethernet 00:09:3d:12:33:e6;
�xed-address 192.168.0.10;
option host-name "node-1";

}
host node-2.testbed.lan {
hardware ethernet 00:09:3d:12:33:e7;
�xed-address 192.168.0.11;
option host-name "node-2";

}
}

More information about the con�guration of PXElinux can be found at http://www.syslinux.
org/wiki/index.php/PXELINUX.

Booting over the network
To allow the network booting, you must specify in the DHCP con�guration �le the �lename

option. This option de�nes the name of �le which will be downloaded at the boot time. This �le
name can be pxelinux.0, gpxelinux.0, or ipxelinux.0.

Finally, the TFTP repository (see 2.1 part) must contain the following �les and directories:

• pxelinux.0 (or similar)

• chain.c32

• mboot.c32

• a kernels/ directory (can be changed in the server con�guration �le)

• a pxelinux.cfg/ directory

These �les can be found in the Syslinux software (http://syslinux.org) or directly downloaded on
the kernel.org website (https://www.kernel.org/pub/linux/utils/boot/syslinux/), the 3.73 version
is at least required.

The TFTP service
A TFTP server (tftpd-hpa on Debian for instance) must be installed. Con�guration example:

http://www.syslinux.org/wiki/index.php/PXELINUX
http://www.syslinux.org/wiki/index.php/PXELINUX
http://syslinux.org
https://www.kernel.org/pub/linux/utils/boot/syslinux/

CHAPTER 1. INSTALLATION 9

/etc/default/tftpd-hpa
TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/var/lib/tftpboot"
TFTP_ADDRESS="0.0.0.0:69"
TFTP_OPTIONS="-v -l -c -s"

1.1.3 HTTP server (optional)

In order to use the HTTP fetching capabilities of gpxelinux or iPXE, an HTTP server must be
con�gured and must contain the production environment kernel/initrtd and the deployment envi-
ronment kernel/initrd (see 2.4.2 part).

1.1.4 MySQL

A MySQL server must be con�gured with a database and a user dedicated to Kadeploy. The rights
on this database must be granted to the chosen user, from the Kadeploy server. The server used
to host the database, the database name, the dedicated user and its password must be speci�ed in
the general Kadeploy con�guration (see 2.1 part).

Just provided as an example, let's see a way to create the database deploy3 and to give the
suitable rights to the deploy user.

mysql> CREATE DATABASE deploy3;
mysql> GRANT select, insert, update, delete, create, drop, alter, \

create temporary tables, lock tables ON deploy3.* \
TO 'deploy'@'kadeploy.site.grid5000.fr';

Once the database is created and the user granted, you can use the SQL script provided in the
distribution (db/db_creation.sql) to create the tables in the database.

mysql> use deploy3
mysql> source /usr/share/doc/kadeploy/db_creation.sql;

1.1.5 TakTuk

Kadeploy3 requires TakTuk, a powerful tool to achieve remote executions. Thus it must be installed
on the Kadeploy3 server.
Note for Debian users
TakTuk is available in the o�cial repositories.
Note for RedHat users
TakTuk is not packaged for RedHat-based distributions. Some RPM packages are available on
the Kadeploy3 website: http://kadeploy3.gforge.inria.fr/�les/taktuk/. It's also possible to install
TakTuk from the sources, more information on the project's website: http://taktuk.gforge.inria.fr/.

http://kadeploy3.gforge.inria.fr/files/taktuk/
http://taktuk.gforge.inria.fr/

CHAPTER 1. INSTALLATION 10

1.2 Kadeploy installation

Since Kadeploy is based on a client/server architecture, it must be installed both on the server and
on the client side (in case of distinct hosts).

Two ways are provided to install Kadeploy: 1) the packages available in the release section at
https://kadeploy.gitlabpages.inria.fr/ (for Debian) and 2) Rake installation from sources. In both
cases, you have to ensure that a user deploy exists on the system since it is used to execute the
Kadeploy server. Furthermore, all the installation operations must be performed with root rights.

1.2.1 Installation with Rake

First of all, you have to uncompress the Kadeploy tarball.

> tar xzf kadeploy-3.6.0.rc3.tar.gz -C DESTINATION_DIR

Then, if you want to install the server part, just execute:

> rake install_server

If you want to install the client part, execute:

> rake install_client

If you want to install the server part and the client part on the same host, execute:

> rake install

remark: If there are already con�guration �les, the new example of con�guration �les will be
installed with .dist extension.
If you want to install the rc script, you can add the DISTRIB �ag. Currently, only Debian (it
includes Ubuntu at least) and RedHat (it should include CentOS and RHEL) values are supported.
For instance, you can execute:

> rake install[root_dir,redhat]

or if you do not install the server side on the same machine than the client side:

> rake install_server[root_dir,redhat]

Finally, Kadeploy can be simply uninstalled by executing:

> rake uninstall

In case of uninstallation, the con�guration directory /etc/kadeploy3 is not removed.

1.2.2 Build packages

The following installation method works only on Debian based distribution.

https://kadeploy.gitlabpages.inria.fr/

CHAPTER 1. INSTALLATION 11

Build Debian Package

First, you have to uncompress the Kadeploy tarball.

> tar xzf kadeploy-3.6.0.rc3.tar.gz -C DESTINATION_DIR

Then you must generate the packages. So you have to execute:

> rake deb

This will generate three Debian package: kadeploy-common-3.6.0.rc3 .deb, kadeploy-client-
3.6.0.rc3 .deb, and kadeploy-3.6.0.rc3 .deb.

Installation

On the server side, you have to install the kadeploy-common-3.6.0.rc3 .deb and kadeploy-3.6.0.rc3
.deb packages.

> dpkg -i kadeploy-common-3.6.0.rc3.deb
> dpkg -i kadeploy-3.6.0.rc3.deb

On the client side, you have to install the kadeploy-common-3.6.0.rc3 .deb and kadeploy-client-
3.6.0.rc3 .deb packages.

> dpkg -i kadeploy-common-3.6.0.rc3.deb
> dpkg -i kadeploy-client-3.6.0.rc3.deb

In the want to use the same host for the client and the server part, just install the three packages:

> dpkg -i kadeploy-common-3.6.0.rc3.deb
> dpkg -i kadeploy-client-3.6.0.rc3.deb
> dpkg -i kadeploy-3.6.0.rc3.deb

Warning In order to preserve your con�guration �les, the removal of a Kadeploy package will
preserve the con�guration �les (unless you specify the --purge tag).

1.2.3 RedHat packages

The following installation method works only an RedHat based distribution. We assume that you
have a con�gured rpm build environment. Furthermore, Taktuk must be installed on the server
side.

Build

First, you have to uncompress the Kadeploy tarball.

> tar xzf kadeploy-3.6.0.rc3.tar.gz -C DESTINATION_DIR

Then you must generate the packages. So you have to execute with root rights:

> rake rpm

This will generate three rpm package in the RPMS package of your build environment, for in-
stance: kadeploy-client-3.6.0.rc3 .noarch.rpm, kadeploy-server-3.6.0.rc3 .noarch.rpm, and kadeploy-
common-3.6.0.rc3 .noarch.rpm.

CHAPTER 1. INSTALLATION 12

Installation

On the server side, you have to install the kadeploy-common-3.6.0.rc3 .noarch.rpm and kadeploy-
server-3.6.0.rc3 .noarch.rpm packages.

> rpm -i kadeploy-common-3.6.0.rc3.noarch.rpm
> rpm -i kadeploy-server-3.6.0.rc3.noarch.rpm

On the client side, you have to install the kadeploy-common-3.6.0.rc3 .noarch.rpm and kadeploy-
client-3.6.0.rc3 .noarch.rpm packages.

> rpm -i kadeploy-common-3.6.0.rc3.noarch.rpm
> rpm -i kadeploy-client-3.6.0.rc3.noarch.rpm

In the want to use the same host for the client and the server part, just install the three packages:

> rpm -i kadeploy-common-3.6.0.rc3.noarch.rpm
> rpm -i kadeploy-server-3.6.0.rc3.noarch.rpm
> rpm -i kadeploy-client-3.6.0.rc3.noarch.rpm

1.3 Launching the Kadeploy server

After being installed and con�gured, the Kadeploy server can be run either interactively:

> /usr/sbin/kadeploy3d

or in background using the rc script:

> service kadeploy start

1.3.1 Automatic launch on a Debian and a RedHat based distribution

On a these distributions, if you use the provided packages, the rc script will be automatically
launched at the startup.

Chapter 2

Server side con�guration

Con�guration �les
Normally, the con�guration of Kadeploy is located in /etc/kadeploy3 but it can be located any-

where else if you set the KADEPLOY_CONFIG_DIR variable in the environment.
The �le load_kadeploy_env in the con�guration directory contains the KADE-

PLOY_INSTALL_DIR variable. You should probably �ll this variable with the Kadeploy
installation directory you used. This directory can be anywhere in the �lesystem.

Description format: YAML
In Kadeploy con�guration settings are given using the YAML markup language. You should be

aware that, in this language, indentation is very important. Also, in the YAML language, �elds are
typed, the value "16" is not equivalent to the value 16.

YAML types
In Kadeploy con�guration �les, values can have the YAML data types: Integer, Float, Boolean

and String.
YAML provides a way to describe hierarchy between elements using Associative arrays (key →

value) and Ordered lists. It's possible to mix this structures.
Here are some examples:

example-array: # This is an Associative array containing 3 elements
elem1: 8 # Integer

elem2: "8" # String

elem3: vREF1
example-list: # This is an Ordered list of 2 elements

- true # Boolean

- "true" # String

example-mix-1: # An Ordered list of identical Associative arrays

- elem1: value1 # String

elem2: vREF2
- elem1: value2 # String

elem2: vREF3

13

CHAPTER 2. SERVER SIDE CONFIGURATION 14

example-mix-2: # An Associative array of Ordered lists

elem1:
- 1.42 # Float

- value1
elem2:
- value2
- value3

example-complex: # Complex structure

mylist:
- size: 16
name: vREF4

- size: 32
name: vREF5

value: myval
myexample:
�le: �lename
ext: ext
mode: vREF6

Documentation: paths
Kadeploy con�guration settings are described in YAML �les. A path de�nes the hierarchy

structure to specify a setting in the con�guration �le. In a path, / describes a nested Associative
array, [...] describes an Ordered list of identical Associative arrays.

Example of paths:

• /example-array/elem3 refers to the value vREF1;

• /[example-mix-1]/elem2 refers to values such as vREF2 and vREF3;

• /example-complex/[mylist] refers to the Ordered List mylist;

• /example-complex/[mylist]/name refers to values such as vREF4 and vREF5;

• /example-complex/myexample/mode refers to value vREF5.

Documentation: con�guration �les �elds
In the following, �elds descriptions are given using the formalism:

• /path/to/the/�eld

� �eldname {YAML type} (default value): description of the �eld

If no default value is speci�ed, the �eld is mandatory.
Example of �eld description:

• /example-complex

� myvalue {String}: the value of the element

• /example-complex/myexample

CHAPTER 2. SERVER SIDE CONFIGURATION 15

� �le {String} (example): the name of the example �le

� ext {String} (txt): the extension of the example �le

• /example-complex/[mylist]

� name {String}: the name of the element

� size {Integer} (8): the maximal size (MB) of the element

2.1 General con�guration �le

The general con�guration �le is named server.conf and is located in the Kadeploy con�guration
directory.

2.1.1 Example of a general con�guration �le

database:
host: mysql.lan
name: deploy3
login: deploy_user
passwd: deploy_password
kind: mysql

rights:
kind: db
almighty_users: root,superuser
purge_deployment_timer: 900

authentication:
global:
headers_pre�x: X-Kadeploy-

certi�cate:
#ca_public_key:
algorithm: RSA
�le: /etc/kadeploy/ca_key.pub
ca_cert: ca_cert.pem
whitelist:
- 192.168.0.0/24
- kadeploy.mydomain.tld

#http_basic:
db�le: kadeploy.htpasswd
realm: Kadeploy
whitelist:
- frontend.mydomain.tld
- 192.168.0.4
- 192.168.0.8
ident:
whitelist:
- /^.*\.mydomain\.tld$/
- 192.168.0.0/24

CHAPTER 2. SERVER SIDE CONFIGURATION 16

- kadeploy.mydomain.tld
security:
secure_server: true
local_only: false
#certi�cate: cert.pem
#private_key:
algorithm: RSA
�le: /home/deploy/key.pem
force_secure_client: false

logs:
log�le: /var/log/kadeploy/kadeploy.log
debug�le: /var/log/kadeploy/kadeploy.debug
database: true
debug: true

verbosity:
clients: 3
logs: 4

cache:
directory: /var/cache/kadeploy
size: 8000
concurrency_level: 10

network:
server_hostname: kadeploy.lan
vlan:
set_cmd: kavlan NODES -s -i VLAN_ID -u USER
hostname_su�x: -kavlan-VLAN_ID

ports:
ssh: 22
kadeploy_server: 25300
test_deploy_env: 25300

tcp_bu�er_size: 8192
windows:
check:
size: 90

reboot:
size: 100
sleep_time: 10

environments:
deployment:
extraction_dir: /mnt/dest
tarball_dir: /tmp
rambin_dir: /rambin

allowed_name_regex: '[A-Za-z0-9\-_]+'
max_postinstall_size: 10
max_preinstall_size: 10

pxe:
dhcp:
method: PXElinux
repository: /var/lib/tftpboot
export:

CHAPTER 2. SERVER SIDE CONFIGURATION 17

kind: tftp
server: kadeploy-server

pro�les:
directory: pxelinux.cfg
�lename: ip_hex

user�les:
directory: user�les
max_size: 200
concurrency_level: 10

localboot:
method: GrubPXE
binary: grubpxe.0
repository: /var/lib/tftpboot
export:
kind: tftp
server: kadeploy-server

pro�les:
directory: grub.cfg
�lename: ip

autoclean_threshold: 360
hooks:
end_of_reboot: echo REBOOT_ID
end_of_power: echo POWER_ID
end_of_deployment: echo WORKFLOW_ID

external:
taktuk:
auto_propagate: false
connector: |-
ssh -A -q -o StrictHostKeyChecking=no \
-o UserKnownHostsFile=/dev/null \
-o PreferredAuthentications=publickey \
-o BatchMode=yes

tree_arity: 0
bittorrent:
tracker_ip: 10.0.0.4
download_timeout: 1800

mkfs:
- fstype: ext2
args: -b 4096 -O sparse_super,�letype,resize_inode,dir_index

- fstype: ext3
args: -b 4096 -O sparse_super,�letype,resize_inode,dir_index

tar: --warning=no-timestamp
kasta�or:
binary: /usr/bin/kasta�or

kascade:
binary: /usr/bin/kascade
args: -v

CHAPTER 2. SERVER SIDE CONFIGURATION 18

2.1.2 Explanation of the �elds used in the general con�guration �le

• /database

� host {String}: hostname of the database

� name {String}: name of the Kadeploy database

� login {String}: login for the Kadeploy database

� passwd {String}: password for the Kadeploy database

� kind {String}: database kind (only mysql is available now).

• /rights

� kind {String} (db): authentication kind (use db for a true rights management or dummy
to bypass the rights management)

� almighty_users {String} (root): list of users allowed to perform special operations on the
environments like publishing environments or moving �les

� purge_deployment_timer {Integer} (900): limeout used to consider that a deployment is
�nished. This is used to avoid several deployment on the same nodes at the same time.

• /authentication/global De�ne global con�guration for authentication methods.

� headers_pre�x {String} (X-Kadeploy-): Clients have to provide authentication infor-
mation through HTTP headers, this is the pre�x for each information kind (sample
of authentication header information with the default setting: X-Kadeploy-User, X-
Kadeploy-Certi�cate)

• /authentication/acl Access Control List based authentication. When using ACL authentica-
tion, specifying a whitelist is mandatory.

• /authentication/certi�cate authentication based on the certi�cate of a Certi�cation Authority
(the username must be providden in the CN subject's �eld), at least a public key or a x509
certi�cate as to be speci�ed.

� ca_cert {String}: the path to a �le containing the x509 certi�cate of the Certi�cation
Authority.

• /authentication/certi�cate/ca_public_key

� algorithm {String}: the algorithm that was used to generate the public key (expected
values are RSA, DSA or EC).

� �le {String}: the path to a �le containing the public key of the Certi�cation Authority.

• /authentication/http_basic authentication using the HTTP Basic Authentication method
(see RFC 2617).

� db�le {String}: The �le containing a database of user/passwords (his �le can be generated
using tools such as htpasswd).

CHAPTER 2. SERVER SIDE CONFIGURATION 19

� realm {String} (SERVERS_URL): Overwrite the realm value with a custom one (for
sample, if the service is accessed throught a proxy).

• /authentication/ident authentication using the Ident protocol (see RFC 1413) on the client
machine. When using Ident authentication, specifying a whitelist is mandatory.

• /authentication/*/[whitelist] For each authentication method, a whitelist can be speci�ed.
Authentication atempts will only be allowed from the speci�ed hosts. The whitelist is an
array of hosts (Strings). Hosts can be speci�ed by IP address, IP address with CIDR notation,
hostname and Regular Expression (using the char / as pre�x and su�x of the expression).

• /security

� secure_server {Boolean} (true): launch the server in secure (SSL) mode

� local_only {Boolean} (false): only listen for local connection (/authentication/*/whitelist
�elds become useless)

� certi�cate {String} (�): path to an x509 certi�cate that will be used to launch secure
connections. If none is speci�ed and the secure mode is enabled, a self-signed certi�cate
will be generated.

� force_secure_client {Boolean} (false): specify if �les have to be exported to the server
using a secured connection (see section 4.4.2).

• /security/private_key the private key associated with the certi�cate of the server. If none is
speci�ed and the secure mode is enabled, a new one will be generated.

� algorithm {String}: the algorithm that was used to generate the public key (expected
values are RSA, DSA or EC).

� �le {String}: the path to a �le containing the private key.

• ssh_private_key {String} (/etc/kadeploy3/keys/id_deploy): specify private key loaded in
ssh-agent.

• /logs

� log�le {String} (�): path of a �le that will contain the log information. If you do not wish
to use a log �le, do not set this �eld.

� database {Boolean} (true): use the Kadeploy database to export the log information.

� debug�le {String} (�): path of a �le that will contain the log information. If you do not
wish to use a debug �le, do not set this �eld.

• /verbosity

� clients {Integer} (3): number between 0 and 5 that speci�es the default verbose level for
the client. 0 means �no verbose� and 5 means �full verbose�.

� logs {Integer} (3): debug level of the output exported to Syslog.

• /cache

CHAPTER 2. SERVER SIDE CONFIGURATION 20

� directory {String} (/tmp): absolute path of the Kadeploy cache. The cache dir is used
to store the �les of a user in a deployment.

� size {Integer}: size (MB) of the Kadeploy cache.

� concurrency_level {Integer}: Number of concurrent threads that can write to the cache
simultaneously. Default value is 10.

• /network

� server_hostname {String} (ruby Socket.gethostname): hostname of the Kadeploy server

� tcp_bu�er_size {Integer} (8192): TCP bu�er size (Bytes) for the Kadeploy �le server

• /network/vlan

� hostname_su�x {String} (""): this speci�es the su�x to add to the hostname to de�ne
the hostname in the given VLAN. The pattern VLAN_ID can be used in the de�nition,
it is replaced at the runtime.

� set_cmd {String} (""): command to launch in order to put a set of nodes in a VLAN.
The patterns NODES, USER and VLAN_ID can be used.

• /network/ports

� ssh {Integer} (22): port used by SSH

� kadeploy_server {Integer} (25300): port of the Kadeploy server

� test_deploy_env {Integer} (25300): port used as a tag in the deployment environment
to ensure that the deployment environment is successfully booted

• /windows/check

� size {Integer} (22): size of the nodes check window.

• /windows/reboot

� size {Integer} (50): global size of the reboot window (ie. maximum number of nodes able
to reboot at the same time). This might be useful to avoid high electricity peak.

� sleep_time {Integer} (10): time to wait if the reboot window is full

• /environments

� allowed_name_regex {String} (A): regex that control how an environement should be
name.

� max_preinstall_size {Integer} (20): maximum size (MB) of the preinstall �les

� max_postinstall_size {Integer} (20): maximum size (MB) of the postinstall �les

• /environments/deployment

� extraction_dir {String} (/mnt/dest): extraction directory for the tarball in the deploy-
ment environment

CHAPTER 2. SERVER SIDE CONFIGURATION 21

� tarball_dir {String} (/tmp): destination directory for the tarball download in the de-
ployment environment. This is used when the tarballs are sent with Bittorrent.

� rambin_dir {String} (/rambin): path of the ramdisk directory in the deployment envi-
ronment

• /pxe/dhcp the default method used to PXE boot. Further information are available in the
paragraph Booting over the network.

� method {String} (PXElinux): the PXE method used to boot over the network (expected
values are PXElinux, LPXElinux, IPXE or GrubPXE)

� repository {String}: absolute path of the repository where PXE �les are accessibles
(TFTP, HTTP, ...). Warning, as far as the Kadeploy server is launched by the deploy
user, deploy must have the rights to write in this directory.

• /pxe/dhcp/export

� kind {String} (tftp): The method used to export PXE �les (expected values are tftp, http,
ftp and auto). The path to the �les in the PXE pro�les depends on this method. auto
doesn't change the path in the PXE pro�les, so the method of export results from the
DHCP con�guration.

� server {String} (hostname): The server where PXE �les are stored. To be complicant
with most NBPs, it's recommended to specify this server by IP address (it will also make
the nodes boot faster since there is no need to make a DNS request).

• /pxe/dhcp/pro�les

� directory {String} (""): The directory where PXE pro�les have to be written. This
path is relative to the PXE repository path unless you specify an absolute path. If the
pathname is empty it defaults to the value of /pxe/dhcp/repository.

For example, with PXElinux, this directory is pxelinux.cfg.

� �lename {String}: The way to name the �le of each node's pro�le (expected values
are: hostname, hostname_short (the hostname without the domain name), ip, ip_hex
(hexadecimal representation of the IP)).

The information used to generate this �lenames are the one speci�ed for each nodes in
the clusters con�guration �le (see section 2.3). For example, with PXElinux, it will be
ip_hex.

• /pxe/dhcp/user�les PXE user custom �les (option --upload-pxe-�les). Be careful, this di-
rectory is emptied at each server launch.

� directory {String}: The directory where PXE user custom �les (option --upload-pxe-�les)
are to be saved. This path is relative to the PXE repository path.

� max_size {Integer}: maximal size (MB) of the PXE user custom �les sub-directory.

� concurrency_level {Integer}: Maximal number of threads that can write to the PXE user
custom �les sub-directory simultaneously. Default value is 10.

CHAPTER 2. SERVER SIDE CONFIGURATION 22

• /pxe/networkboot the method used to boot operating system images sent from the network
(the deployment environment kernel). This setting is optional by default, the DHCP method
is used.

� method {String}: the PXE method used to boot the nodes (expected values are PX-
Elinux, LPXElinux, IPXE or GrubPXE)

� binary {String}: the binary of the Network Bootstrap Program (if this method is di�erent
than the DHCP one, this �le will be loaded by the PXE method). For example, for
PXElinux, this �le is pxeliux.0.

� repository {String}: absolute path of the repository where PXE �les (deployment envi-
ronments kernels) are accessibles. Warning, as far as the Kadeploy server is launched by
the deploy user, deploy must have the rights to write in this directory.

• /pxe/networkboot/export

� kind {String}: The method used to export PXE �les (expected values are tftp, http and
ftp). The path to the �les in the pro�les will be generated depending on this method.

� server {String}: The server where PXE �les are stored. To be complicant with most
NBPs, it's recommended to specify this server by IP address (it will also make the nodes
boot faster since there is no need to make a DNS request).

• /pxe/networkboot/pro�les

� directory {String} (""): The directory where PXE pro�les have to be written. This
path is relative to the PXE repository path unless you specify an absolute path. If the
pathname is empty it defaults to the value of /pxe/networkboot/repository.

For example, with PXElinux, this directory is pxelinux.cfg.

� �lename {String}: The way to name the �le of each node's pro�le (expected values
are: hostname, hostname_short (the hostname without the domain name), ip, ip_hex
(hexadecimal representation of the IP)).

The information used to generate this �lenames are the one speci�ed for each nodes in
the clusters con�guration �le (see section 2.3). For example, with PXElinux, it will be
ip_hex.

• /pxe/localboot the method used to boot an operating system that's installed on nodes hard
disk. This setting is optional by default, the DHCP method is used.

� method {String}: the PXE method used to boot the nodes (expected values are PX-
Elinux, LPXElinux, IPXE or GrubPXE)

� binary {String}: the binary of the Network Bootstrap Program (if this method is di�erent
than the DHCP one, this �le will be loaded by the PXE method). For example, for
PXElinux, this �le is pxeliux.0.

� repository {String}: absolute path of the repository where PXE �les are accessibles
(TFTP, HTTP, ...). Warning, as far as the Kadeploy server is launched by the deploy
user, deploy must have the rights to write in this directory.

• /pxe/localboot/export

CHAPTER 2. SERVER SIDE CONFIGURATION 23

� kind {String}: The method used to export PXE �les (expected values are tftp, http and
ftp). The path to the �les in the pro�les will be generated depending on this method.

� server {String}: The server where PXE �les are stored. To be compliant with most NBPs,
it's recommended to specify this server by IP address (it will also make the nodes boot
faster since there is no need to make a DNS request).

• /pxe/localboot/pro�les

� directory {String} (""): The directory where PXE pro�les have to be written. This
path is relative to the PXE repository path unless you specify an absolute path. If the
pathname is empty it defaults to the value of /pxe/localboot/repository.

For example, with PXElinux, this directory is pxelinux.cfg.

� �lename {String}: The way to name the �le of each node's pro�le (expected values
are: hostname, hostname_short (the hostname without the domain name), ip, ip_hex
(hexadecimal representation of the IP)).

The information used to generate this �lenames are the one speci�ed for each nodes in
the clusters con�guration �le (see section 2.3). For example, with PXElinux, it will be
ip_hex.

• /hooks

� end_of_reboot {String} (""): command to launch at the end of an asynchronous reboot.
The REBOOT_ID can be used in the command, it is replaced at the runtime.

� end_of_power {String} (""): command to launch at the end of an asynchronous power
operation. The POWER_ID can be used in the command, it is replaced at the runtime.

� end_of_deployment {String} (""): command to launch at the end of an asynchronous
deployment. The WORKFLOW_ID can be used in the command, it is replaced at the
runtime.

• autoclean_threshold {Fixnum} (360): at the end of an operation (deploy/reboot/power) it's
status kept until the user explicitly deletes them. This value �x the maximal time (in minutes)
this information will be kept in memory by the server until the autoclean loop delete them.

• /external/default_connector {String} (ssh -A -l root -q -o StrictHostKeyChecking=no -o User-
KnownHostsFile=/dev/null -o PreferredAuthentications=publickey -o BatchMode=yes): de-
�ne alias for DEFAULT_CONNECTOR in Taktuk connector and remoteops for cluster spe-
ci�c �le.

• /external/taktuk

� connector {String} (DEFAULT_CONNECTOR): connector used by Taktuk

� tree_arity {Integer} (0): Taktuk tree arity for command executed through a tree. Use 0
if you want to use the work stealing algorithm of Taktuk and thus a dynamic tree arity.
Use another value >0 to specify a static tree arity (should be avoided).

� auto_propagate {Boolean} (true): use of the auto propagation feature of Taktuk. You
should use this feature if the deployment environment doesn't contain Taktuk.

CHAPTER 2. SERVER SIDE CONFIGURATION 24

� outputs_size {Integer} (20000): to avoid big Taktuk outputs to be loaded in the server's
memory, it's possible to setup a limit of the per-node output size. If TakTuk returns
an output bigger than (NODES_NUMBER * outputs_size) an error will be returned.
This limit can be disabled by setting the 0 value.

• /external/bittorrent

� tracker_ip {String} (nil): ip of the Bittorrent tracker

� download_timeout {Integer} (nil): timeout for the Bittorrent �le download

• /external/[mkfs] Options for mkfs. The options for several FS can be de�ned here.

� fstype {String} (nil): the �lesystem type

� args {String} (nil): the speci�c options for this �lesystem type

• tar {String} (�): Options for tar (used in the deployment environment)

• /external/kasta�or

� binary {String} (kasta�or): the command used to launch kasta�or

• /external/kascade

� binary {String} (kascade): the command used to launch kascade

� args {String} (�): extra options for the kascade command

2.2 Booting over the network

In the /pxe con�guration �eld, you can de�ne how the nodes are booting from the network.
As far as you are using Kadeploy3 on your cluster, a PXE boot have to be setup on your

nodes, so that implies that your nodes have a compatible Network Interface Card and that your
DHCP server is con�gured a speci�c way. There is a lot of di�erent software (Network Bootstrap
Programs or NBP) that can be use to make nodes boot over the network: PXElinux, LPXElinux,
iPXE, Etherboot, Grub disks,

For most of Network Bootstrap Programs, the booting method is the same:

1. The Network Iterface Card ask an IP address to the DHCP server;

2. The DHCP answer and give an extra instruction that speci�es to download and run a speci�c
software, the Network Bootstrap Program (for example, with PXElinux, this �le is pxelinux.0)

3. The NBP download a boot pro�le on the network that speci�es how to boot the node. The
pro�le �le has a speci�c name (the hostname of the node, it's IP address, ...) so that the
software will be sure to download the pro�le of this speci�c node.

4. The NBP read the pro�le and boot the node according to it's instructions (download and
boot a speci�c kernel, boot on node's local hard disk, ...)

CHAPTER 2. SERVER SIDE CONFIGURATION 25

To be able to control node's boot, Kadeploy3 is editing this pro�les. That's why it's necessary
to tell it what NBP is used to boot your nodes over the network and how you want their pro�les
to be written.

Some of this softwares gives you the choice of the method used to download the �les you want
to boot (TFTP/HTTP/FTP/...), i.e. how you want your PXE �les to be exported. You'll be able
to specify how you want your �les to be download in Kadeploy3 con�guration.

Kadeploy will boot the nodes three di�erent ways:

• (1) Booting a minimal kernel that was downloaded from the network (done in the �rst
macrostep (SetupDeploymentEnv) to boot on the deployment environment);

• (2) Booting a kernel located on a partition of the local hard disk (done in the third macrostep
(BootNewEnv) to boot the installed system);

• (3) Booting with some user's custom �les with a user speci�ed pro�le (done when the user is
using the options -x and -w).

In the �eld /pxe/dhcp of the global con�guration �le, you will specify which NBP is setup on
your DHCP server and give some information about the exports and pro�les. This settings will be
used every times Kadeploy3 will reboot your nodes unless you de�le the �elds /pxe/networkboot
or /pxe/localboot.

If you de�ne the �eld /pxe/networkboot, it will overwrite the settings /pxe/dhcp when Kade-
ploy3 will make a reboot kind (1).

If you de�ne the �eld /pxe/localboot, it will overwrite the settings /pxe/dhcp when Kadeploy3
will make a reboot kind (2).

When the method (NBP) speci�ed in /pxe/networkboot or /pxe/localboot is di�erent than
the method speci�ed /pxe/dhcp, Kadeploy3 make the NBPs chainload each other. For instance,
if /pxe/dhcp is set to boot with PXElinux and /pxe/networkboot with a GRUB disk grubpxe.0,
Kadeploy3 will make PXElinux load grubpxe.0 by writting PXE grubpxe.0 in the PXElinux pro�le.
Then it writes the GRUB pro�le (that will be loaded by grubpxe.0), that pro�le will make the node
download and boot a kernel from the network.

One important thing is that every NBP have to be available in you PXE (TFTP in most of the
cases) repository. Another one is that the Kadeploy user should be able (have the rights) to write
the pro�les inside the PXE repository.

Some scripts are provided in the distribution to help to generate a GRUB NBP that'll download
pro�les on the network (in the directory addons/grubpxe/).

2.3 Clusters �le

This �le describes the list of all the clusters, the location of their speci�c setting �les and their
nodes. All the nodes of the clusters that aim to be deployed must be declared in this �le. It must
be de�ned in the /etc/kadeploy3/clusters.conf �le.

Warning, a cluster-speci�c con�guration �le and some partitioning/bootloader_install scripts
must be de�ned for each cluster de�ne in this �le.

CHAPTER 2. SERVER SIDE CONFIGURATION 26

2.3.1 Example of a clusters �le

clusters:
- name: graphene
pre�x: gra
conf_�le: graphene-cluster.conf
nodes:
- name: graphene-1.nancy.grid5000.fr # Full version
address: 10.0.66.1

- name: graphene-2.nancy.grid5000.fr
address: 10.0.66.2

- name: graphene-3.nancy.grid5000.fr
address: 10.0.66.3

- name: graphene-4.nancy.grid5000.fr
address: 10.0.66.4

- name: gri�on
conf_�le: gri�on-cluster.conf
nodes:
- name: gri�on-[1-92].nancy.grid5000.fr # Digest version
address: 10.0.65.[1-92]

2.3.2 Explanation of the �elds used in the clusters �le

• /clusters

� name {String}: the name of the cluster

� pre�x {String}: the pre�x that will be used for display purpose when deploying nodes
from several clusters (if not set, the pre�x will be a unique integer identi�er)

� conf_�le {String}: the path to the cluster-speci�c con�guration �le of this cluster (see
section 2.4.2)

• /clusters/[nodes]

� name {String}: the hostname of the node(s). Ranges can also be used to de�ne host-
names: gri�on-[1-92].nancy.grid5000.fr.

� address {String}: the IP address of the node(s). Ranges can also be used to de�ne
addresses: 10.0.65.[1-92] .

2.4 Cluster-speci�c con�guration �les

To de�ne the speci�c con�guration of a cluster, you must create a speci�c �le for each cluster in the
con�guration directory. The name of the �le must be speci�c_conf_CLUSTER where CLUSTER
is the cluster name.

CHAPTER 2. SERVER SIDE CONFIGURATION 27

2.4.1 Example of a cluster-speci�c con�guration �le

partitioning:
script: parted_sample
formating_script: formating.sh
deploy_label: DEPLOY
block_device: disk0
disk_path:
disk0: /dev/disk/by-path/pci-0000:00:0d.0-ata-1

trusted_deployment:
user: deploy
partition: "/dev/sda3"
envs:
- name: "debian"
user: "deploy"
version: 1578454

kexec:
server_precmd: "true"
script: kexec.sh
repository: /dev/shm/kexec_repository

boot:
install_bootloader: install_grub2
kernels:
user:
params: console=tty0 console=ttyS1,38400n8

deploy:
vmlinuz: deploy-vmlinuz-2.6.27.8-bt
initrd: deploy-initrd-2.6.27.8-bt
params: console=tty0 console=ttyS0,38400n8 ramdisk_size=260000 rw
supported_fs: ext2, ext3, vfat
drivers: ata_piix,ata_generic

nfsroot:
vmlinuz: deploy-vmlinuz-2.6.27.7-nfsroot
params: rw console=tty0 root=/dev/nfs ip=dhcp nfsroot=10.0.100.35:/mnt/nfsroot/rootfs

timeouts:
reboot: 200 + 150 * Math.log(n)
kexec: 60

localops:
broadcastenv:
cmd: /usr/bin/taktuk -c "TAKTUK_CONNECTOR" -f NODEFILE broadcast exec [DECOMPRESS]\; broadcast input �le [ENVFILE]

remoteops:
reboot:
- name: soft
cmd: |-
ssh -q \
-o BatchMode=yes -o StrictHostKeyChecking=no \
-o PreferredAuthentications=publickey \
-o ConnectTimeout=2 -o UserKnownHostsFile=/dev/null \
root@HOSTNAME_FQDN

CHAPTER 2. SERVER SIDE CONFIGURATION 28

- name: hard
cmd: /usr/local/kadeploy/bin/hard_reboot.rb HOSTNAME_SHORT

- name: very_hard
cmd: /usr/local/kadeploy/bin/reboot_RSA.exp HOSTNAME_SHORT

power_on:
- name: soft
cmd: ...

- name: hard
cmd: /usr/bin/lanpower -c on -m HOSTNAME_SHORT
name: hard

- name: very_hard
cmd: ...
power_o�:
- name: soft
cmd: |-
ssh -q -o BatchMode=yes -o StrictHostKeyChecking=no -o \
PreferredAuthentications=publickey -o ConnectTimeout=2 \
-o UserKnownHostsFile=/dev/null \
root@HOSTNAME_FQDN \
"nohup /sbin/halt &>/dev/null &"

- name: hard
cmd: /usr/bin/lanpower -c o� -m HOSTNAME_SHORT

- name: very_hard
cmd: ...
power_status:
- name: soft
cmd: /usr/bin/lanpower -m HOSTNAME_FQDN -s

console:
- name: soft
cmd: /usr/local/conman/bin/conman -d conman HOSTNAME_SHORT

preinstall:
�les:
- �le: /g5k/admin_pre_install.tgz
format: tgz
script: launch.sh

postinstall:
�les:
- �le: /g5k/admin_post_install.tgz
format: tgz
script: launch.sh

pxe:
headers:
dhcp: &id001 |-
PROMPT 1
SERIAL 0 38400
TIMEOUT 50

netboot: *id001
localboot: set timeout=5

hooks:
use_ip_to_deploy: true

CHAPTER 2. SERVER SIDE CONFIGURATION 29

automata:
macrosteps:
SetDeploymentEnv:
- type: Prod
timeout: 200
microsteps:
- name: reboot
timeout: 10

- name: create_partition_table
substitute:
- action: run
name: my_partitioning
�le: partitioning.sh
retries: 1
scattering: tree
timeout: 16

- type: Untrusted
timeout: 400

BroadcastEnv:
- type: Custom
timeout: 300

- type: Kasta�or
retries: 1
timeout: 900
microsteps:
- name: send_environment
post-ops:
- action: send
�le: hostname
destination: $KADEPLOY_ENV_EXTRACTION_DIR/etc/
retries: 1
scattering: chain

- action: exec
command: mkdir -p $KADEPLOY_ENV_EXTRACTION_DIR/mypath

- action: send
�le: my�le
destination: $KADEPLOY_ENV_EXTRACTION_DIR/mypath
timeout: 10

BootNewEnv:
- type: Kexec
timeout: 100

- type: Classical
retries: 1
timeout: 200

- type: HardReboot
retries: 1
timeout: 300

CHAPTER 2. SERVER SIDE CONFIGURATION 30

2.4.2 Explanation of the �elds used in the cluster-speci�c con�guration
�le

• /partitioning

� block_device {String}:default disk used on the nodes

� deploy_label {String}:default label used on the nodes

� disable_swap {Boolean} (false): disable the swap partition on the disk

� script {String}: Path to a script that creates the partition table on the nodes. You can
use Kadeploy3 environment variables (see section 4.4.1) in this script. Please refer to
section 2.6) for further informations.

� formating_script {String}: Path to a script that is used to format the partitions. You
can use Kadeploy3 environment variables (see section 4.4.1) in this script. Please refer
to section 2.7) for further informations.

� disk_path {Hash}: Map the disks name to the real path on the nodes.

• /trusted_deployment

� user {String}:user to trust if they made the last deployment

� user {String}:partition to trust if the last deployment was made on it

• /trusted_deployment/envs

� name {String}:name of the environement to trust

� user {String}:author of the last environement to trust

� version {Integer}:version of the last environement to trust, default is all version

• /kexec

� server_precmd {String}:command to execute on the server before a kexec. Don't kexec
from a trusted environement if the command return non-zero exit code.

� script {String}: Path to a script that do the kexec. You can use Kadeploy3 environment
variables (see section 4.4.1) in this script.

� repository {String} (/dev/shm/kexec_repository): the directory in the running system
where deploy kernel �les have to be copied for kexec purpose

• /boot

� sleep_time_before_boot {Integer} (20): seconds of sleep before the �rst ping request to
detect when a node is ready. Generally, it represents the average time during the node
power up until it sends a dhcp request.

� install_bootloader {String}: Path to a script that install a bootloader on the deployment
partition. You can use Kadeploy3 environment variables (see section 4.4.1) in this script.
Please refer to section 2.5) for further informations.

• /boot/kernels Options of OS kernel's that are booted by Kadeploy3

CHAPTER 2. SERVER SIDE CONFIGURATION 31

• /boot/kernels/user Default options for user kernels

� params {String} (""): default kernel parameters applied to a Linux based deployed envi-
ronment. This can be overloaded in the environment description.

• /boot/kernels/deploy The deployment environment (see section ??)

� vmlinuz {String}: name of the kernel �le of the deployment environment. This
�le will be speci�ed in the PXE pro�les using the pxe/networkboot/export and
pxe/networkboot/repository settings of the general con�guration �le.

� initrd {String}: name of the initrd �le of the deployment environment. This
�le will be speci�ed in the PXE pro�les using the pxe/networkboot/export and
pxe/networkboot/repository settings of the general con�guration �le.

� params {String} (""): boot parameters of the deployment environment kernel

� supported_fs {String} (ext2,ext3,ext4,vfat): list of �le systems that are supported by the
deployment environment. The syntax is: fstype1,fstype2,fstype3,... . When deploying
an environment with a non supported �lesystem type, the deployment work�ow will be
modi�ed (see section 2.4.2).

� drivers {String} (""): list of drivers that must be loaded in the deployment environment.
The syntax is: driver1,driver2,driver3,...

• /boot/kernels/nfsroot Used when booting with NFS-root in the SetDeploymentEnv macro-
step.

� vmlinuz {String} (""): kernel for the NFS-root deployment environment (only used if you
use an NFS-root deployment environment)

� params {String} (""): kernel parameters for the NFS-root deployment environment (only
used if you use an NFS-root deployment environment)

• /timeouts

� reboot {Integer/String} (120): classical reboot timeout. A Ruby expression can be used
here to represent a function depending on n (the number of nodes currently rebooted)

� kexec {Integer/String} (60): kexec reboot timeout. A Ruby expression can be used here
to represent a function depending on n (the number of nodes currently rebooted)

• /localops/broadcastenv A custom command that will be used when sending an environment
in a BroadcastEnv macro-step of kind Custom. Be careful, this command will be launched
from the Kadeploy3 server.

� cmd {String}: The command that will send the environment �le. You can use the
ENVFILE, NODEFILE, TAKTUK_CONNECTOR and DECOMPRESS patterns in the
command-line. The pattern DECOMPRESS will replaced by a command that can be
used to decompress the �le while receiving it (if not specify, the decompress parameter
should be set to false). The pattern TAKTUK_CONNECTOR will be replaced by the
TakTuk connector (see section 2.1).

CHAPTER 2. SERVER SIDE CONFIGURATION 32

� decompress {Boolean} (true): If the script decompress the �le while receiving it, it should
be set to true. If the script don't, an extra micro-step will be add to the deployment
process in order to decompress the �le after it has been sent.

• level_name {String Array} (

”soft”, ”hard”, ”veryhard”

): de�nes level name by priority order.

• /remoteops/[reboot] The reboot commands, an escalation of them will be performed in the
order of the List. Warning: at the moment, only the names soft, hard and very_hard can be
used.

� name {String}: the name of the command (used in the display)

� cmd {String}: generic reboot command. You can use the HOSTNAME_FQDN and
HOSTNAME_SHORT variables in the command-line.

� group {String} (nil): the a�nity between nodes (see section 2.4.2)

• /remoteops/[power_on] The power_on commands, an escalation of them will be performed
in the order of the List. This commands are not mandatory. Warning: at the moment, only
the names soft, hard and very_hard can be used.

� name {String}: the name of the command (used in the display)

� cmd {String}: generic power_on command. You can use the HOSTNAME_FQDN and
HOSTNAME_SHORT variables in the command-line.

� group {String} (nil): the a�nity between nodes (see section 2.4.2)

• /remoteops/[power_o�] The power_o� commands, an escalation of them will be performed
in the order of the List. This commands are not mandatory. Warning: at the moment, only
the names soft, hard and very_hard can be used.

� name {String}: the name of the command (used in the display)

� cmd {String}: generic power_o� command. You can use the HOSTNAME_FQDN and
HOSTNAME_SHORT variables in the command-line.

� group {String} (nil): the a�nity between nodes (see section 2.4.2)

• /remoteops/[power_status] The power_status commands, an escalation of them will be per-
formed in the order of the List. This commands are not mandatory. This commands are not
mandatory. Warning: at the moment, only the name soft can be used.

� name {String}: the name of the command (used in the display)

� cmd {String}: generic power_status command. You can use the HOSTNAME_FQDN
and HOSTNAME_SHORT variables in the command-line.

• /remoteops/[console] The console commands, an escalation of them will be performed in the
order of the List. This commands are not mandatory. This commands are not mandatory.
Warning: at the moment, only the name soft can be used.

CHAPTER 2. SERVER SIDE CONFIGURATION 33

� name {String}: the name of the command (used in the display)

� cmd {String}: generic console command. You can use the HOSTNAME_FQDN and
HOSTNAME_SHORT variables in the command-line.

• /preinstall/[�les] list of pre-install to execute at the pre-install of a deployment. This �elds
are not mandatory.

� �le {String}: the absolute path to the archive containing the scripts

� format {String}: the kind of �le (expected values are tgz, tbz2, tzstd or txz)

� script {String}: the relative path (inside of the archive) to the script to be executed. The
none value can be if no script must be launched. For debug purpose, you can use the
keyword breakpoint instead of a script. Thus, the �le will be transferred, the deployment
work�ow will be stopped and you will be able to connect in the deployment environment
to debug.

• /postinstall/[�les] list of post-install to execute at the post-install of a deployment. This �elds
are not mandatory.

� �le {String}: the absolute path to the archive containing the scripts

� format {String}: the kind of �le (expected values are tgz, tbz2, tzstd or txz)

� script {String}: the relative path (inside of the archive) to the script to be executed. The
none value can be if no script must be launched. For debug purpose, you can use the
keyword breakpoint instead of a script. Thus, the �le will be transferred, the deployment
work�ow will be stopped and you will be able to connect in the deployment environment
to debug.

• /pxe/headers PXE headers to be used for the di�erent kind of reboots

� dhcp {String} (""): PXE headers to be used for the the default method. Further infor-
mation are available in the paragraph Booting over the network.

� networkboot {String} (""): PXE headers to be used when booting operating system im-
ages sent from the network. Further information are available in the paragraph Booting
over the network.

� localboot {String} (""): PXE headers to be used when booting operating system from
hard disk. Further information are available in the paragraph Booting over the network.

• /hooks

� use_ip_to_deploy {Boolean} (false): use IP addresses instead of hostnames to contact
the nodes

• /automata/macrosteps list of implementations for each macro-steps of the automata. There
are 3 macro-steps, so you must specify each of them.

• /automata/macrosteps/[SetDeploymentEnv] the macro-step in charge of rebooting the nodes
on the deployment environment

CHAPTER 2. SERVER SIDE CONFIGURATION 34

� type {String}: the type of the macro-step (expected values are Untrusted, Kexec, Prod,
Nfsroot, UntrustedCustomPreInstall and Dummy)

� retries {Integer} (0): the number of retries for this macro-step (by default, one single
attempt with no retries)

� timeout {Integer}: the timeout (seconds) of this macro-step

• /automata/macrosteps/[SetDeploymentEnv]/[microsteps] Microsteps speci�c con�guration
(this �eld is not mandatory)

� name {String}: the name of the micro-step, see the list bellow to get the di�erent micro-
steps names.

� timeout {Integer} (0): the timeout (seconds) of this micro-step

� retries {Integer} (0): the number of retries for this micro-step. Since most of micro-steps
perform some modi�cations on the running system and are do not perform any cleaning
operation before their execution, be very careful when using this setting.

• /automata/macrosteps/[SetDeploymentEnv]/[microsteps]/[substitute] Substitute this micro-
step with some custom operations (see the paragraph bellow for custom operations description)

• /automata/macrosteps/[SetDeploymentEnv]/[microsteps]/[pre-ops] A list of operations that
have to be done before executing the micro-step (see the paragraph bellow for custom opera-
tion description)

• /automata/macrosteps/[SetDeploymentEnv]/[microsteps]/[post-ops] A list of custom opera-
tions that have to be done after executing the micro-step (see the paragraph bellow for custom
operation description)

• /automata/macrosteps/[BroadcastEnv] the macro-step in charge of broadcasting the image
of the user's environment image on the nodes

� type {String}: the type of the macro-step (expected values are Kasta�or, Chain, Tree,
Bittorrent and Dummy)

� retries {Integer} (0): the number of retries for this macro-step

� timeout {Integer}: the timeout (seconds) of this macro-step (0 for no timeout)

• /automata/macrosteps/[BroadcastEnv]/[microsteps] Microsteps speci�c con�guration (this
�eld is not mandatory)

� name {String}: the name of the micro-step, see the list bellow to get the di�erent micro-
steps names.

� timeout {Integer} (0): the timeout (seconds) of this micro-step

� retries {Integer} (0): the number of retries for this micro-step. Since most of micro-steps
perform some modi�cations on the running system and are do not perform any cleaning
operation before their execution, be very careful when using this setting.

• /automata/macrosteps/[BroadcastEnv]/[microsteps]/[substitute] Substitute this micro-step
with some custom operations (see the paragraph bellow for custom operations description)

CHAPTER 2. SERVER SIDE CONFIGURATION 35

• /automata/macrosteps/[BroadcastEnv]/[microsteps]/[pre-ops] A list of operations that have
to be done before executing the micro-step (see the paragraph bellow for custom operation
description)

• /automata/macrosteps/[BroadcastEnv]/[microsteps]/[post-ops] A list of custom operations
that have to be done after executing the micro-step (see the paragraph bellow for custom
operation description)

• /automata/macrosteps/[BootNewEnv] the macro-step in charge of rebooting the nodes after
the installation of the environment

� type {String}: the type of the macro-step (expected values are Classical, Kexec,
HardReboot, PivotRoot (not implemented yet) and Dummy)

� retries {Integer} (0): the number of retries for this macro-step

� timeout {Integer}: the timeout (seconds) of this macro-step

• /automata/macrosteps/[BootNewEnv]/[microsteps] Microsteps speci�c con�guration (this
�eld is not mandatory)

� name {String}: the name of the micro-step, see the list bellow to get the di�erent micro-
steps names.

� timeout {Integer} (0): the timeout (seconds) of this micro-step

� retries {Integer} (0): the number of retries for this micro-step. Since most of micro-steps
perform some modi�cations on the running system and are do not perform any cleaning
operation before their execution, be very careful when using this setting.

• /automata/macrosteps/[BootNewEnv]/[microsteps]/[substitute] Substitute this micro-step
with some custom operations (see the paragraph bellow for custom operations description)

• /automata/macrosteps/[BootNewEnv]/[microsteps]/[pre-ops] A list of operations that have
to be done before executing the micro-step (see the paragraph bellow for custom operation
description)

• /automata/macrosteps/[BootNewEnv]/[microsteps]/[post-ops] A list of custom operations
that have to be done after executing the micro-step (see the paragraph bellow for custom
operation description)

Custom operations
With custom operations you can send �les or execute commands.
Here is a custom operation description:

• name {String}: The name of the custom operation

• action {String}: The action that have to be performed (expected values are send, run and
exec)

• �le {String}: (To be speci�ed if the action is send or run) The path to the �le to be send/executed
(if the action is send the �le name will remains the same, if the action is run this �le need to contain
a script)

CHAPTER 2. SERVER SIDE CONFIGURATION 36

• destination {String}: (To be speci�ed if the action is send) The destination directory on the nodes
(Kadeploy3 environment variables are substitued in the path)

• params {String}:"" (To be speci�ed if the action is run) The parameters of the script.

• command {String}: (To be speci�ed if the action is exec) The command to be executed. If you
want to call a script, dont forget to add a . (or use source) before the script name to be able to use
Kadeploy3 environment variables inside of it (example: command: . /myscript.sh).

• timeout {Integer} (0): the timeout (seconds) of this custom operation

• retries {Integer} (0): the number of retries for this custom operation

• scattering {String} ('tree'): The scattering kind for this custom operation (expected values are tree
and chain)

The automata macro-steps
Here is the list of the macro-step and their implementation:

• SetDeploymentEnv

� SetDeploymentEnvProd

∗ check_nodes

∗ format_deploy_part

∗ mount_deploy_part [only with non-fsa/dd and supported fs]

∗ format_tmp_part [only if non-multipart]

� SetDeploymentEnvUntrusted

∗ switch_pxe

∗ reboot

∗ wait_reboot

∗ send_key_in_deploy_env

∗ create_partition_table

∗ format_deploy_part [only if supported fs]

∗ mount_deploy_part [only if non-fsa/dd and supported fs]

∗ format_tmp_part [only if non-multipart]

∗ format_swap_part [only if non-multipart]

� SetDeploymentEnvKexec

∗ send_deployment_kernel

∗ kexec

∗ wait_reboot

∗ send_key_in_deploy_env

∗ create_partition_table

∗ format_deploy_part [only if supported fs]

∗ mount_deploy_part [only if non-fsa/dd and supported fs]

CHAPTER 2. SERVER SIDE CONFIGURATION 37

∗ format_tmp_part [only if non-multipart]

∗ format_swap_part [only if non-multipart]

� SetDeploymentTrusted
Check if the environement is trusted based on the cluster con�guration if so, use SetDe-
ploymentEnvKexec else use SetDeploymentEnvUntrusted.

� SetDeploymentEnvUntrustedCustomPreInstall

∗ switch_pxe

∗ reboot

∗ wait_reboot

∗ send_key_in_deploy_env

∗ manage_admin_pre_install

� SetDeploymentEnvNfsroot

∗ switch_pxe

∗ reboot

∗ wait_reboot

∗ send_key_in_deploy_env

∗ create_partition_table

∗ format_deploy_part [only if supported fs]

∗ mount_deploy_part [only if non-fsa/dd and supported fs]

∗ format_tmp_part [only if non-multipart]

� SetDeploymentEnvDummy

• BroadcastEnv

� BroadcastEnvChain

∗ send_environment(�chain�)

∗ decompress_environment [only with fsa]

∗ mount_deploy_part [only with fsa/dd and supported fs]

∗ manage_admin_post_install [only if supported fs]

∗ manage_user_post_install [only if supported fs]

∗ check_kernel_�les [only if supported fs]

∗ send_key [only if supported fs]

∗ install_bootloader [only if supported fs]

� BroadcastEnvKasta�or

∗ send_environment(�kasta�or�)

∗ decompress_environment [only with fsa]

∗ mount_deploy_part [only with fsa/dd and supported fs]

∗ manage_admin_post_install [only if supported fs]

∗ manage_user_post_install [only if supported fs]

∗ check_kernel_�les [only if supported fs]

CHAPTER 2. SERVER SIDE CONFIGURATION 38

∗ send_key [only if supported fs]

∗ install_bootloader [only if supported fs]

� BroadcastEnvTree

∗ send_environment(�tree�) [only if supported fs]

∗ decompress_environment [only with fsa]

∗ mount_deploy_part [only with fsa/dd and supported fs]

∗ manage_admin_post_install [only if supported fs]

∗ manage_user_post_install [only if supported fs]

∗ check_kernel_�les [only if supported fs]

∗ send_key [only if supported fs]

∗ install_bootloader [only if supported fs]

� BroadcastEnvBittorrent

∗ send_environment(�bittorrent�)

∗ decompress_environment [only with fsa]

∗ mount_deploy_part [only with fsa/dd and supported fs]

∗ manage_admin_post_install [only if supported fs]

∗ manage_user_post_install [only if supported fs]

∗ check_kernel_�les [only if supported fs]

∗ send_key [only if supported fs]

∗ install_bootloader [only if supported fs]

� BroadcastEnvCustom

∗ send_environment(�custom�)

∗ decompress_environment [only with fsa or if no custom decompress]

∗ mount_deploy_part [only with fsa/dd and supported fs]

∗ manage_admin_post_install [only if supported fs]

∗ manage_user_post_install [only if supported fs]

∗ check_kernel_�les [only if supported fs]

∗ send_key [only if supported fs]

∗ install_bootloader [only if supported fs]

� BroadcastEnvDummy

• BootNewEnv

� BootNewEnvClassical

∗ switch_pxe

∗ umount_deploy_part [only if supported fs]

∗ reboot_from_deploy_env

∗ wait_reboot

� BootNewEnvKexec [only if supported fs and linux]

CHAPTER 2. SERVER SIDE CONFIGURATION 39

∗ switch_pxe

∗ umount_deploy_part

∗ mount_deploy_part

∗ kexec

∗ wait_reboot

� BootNewEnvHardReboot

∗ switch_pxe

∗ reboot(�hard�)

∗ wait_reboot

� BootNewEnvDummy

Note about the reboot/power-on/power-o� commands In some special cases, a such com-
mand can a�ect a group of nodes. Thus, you can specify group of nodes for a given command using
the following syntax :

...
remoteops:
reboot:
- name: very_hard
cmd: /usr/sbin/very_hard_power_o� GROUP_SHORT
group: path_to_group_of_node_for_hard_power_o�_cmd

...

You can remark two things :

• the HOSTNAME_SHORT and HOSTNAME_FQDN patterns are not used in these com-
mands, instead you must use the GROUP_SHORT and GROUP_FQDN patterns.

• the a�nity between nodes is speci�ed in a �le (here
path_to_group_of_node_for_hard_power_o�_cmd) that contains as much lines as
the number of groups. Then, each line contains the nodes of a group, for instance:
node1,node2,node3.

For a given command on a given cluster, if you specify some group of nodes (with GROUP_SHORT
or GROUP_FQDN patterns), you will also be able to specify, for some nodes of the cluster, a
command that does not imply a group of nodes. To do this, you must specify these commands in
the speci�c commands con�guration �les.

2.5 Bootloader install script

A script that installs a bootloader on the nodes must be provided for each cluster.
You can use the Kadeploy3 environment variables in your script (see section 4.4.1). The tools

you can use in your script are the ones that are installed in your deployment environment (see
section 2.9).

Be careful to install the bootloader on the deployment partition (Kadeploy3 environment variable
KADEPLOY_DEPLOY_PART) in order for kadeploy to be able to chainload on it.

Examples of scripts are provided in the distribution (in the directory scripts/bootloader/).

CHAPTER 2. SERVER SIDE CONFIGURATION 40

2.6 Partitioning script

A partitioning script must be provided for each cluster.
You can use the Kadeploy3 environment variables in your script (see section 4.4.1). The tools

you can use in your script are the ones that are installed in your deployment environment (see
section 2.9).

The script must write GPT label on each partition use by Kadeploy3. The label must be
pre�xed by KDPL_ and end by the disk name (which is given by the KADEPLOY_DISK_NAME
environment variable). For exemple, KDPL_SWAP_disk0 is a valid label. The SWAP and TMP
label are used to identify the swap and tmp partition. The default deploy partition is specify in the
cluster con�guration of Kadeploy3.

You should also use the /sbin/partprobe at the end of your script to inform the OS (deployment
environment) of partition table changes.

Examples of scripts are provided in the distribution (in the directory scripts/partitioning/).

2.7 Formating script

A formating script can be provided for each cluster. You can use the Kadeploy3 environment
variables in your script (see section 4.4.1).

The same script is used for all the formating operations (swap, tmp and deploy partitions). The
KADEPLOY_FORMAT_PART environment variable allow you to distinguish each operation.

2.8 Speci�c commands con�guration �les

In the part 2.4.2 we saw that generic commands can be given to all the nodes that belong to a
cluster. It is also possible to override these generic values for some speci�c nodes. To do this, you
must �ll the �le named command.conf in the con�guration directory.

Note: it is not mandatory to override all the commands for a given node.

2.8.1 Example of a commands �le

vm-001:
reboot_soft: ssh -q root@vm-001 /sbin/special_reboot_for_vm
reboot_hard: vmware-cmd /home/vmware/vm-001/vm-001.vmx reset hard

vm-002:
reboot_soft: ssh -q root@vm-002 /sbin/special_reboot_for_vm

2.8.2 Explanation of the �elds used in the commands �le

• /NODENAME The nodes are speci�ed by hostname (as declared in the clusters con�guration
�le)

CHAPTER 2. SERVER SIDE CONFIGURATION 41

� COMMAND {String}: the setting to override and the command

The COMMAND can should be:

• reboot_soft to override /remoteops/reboot/[]/name=soft

• reboot_hard to override /remoteops/reboot/[]/name=hard

• reboot_very_hard to override /remoteops/reboot/[]/name=very_hard

• power_on_soft to override /remoteops/power_on/[]/name=soft

• power_on_hard to override /remoteops/power_on/[]/name=hard

• power_on_very_hard to override /remoteops/power_on/[]/name=very_hard

• power_o�_soft to override /remoteops/power_o�/[]/name=soft

• power_o�_hard to override /remoteops/power_o�/[]/name=hard

• power_o�_very_hard to override /remoteops/power_o�/[]/name=very_hard

• power_status to override /remoteops/power_status/[]/name=soft

• console to override /remoteops/console/[]/name=soft

2.9 Deployment environment

There are three ways to set a deployment environment: using the production environment, using a
dedicated environment, using an NFSRoot environment.

2.9.1 Con�guration of the production environment

TODO

2.9.2 Creation of the dedicated environment

Debian: Debirf based method (recommended)

This methods consists in creating a kernel/initrd that contains all the tools required to per-
form a deployment. The debirf software (http://cmrg.�fthhorseman.net/wiki/debirf) is to
ease the creation of the deployment environment. To use these method, go to the ad-
dons/deploy_env_generation/debirf directory and execute with root rights:

> make all

The kadeploy-deploy-kernel/debirf.conf con�guration �le can be tuned if you want to add or
remove some packages in the �lesystem. To do this, you can modify the INCLUDE and EXCLUDE
values.

You can also add custom debirf modules in the kadeploy-deploy-kernel/modules/ directory.
You can �nd a module example named blacklist_example in this directory. Please refer to debirf
documentation for further information.

Once you've executed the make command, you can �nd the kernel/initrd �les of the deployment
environment in the directory kadeploy-deploy-kernel/.

http://cmrg.fifthhorseman.net/wiki/debirf

CHAPTER 2. SERVER SIDE CONFIGURATION 42

Debian: Debootstrap based method

This methods consists in creating a kernel/initrd that contains all the tools required to perform a
deployment. Two scripts are provided to ease the creation of the deployment environment. To use
these scripts, go to the addons/deploy_env_generation/debootstrap directory and execute with
root rights:

> sh make_debootstrap.sh
> sh make_kernel.sh

The make_debootstrap.sh script can be tuned if you want to add or remove some packages in
the �lesystem. To do this, you can modify the DEBOOTSTRAP_INCLUDE_PACKAGES and
DEBOOTSTRAP_EXCLUDE_PACKAGES values.

The make_kernel.sh script prompts the user the following things:

• the size of the uncompressed initrd in KB;

• the kernel version;

• the absolute path to a kernel con�g �le;

• the use of automatic con�guration for the new �elds in kernel con�guration.

The size of the uncompressed initrd depends on what you have to put in your deployment
environment. If you use the make_debootstrap.sh script, the initrd size should be at least 200MB.
Depending on the kernel version you choose, the script will fetch the vanilla kernel corresponding
to this version. Once a kernel has been fetched, it won't be fetched again in another run. Thus,
you have to delete the kernel �le if you want to fetch it again. At the opposite, if you do not want
to use the sources of the vanilla kernel but your own sources, you can put your own kernel (tar.bz2
compressed) in the current directory. The only requirement is to name the �le with the following
pattern: linux-version.tar.bz2. Then, at the kernel version prompt, just enter the version value.

After the execution of make_kernel.sh, a directory pre�xed with built- will be created. This
directory contains the kernel and the initrd �les, pre�xed with deploy-.

Centos: Kadeploy provided scripts

This methods consists in creating a kernel/initrd that contains all the tools required to perform a
deployment. A custom ruby script can be used to ease the creation of the deployment environment.
To use these method, go to the addons/deploy_env_generation/centirf directory and execute with
root rights:

> make all

Once you've executed the make command, you can �nd the kernel/initrd �les of the deployment
environment in the directory centirf/.

2.9.3 Creation of the NFSRoot environment

TODO

CHAPTER 2. SERVER SIDE CONFIGURATION 43

2.10 Con�guration of the deploy user

In order to use the Kasta�or based �le broadcaster (BroadcastEnvKasta�or macro-step), the server
must be able to perform an ssh connection on itself. Thus, you must add the deploy key installed in
the /etc/kadeploy3/keys/id_deploy.pub in the .ssh/authorized_keys �le of the deploy user. This
step is optional if you do not plan to use the BroadcastEnvKasta�or macro-step.

2.11 Con�guration of SSH-agent

It is possible to make the Kadeploy server load an SSH-agent at launch time. This can be helpful
to use SSH functionalities such as the SSH-agent forwarding to communicate with the nodes. For
sample this functionality can be used in the TakTuk connector (/external/taktuk/connector, section
2.1) or in the reboot and power operations (/remoteops, section 2.4.2).

To enable this functionnality, the SSH private key to be used with the SSH-agent must be
present as keys/id_deploy of the server con�guration directory (see section 2). By default (if the
�le /etc/kadeploy3/keys/id_deploy does not exist), no agent is loaded at launch time.

Chapter 3

Client side con�guration

On the client side, you only have to con�gure the �le named client.conf. This �le de�nes Kadeploy
servers and a default server.

Example of a client con�guration �le

default: nancy
servers:
- name: lille
hostname: frontend.lille.grid5000.fr
port: 25300
auth_headers_pre�x: X-Kadeploy-

- name: nancy
hostname: nancy.lille.grid5000.fr
port: 25300
secure: true

Explanation of the �elds

• /default {String}: the default Kadeploy server to use (name should be included in the list of
/[servers]/name)

• /[servers] The di�erent servers

� name {String}: the Kadeploy server name

� hostname {String}: the Kadeploy server hostname

� port {Integer}: the port the Kadeploy server is listening on

� secure {Boolean} (true): specify if the server use a secure connection

44

CHAPTER 3. CLIENT SIDE CONFIGURATION 45

� auth_headers_pre�x {String} (�): The client provides authentication information to the
server through HTTP headers, this is the pre�x for each information kind (sample of
authentication header information with the default setting: X-Kadeploy-User). This
setting depends on the server's con�guration. When not speci�ed (empty), the client do
an extra GET HTTP request on the server to determine this value.

Chapter 4

User guide

4.1 Overview of the Kadeploy tools

4.1.1 Kadeploy

The Kadeploy tool is base on a client/server architecture. Thus, it is composed both of a server
part and a client part. The server must be run with the root rights and the client is used with
standard rights.

4.1.2 Kareboot

Kareboot is designed to perform several reboot operations on the nodes.

4.1.3 Kaenv

Kaenv is designed to manage the users environments.

4.1.4 Kaconsole

Kaconsole is designed to provide a user to access to the consoles of the nodes on which the user has
the deployment rights.

4.1.5 Kastat

Kastat is designed to show several statistics about the deployments.

4.1.6 Kanodes

Kanodes is designed to show the state of the nodes.

4.1.7 Kapower

Kapower is designed to control the power state of the nodes.

46

CHAPTER 4. USER GUIDE 47

4.1.8 Karights

Karights is designed to allow users to perform some deployments on a set of nodes throughout a
reservation. This tool is typically called by the resource manager at the prologue and epilogue steps.

4.2 Use the Kadeploy tools

4.2.1 Kadeploy server

All the Kadeploy tools use the Kadeploy server. On a well con�gured system, the Kadeploy server
can be launched with the following command (with root rights):

> kadeploy3d

4.2.2 Kadeploy client

The Kadeploy client is actually the user interface for the Kadeploy software. It can be used by
using the kadeploy3 command. The CLI looks like this:

> kadeploy3 -h
__HELP_kadeploy3_HELP__

At least, Kadeploy must be called with one node and an environment. The nodes to deploy can
be speci�ed by using several -m|--machine options, or the -f|--�le options (one node per line in the
�le), or a mix of both. The environment can be speci�ed with the -e|--env-name option if you want
to use an environment recorded in the environment database or with the -a|--env-�le options if you
want to use an environment described in a �le. Refer to the 4.2.4 part for information about the
environment description. Here are some examples:

> kadeploy3 -m gdx-5.orsay.grid5000.fr -e lenny-x64-nfs-1.0 -o nodes_ok -n nodes_ko
> kadeploy3 -m gdx-[5-12].orsay.grid5000.fr -e lenny-x64-base -o nodes_ok -n nodes_ko
> kadeploy3 -f nodes -a custom_env.dsc
> kadeploy3 -f nodes -m gdx-5.orsay.grid5000.fr -a custom_env.dsc
> cat node�le|kadeploy3 -f - -e lenny-x64-base

We present now several use cases.

Use case 1 - basic usage - deployment of a node

> kadeploy3 -m gdx-5.orsay.grid5000.fr \
-e lenny-x64-nfs-1.0 \
--verbose-level 5 \
-k ~/.ssh/id_rsa.pub

This command performs the deployment of the environment lenny-x64-nfs-1.0 on the node gdx-
5.orsay.grid5000.fr and copies the SSH public key /.ssh/id_rsa.pub of the user in the deployed
environment to allow a direct connection with the root account. Furthermore, the verbose level is
set to 5, which means that you want the maximum verbose information.

CHAPTER 4. USER GUIDE 48

Use case 2 - basic usage - deployment of a range of nodes

> kadeploy3 -m gdx-[45-51].orsay.grid5000.fr \
-e lenny-x64-base \
-k

This command performs the deployment of the environment lenny-x64-base on the nodes gdx-
45.orsay.grid5000.fr, gdx-46.orsay.grid5000.fr, ..., gdx-51.orsay.grid5000.fr. Furthermore, it copies
the entries of the /.ssh/authorized_keys user �le in the /root/.ssh/authorized_keys of the deployed
nodes.

Use case 3 - basic usage - deployment of a set of nodes

> kadeploy3 -f ~/machine�le \
-e custom_env \
-l johnsmith \
-o nodes_ok -n nodes_ko

This command uses the environment custom_env of the user johnsmith to deploy the nodes speci�ed
in /machine�le. The list of the nodes correctly deployed will be written in the �le speci�ed with the -
o|--output-ok-nodes option. Idem for the nodes not correctly deployed with the -o|--output-ko-nodes
option. Refer to the part 4.2.4 about Kaenv to know more about the environment management.

Use case 4 - basic usage - execution of a script after deployment

> kadeploy3 -f $OAR_NODE_FILE \
-a ~/my-lenny.dsc \
-r ext3 \
-p 4 \
-s ~/launcher.sh

This command performs the deployment of the environment described by the �le /my-lenny.dsc
(useful if you don't want to share your environment with the other users) on the nodes speci�ed
in the �le pointed by $OAR_NODE_FILE (typically a variable set by the resource manager). We
specify here that we want the /tmp partition to be reformated. Furthermore, we specify that we
want to deploy the environment on the 4th disk partition, instead of the default one. Finally, we
ask to execute the script /launcher.sh at the end of the deployment.

Use case 5 - advanced usage - play with breakpoint

> kadeploy3 -m gdx-5.orsay.grid5000.fr \
-e lenny-x64-nfs-1.0 \
--verbose-level 5 \
--breakpoint BroadcastEnvKasta�or:manage_user_post_install \
-d

This kind of command can be used for debug purpose. It performs a deployment with the max-
imum verbose level and it asks to stop the deployment work�ow just before executing the man-
age_user_post_install micro-step of the BroadcastEnvKasta�or macro-step. Thus you will be able
to connect in the deployment environment and to debug what you want. Furthermore, the full
output of the distant commands performed is shown.

CHAPTER 4. USER GUIDE 49

Use case 6 - advanced usage - speci�c PXE pro�le

> kadeploy3 -m gdx-[5-10].orsay.grid5000.fr \
-e lenny-x64-nfs-1.0 \
-w ~/pxe_pro�le -x "~/custom-kernel,~/custom-initrd" \
--set-pxe-pattern ~/singularities

In some speci�c case, you may want to use a speci�c PXE pro�le to boot your nodes. To do this, you
have to provide a PXE pro�le. Warning, the �les used in your PXE pro�l (Comboot, kernel, initrd,
...) must be readable by the TFTP server on the Kadeploy server. So Kadeploy o�ers a feature to
stage some �les in an area where the �les can be read by the TFTP server. This can be achieved
with the -x|--upload-pxe-�les option. You must know that such uploaded �les will be copied in the
tftp_images_path. Those �les will then be available with the pre�x FILES_PREFIX--.

Here is an example of PXE pro�le that uses uploaded �les:

PROMPT 1
SERIAL 0 38400
DEFAULT bootlabel
DISPLAY messages
TIMEOUT 50

label bootlabel
KERNEL FILES_PREFIX--custom-kernel

APPEND initrd=FILES_PREFIX--custom-initrd root=/dev/sda3 node_id=NODE_SINGULARITY

In this example, FILES_PREFIX-- will be replaced by the pre�x added to each �les sent into
the TFTP repository via the -x|--upload-pxe-�les option (be careful not to forget the -- su�x).

You can notice the NODE_SINGULARITY pattern used in the PXE pro�le. Thanks to the
--set-pxe-pattern option, you can also provide a �le that de�nes a value in the PXE pro�le that
depends on the node concerned. This �le must de�ne on each line a couple of value as follows :
hostname,node singularity. In our example, the �le /singularities can contains something like:

gdx-5.orsay.grid5000.fr,1
gdx-6.orsay.grid5000.fr,2
gdx-7.orsay.grid5000.fr,3
gdx-8.orsay.grid5000.fr,3
gdx-9.orsay.grid5000.fr,4
gdx-10.orsay.grid5000.fr,5

Use case 7 - advanced usage - speci�c bootloader requirement

> kadeploy3 -m gdx-5.orsay.grid5000.fr \
-e Custom_linux_env \
--disable-bootloader-install

If you deploy a Linux based environment and if the administrator choose to boot the nodes with the
chainload fashion, Kadeploy will install automatically a bootloader on the deployment partition.
In some cases, you may want to bypass this installation because you have installed at the time

CHAPTER 4. USER GUIDE 50

of a previous deployment another bootloader. This allows to avoid the overriding of the installed
bootloader. However, if no bootloader is installed or if the installed bootdloader is not able to boot
your environment, the won't be reachable at the end of the deployment.

Use case 8 - advanced usage - get a work�ow id for an external deployment tracking

> kadeploy3 -m gdx-5.orsay.grid5000.fr \
-e Custom_linux_env \
--write-work�ow-id wid_�le

This command performs the deployment of the Custom_linux_env environment and write the
work�ow id of this deployment in the �le wid_�le. The aim of getting the deployment id is to
monitor the deployment from an extern tool thanks to the Kanodes tool.

Use case 9 - expert usage - modify the deployment work�ow

> kadeploy3 -m gdx-5.orsay.grid5000.fr \
-e "FreeBSD 7.1" \
--force-steps "SetDeploymentEnv|SetDeploymentEnvProd:2:100&

BroadcastEnv|BroadcastEnvKasta�or:2:300&
BootNewEnv|BootNewEnvKexec:1:150"

If you are a power user, you can specify the full Kadeploy work�ow and bypass the default con-
�guration. Use it at your own risk since the nodes may not support all the Kadeploy features
like the Kexec optimization for instance. The syntax for the --force-steps option is the same that
for the /automata/macrosteps �eld if the Kadeploy con�guration. The di�erence is that the three
macrostep are de�ned on the same line, with the & character as a delimiter between the macro-
steps. Warning, you must de�ne at least one implementation for each macro-step, without newline
(unlike the example).

Use case 10 - expert usage - insert custom operations in the deployment work�ow

> kadeploy3 -m gri�on-1.nancy.grid5000.fr \
-e squeeze-x64-base \
--set-custom-operations ~/custom_ops.yml

For very speci�c purpose, you can add some custom operations in the deployment work�ow. To do
this, you have to specify these operations in a YAML �le where you can specify the operations that
must be executed before/after/instead a micro-step.

Here is a description of the YAML �le:

• /MacroStepName The name of the target macro-step (see section 2.4.2 for a list of allowed
macro-steps)

• /MacroStepName/MicroStepName The name of the target micro-step (see section 2.4.2 for a
list of allowed micro-steps)

� override {Boolean} (false): Override custom steps that have been de�ned in the cluster
con�guration.

CHAPTER 4. USER GUIDE 51

• /MicroStepName/MicroStepName/[substitute] Substitute this micro-step with some custom
operations (see section 2.4.2 for custom operations description)

• /MicroStepName/MicroStepName/[pre-ops] A list of operations that have to be done before
executing the micro-step (see section 2.4.2 for custom operation description)

• /MicroStepName/MicroStepName/[post-ops] A list of custom operations that have to be done
after executing the micro-step (see section 2.4.2 for custom operation description)

When you are executing a command or a script (via the exec or run action), you can use the
Kadeploy3 environment variables (see section 4.4.1).

Note: This variables will also be substitued in your destination directory speci�cation when you
are using the send action.

Here is an example of a �le that contains custom operations:

> cat ~/custom_ops.yml
SetDeploymentEnvUntrusted:
create_partition_table:
substitute:
- action: run
name: my_partitioning
�le: partitioning.sh
timeout: 16
scattering: tree

BroadcastEnvKasta�or:
send_environment:
post-ops:
- action: exec

command: echo 'net.ipv4.ip_forward = 1' >> $KADEPLOY_ENV_EXTRACTION_DIR/etc/sysctl.conf
- action: exec
command: mkdir -p $KADEPLOY_ENV_EXTRACTION_DIR/mypath

- action: send
�le: my_custom_�le
destination: $KADEPLOY_ENV_EXTRACTION_DIR/mypath
retries: 1
timeout: 24
scattering: chain

Use case 11 - expert usage - deploying a dd image on a block device

> kadeploy3 -m gri�on-1.nancy.grid5000.fr \
-e ddgz_fulldisk_image \
-b /dev/sda \
-c 1

For some speci�c purpose, you may want to deploy a dd image of an entire -partitioned- disk.
To do this, you �rst have to create a ddgz image of the disk you want to deploy. Then you have
to specify on which block device you want your image to be deployed with the -b option. You also
need to tell on which partition the chainloaded reboot have to be performed with the -c option
(typically a partition where a bootloader was installed, use 0 if the bootloader is installed on the
MBR).

CHAPTER 4. USER GUIDE 52

4.2.3 Kareboot

Kareboot can be used by using the kareboot3 command. The CLI looks like this:

> kareboot3 -h
__HELP_kareboot3_HELP__

At least, Kareboot must be called with one node and a reboot kind. The nodes to reboot can
be speci�ed by using several -m|--machine options, or the -f|--�le options (one node per line in the
�le), or a mix of both. The expected values for the -r|--reboot-kind are:

• simple_reboot: perform a simple reboot of the nodes. Kareboot �rstly tries to perform a soft
reboot, then a hard reboot is performed and lastly a very hard reboot if it doesn't success
before.

• set_pxe: modify the PXE pro�le with the one given with the -w|--set-pxe-pro�le options and
perform a simple reboot.

• env_recorded: perform a reboot on an environment that is already deployed (for instance,
the production environment on the production part). This operation must be used with the
-e and -p options at least.

• deploy_env: perform a reboot on the deployment environment. This can be used with the
-k|--key option.

Here are some basic examples:

> kareboot3 -m gdx-5.orsay.grid5000.fr -r simple_reboot
> kareboot3 -m gdx-[5-8].orsay.grid5000.fr -r simple_reboot
> cat node�le|kareboot3 -f - -r simple_reboot
> kareboot3 -m gdx-5.orsay.grid5000.fr -r simple_reboot -o reboot_ok.txt \

-n reboot_ko.txt
> kareboot3 -f nodes -r set_pxe -w ~/customized_pxe_pro�le
> kareboot3 -f nodes -r set_pxe -w ~/customized_pxe_pro�le -l hard \

-x "~/custom_kernel,~/custom_initrd" \
--set-pxe-pattern ~/singularities (Cf. Kadeploy use case 6)

> kareboot3 -f nodes -r deploy_env -k .ssh/id_rsa
> kareboot3 -r env_recorded -e production_environment \

-p 2 -u root -m gdx-5.orsay.grid5000.fr
> kareboot3 -r env_recorded -e production_environment \

-p 2 -u root -m gdx-5.orsay.grid5000.fr \
--no-wait

Kareboot can be used to manage the destructive environment. Typically, at the end of a reserva-
tion with deployment, the resource manager will perform a reboot on the production environment.
By using the -c|--check-destructive-tag option (for instance: kareboot -f nodes -r env_recorded -c),
Kareboot �rstly checks if the deployed environment on the involved nodes is tagged like a destructive
environment. If the environment is considered as destructive, Kareboot does not perform a reboot
and returns the 2 value. In this case, the recorded environment has been destroyed and should
be deployed again. If the environment is not considered as destructive, the reboot is performed.

CHAPTER 4. USER GUIDE 53

If the nodes are correctly rebooted on the production environment, Kareboot returns the 0 value.
Otherwise it returns the 1 value, what means that the recorded environment has been destroyed
and that it should be deployed again.

In the Kaenv part you can �nd the way to remove the destructive tag of an environment.
Warning, if the --no-wait option is used, Kareboot won't wait the end of the reboot to exit.

Thus, this option cannot be used with the -o, --output-ok-nodes and -n, --output-ko-nodes options.

4.2.4 Kaenv

Command line interface

Kaenv can be used by using the kaenv3 command. The CLI looks like this:

> kaenv3 -h
__HELP_kaenv3_HELP__

We present now several use cases.

Use case 1 - list the environments

> kaenv3 -l

This command lists the environment that you have previously recorded, and the public environ-
ments.

Use case 2 - list the shared environments recorded by another user

> kaenv3 -l -u johnsmith -s

This command lists the environment of the user johnsmith. If you use �*� as a user value, it lists
the environments of all the users. Furthermore, the -s|--show-all-versions option is used to show all
the versions of each environment. If this option is not speci�ed, only the version is displayed.

Use case 3 - print an environment

> kaenv3 -p FreeBSD --env-version 3 -u johnsmith

This command lists prints the version 3 of the environment FreeBSD that belongs to johnsmith. If
no version number is given, the last version of the environment is printed. To print an environment
you own, there is no need to use the -u|--user option.

Use case 4 - add an environment described in a �le

> kaenv3 -a ~/new_env.dsc

This command adds the environment de�ned in the �le /new_env.dsc.

CHAPTER 4. USER GUIDE 54

Use case 5 - add an environment described in an http �le

> kaenv3 -a http://www.grid5000.fr/pub/johnsmith/env.desc

This command adds the environment de�ned in the �le
http://www.grid5000.fr/pub/johnsmith/env.desc.

Use case 6 - delete an environment

> kaenv3 -d FreeBSD --env-version 2

This command deletes the version 2 of the environment FreeBSD from the environment database.
If no version number is given, all the versions are deleted.

Use case 7 - remove the destructive property of an environment

> kaenv3 --toggle-destructive-tag FreeBSD --env-version 3

This command toggle the destructive tag of the version 3 of the environment FreeBSD. If no version
number is given, the latest version of the environment is considered.

Use case 8 - update the tarball of an environment

> kaenv3 --update-image-checksum sidx64-base

This command is useful if you modify the tarball of the environment sidx64-base without modifying
the kernel or the initrd and if you do not want to record a new environment. Thus, it will update
the MD5 of the tarball �le. This operation is required if something change in the tarball, otherwise
the environment will be unusable.

Use case 9 - update the postinstalls of an environment

> kaenv3 --update-postinstalls-checksum sidx64-base

This command does the same thing than the precedent one but it concerns the post-install �les.
This operation is required if something change in the post-install �les, otherwise the environment
will be unusable.

Use case 10 - de�ne the visibility of an environment

> kaenv3 --set-visibility-tag sidx64-base --env-version 3 -t private

This command allows to de�ne the environment sidx64-base version 3 as a private environment.
Note that the environment version is required and only the almighty environment users are allowed
to de�ne an environment as public.

CHAPTER 4. USER GUIDE 55

Environment description

The description of an environment is made with a YAML �le (see section 2).
Here is an example of an environment description:

name: debian-xen
version: 3
description: https://www.grid5000.fr/index.php/Etch-x64-xen-1.0
author: John Smith
visibility: shared
image:
�le: /grid5000/debian-x64-xen-1.0.tgz
kind: tar
compression: gzip

preinstall:
archive: /home/john/test/pre_install.tgz
compression: gzip
script: launch.sh

postinstalls:
- archive: /home/john/test/post_install1.tgz
compression: gzip
script: traitement.sh

- archive: /home/john/test/post_install2.tgz
compression: gzip
script: start.sh

boot:
kernel: /boot/vmlinuz-2.6.18-6-xen-amd64
kernel_params: console=tty0 console=ttyS1,38400n8
initrd: /boot/initrd.img-2.6.18-6-xen-amd64
hypervisor: /boot/xen-3.0.3-1-amd64.gz
hypervisor_params: dom0_mem=1000000

partition_type: 0x83
�lesystem: ext2

Another (shorter) example:

name: freebsd
version: 1
image:
�le: /grid5000/freebsd.ddgz
kind: dd
compression: gzip

Explanation of the �elds used in the environment description:

• name {String}: name of the environment. The spaces are allowed in the name but remember
to use some quotes around it when you use Kadeploy or Kaenv.

• version {Integer} (1): the version of the environment

CHAPTER 4. USER GUIDE 56

• description {String} (""): the description of the environment

• author {String} (""): the author of the environment

• visibility {String} ('private'): de�ne the visibility level of an environment. Three levels are
available:

� private: only the owner of the environment can see and use it ;

� shared: the environment can be used by everybody but it must explicitly use with the
owner name ; furtermore, it won't be listed unless the owner name is speci�ed ;

� public: the environment can be used by everybody and it is listed without speci�ng its
owner name.

• destructive {Boolean} (false): specify that the environment is destructive

• multipart {Boolean} (false): specify that the environment is multi-partitioned. Be careful,
with multi-partitioned environment, speci�c options have to be set ((Multi-partitioned) tagged
ones).

• os {String}: kind of environment (expected values are linux, xen or other).

• /image the disk image of the environment

� �le {String}: the path to the disk image of the environment (can be local path or URL)

� kind {String}: specify the kind of image (expected values are tar (a tarball archive of
the environment), dd (a dd image of the environment) or fsa (a fsarchiver image of the
environment, see section 4.4.5))

� compression {String/Integer}: the compression of the disk image �le (expected values are
Strings gzip, xz, zstd or bzip2 and Integer [0..9] for FSA image)

• /preinstall a pre-installation script that will be executed before the environment is sent and
installed (useless unless the kind of image is tar)

� archive {String}: the path to the archive that contains the scripts (can be local path or
URL)

� compression {String}: the compression of archive (expected values are gzip or bzip2)

� script {String} (none): the script to execute. For debug purpose, you can use the keyword
breakpoint instead of a script. Thus, the �le will be transferred, the deployment work�ow
will be stopped and you will be able to connect in the deployment environment to debug.
Finally, the script value can be none if no script must be launched. Warning, if the
preinstall �eld is ful�lled, the entire SetDeploymentEnv step de�ned by the administrator
will be bypassed. Refer to the 4.4.3 part concerning build of a pre-install.

• /[postinstalls] some post-installation script that will be executed after the environment is sent
and installed (useless unless the kind of image is tar). It will only be executed if the �lesystem
is readable/writable.

� archive {String}: the path to the archive that contains the scripts (can be local path or
URL)

CHAPTER 4. USER GUIDE 57

� compression {String}: the compression of the archive (expected values are gzip or bzip2)

� script {String} (none): the script to execute. For debug purpose, you can use the keyword
breakpoint instead of a script. Thus, the �le will be transferred, the deployment work�ow
will be stopped and you will be able to connect in the deployment environment to debug.
Finally, the script value can be none if no script must be launched. pre-install.

• /boot information about the system that will be installed (useless if the kind of image is dd)

� kernel {String} (""): path of the kernel in the tarball.

� kernel_params {String} (""): set of parameters that must be applied to the kernel for a
correct boot

� initrd {String} (""): path of the initrd in the tarball.

� hypervisor {String} (""): path of the hypervisor in the tarball. This �elds is only required
for the Xen based environments

� hypervisor_params {String} (""): set of parameters that must be applied to the hyper-
visor for a correct boot. This �elds is only required for the Xen based environments

� block_device {String}: (Multi-partitioned) specify the block_device that contains the
partition to boot

� partition {Integer}: (Multi-partitioned) specify the partition that contains the system to
be booted

• partition_type {Integer} (0): the MS-DOS partition type, you can specify hexadecimal values
using the pre�x 0x. For example, 0x83 or 131 for Linux, 0xa5 for FreeBSD, ...

• �lesystem {String} (""): type of �lesystem wished on the deployment partition. It must be
known by the mkfs command (useless unless the kind of image is tar)

• /options Extra options

• /options/[partitions] (Multi-partitioned) Information about the dispatching of the partitions
included inside the image �le on the partitions of the hard disk.

� id {Integer}: (Multi-partitioned) the ID of the partition in the multi-partitioned image
�le

� device {String}: (Multi-partitioned) the physical partition (for example: /dev/sda3)
where the partition #id of the multi-partitioned image �le has to be saved

4.2.5 Kaconsole

Kaconsole can be used by using the kaconsole3 command. It has only one use case that is opening
a console on a given node, for instance:

> kaconsole3 -m gdx-25.orsay.grid5000.fr

Kaconsole can't be used on a node on which a user doesn't have the deployment rights. Further-
more, as soon as the deployments rights are revoked for a user, ever open console is automatically
closed.

CHAPTER 4. USER GUIDE 58

4.2.6 Kastat

Kastat can be used by using the kastat3 command. The CLI looks like this:

> kastat3 -h
__HELP_kastat3_HELP__

We present now the use cases. Note that all the commands can be �ltered with a period by
using the -x|--date-min and -y|--date-max options.

Use case 1 - get the information about the deployments performed on a node

> kastat3 -d -m gdx-25.orsay.grid5000.fr

This command prints all the deployment performed on the node gdx-25.orsay.grid5000.fr.

Use case 2 - get the information about deployments performed on a range of node

> kastat3 -d -m gdx-[25-130].orsay.grid5000.fr

This command prints all the deployment performed on the nodes gdx-25.orsay.grid5000.fr, gdx-
26.orsay.grid5000.fr, ..., gdx-130.orsay.grid5000.fr.

Use case 3 - print only a subset of the information about the deployments performed

> kastat3 -d -f hostname -f env -f success

This command prints all the deployment performed. Because the -f|--�eld option is used, only the
�elds hostname, env, and success are printed. If the option -f|--�eld is not used, all the �elds are
printed.

Use case 4 - print the failure rate about the nodes wrt the deployments that occurs
between two dates

> kastat3 -b -x 2009:02:12:08:00:00 -y 2009:02:13:08:00:00

This command prints the failure rate of all the nodes (at least deployed one time) during the period
between the 2009/02/12 - 8h00 and the 2009/02/13 - 8h00. The -x|--date-min and -y|--date-max
options can be used separately or can be omitted.

Use case 5 - print the information about the nodes that have at least a given failure
rate

> kastat3 -c 25 -x 2009:02:12:08:00:00

This command prints the nodes that have a failure rate of at least 25% from the 2009/02/12 - 8h00.

CHAPTER 4. USER GUIDE 59

Use case 6 - print the information about the nodes that require several retries to deploy
correctly

> kastat3 -a 3 -s 1

This command prints the information about the deployments that requires at least 3 retries in the
macro-step 1. If the -s|--step option is not set, the information about the deployments that requires
at least 3 retries in any macro-step are printed.

4.2.7 Kanodes

Kanodes can be used by using the kanodes3 command. The CLI looks like this:

> kanodes3 -h
__HELP_kanodes3_HELP__

We present now the use cases.

Use case 1 - print the deployment state of the nodes

> kanodes3 -d

This command prints the global state of all the nodes managed by a Kadeploy server. The output
is as follows 1,2,3,4,5,6, where :

• 1 is the hostname ;

• 2 is the deployment state of the node (prod_env, deployed, deploy_failed, aborted) ;

• 3 is the username who launched the last deployment ;

• 4 is the environment name ;

• 5 is the environment version ;

• 6 is the environment owner.

Use case 2 - print the deployment state of some nodes

> kanodes3 -d -m gdx-25.orsay.grid5000.fr -m netgdx-[1-30].orsay.grid5000.fr -f machine_�le

This command prints the global state of the node gdx-25.orsay.grid5000.fr the nodes netgdx-
1.orsay.grid5000.fr, netgdx-2.orsay.grid5000.fr, ..., netgdx-30.orsay.grid5000.fr and of the nodes
listed in the �le machine_�le.

Use case 3 - get information about all the current deployment work�ows

> kanodes3 -s

This command prints a YAML output of the deployment state of all the nodes currently in de-
ployment. On the YAML output, the nodes are sorted according to the deployment work�ow they
belong to.

CHAPTER 4. USER GUIDE 60

Use case 4 - get information about a speci�c deployment work�ows

> kanodes3 -s -w 78

This command prints a YAML output of the deployment state of all the nodes currently in the
deployment number 78. The deployment number, or work�ow id, can be obtained thanks to a
Kadeploy option.

4.2.8 Kapower

Kapower can be used by using the kapower3 command. The CLI looks like this:

> kapower3 -h
__HELP_kapower3_HELP__

Use case 1 - print the power status of some nodes

> kapower3 --status -m gdx-[25-35].orsay.grid5000.fr -o nodes_up -n nodes_down

This command print the power status of the nodes gdx-25.orsay.grid5000.fr to gdx-
35.orsay.grid5000.fr. Furthermore, the list of the powered up nodes is stored in nodes_up and
the list of the powered o� nodes is stored in nodes_down.

Use case 2 - power o� some nodes

> kapower3 --o� -f machine_�le --server lille

This command powers o� the nodes nodes contained in the machine_�le �le. Since the --server is
used, the nodes of a distant site are concerned by the operation ; in this example, the lille site is
concerned.

Use case 3 - power on some nodes

> kapower3 --on -m gdx-25.orsay.grid5000.fr --no-wait

This command powers on the node gdx-25.orsay.grid5000.fr without waiting the end of the opera-
tion to return.

4.2.9 Karights

Karights can be used by using the karights3 command (it is designed for administrators in order to
allow users to perform deployments). The CLI looks like this:

> karights3 -h
__HELP_karights3_HELP__

We present now the use cases.

Use case 1 - give some rights to a user on a node

> karights3 -a -m gdx-25.orsay.grid5000.fr -p /dev/sda3 -u johnsmith

This command gives some rights for a given user.

CHAPTER 4. USER GUIDE 61

Use case 1 - give some rights to a user on several nodes

> karights3 -a -m gdx-[25-32].orsay.grid5000.fr -p /dev/sda3 -u johnsmith

This command gives some rights for a given user on a range of nodes.

Use case 3 - give all the rights to a user on all the nodes

> karights3 -a -m "*" -p "*" -u root

This command gives all the rights on all the nodes to the user root.

Use case 4 - give some rights on a node and remove existing ones

> karights3 -a -m gdx-25.orsay.grid5000.fr -p /dev/sda3 -u johnsmith -o

This command gives some rights for a given user. Furthermore, if some rights (excepted those
speci�ed with *) were previously given on the node gdx-25.orsay.grid5000.fr, they are deleted.

Use case 5 - remove som rights

> karights3 -d -m gdx-25.orsay.grid5000.fr -p /dev/sda3 -u johnsmith

This command removes some rights for a given user.

Use case 6 - show the rights of a user

> karights3 -s -u johnsmith

This command shows the rights given to user.

4.3 What you should know if you want to do kernel develop-

ment on deployed nodes

Kernel development implies to know what Kadeploy do concerning the boot of the deployed envi-
ronments.

4.3.1 Kadeploy 3 behavior

Kadeploy 3 has a di�erent behavior depending on the kind of deployed environment. Reminder:
the kind of environment is de�ned in the environment description.

Linux environments

On a Linux environment, Kadeploy 3 automatically installs the Grub 2 bootloader on the deployed
partition once the tarball is broadcasted. Then it modi�es the PXE pro�le of the concerned nodes
in order to ask the chainload on the deployed partition. This is performed thanks to pxelinux and
the comboot chain.c32.

CHAPTER 4. USER GUIDE 62

Xen environments

On a Xen environment, Kadeploy 3 doesn't install the Grub 2 bootloader since Grub 2 there are
some known issues when booting a Xen Dom0 with Grub 2. Thus Kadeploy 3 uses the old method
that consists in booting the nodes in a pure PXE fashion. To do that, Kadeploy extracts the
kernel, initrd and hypervisor �les from the environment tarball and modi�es the PXE pro�le of the
concerned nodes in order to ask their in pure PXE. This is performed thanks to pxelinux and the
comboot mboot.c32.

Other environments

On anOther environment, Kadeploy 3 assumes that a bootloader is already installed on the partition
since a full partition image (dd.gz image) has been copied. Thus, it only modi�es the PXE pro�le
of the concerned nodes in order to ask the chainload on the deployed partition, like in the Linux
case.

4.3.2 Tips to simply use your new kernel

If you do kernel development on the deployed nodes, you will probably want to update you kernel
without recording a new image and redeploying it to save time, especially to perform small tests.

Linux environments

On a Linux environment, after having updated your kernel/initrd, 2 cases are imaginable:

1. your kernel/initrd have the same name, so you can reboot the node without modifying any-
thing.

2. your kernel/initrd have a new name, so you will have to update the grub con�guration �le
(/boot/grub/grub.cfg) of your node in order to allow grub to select the new kernel and then
you can reboot the node.

Xen environments

On a Xen environment, the things are a little bit more complicated. As far as the ker-
nel/initrd/hypervisor are extracted by Kadeploy in a dedicated cache, changing them on the de-
ployed nodes won't have any e�ect for the next reboot. So you have to use a feature of Kareboot
that allows to reboot a node after having changed the PXE pro�le of the node. For instance:

> kareboot3 -m gdx-25.orsay.grid5000.fr -r set_pxe -w ~/pxe_pro�le_xen \
-x "~/custom_kernel,~/custom_initrd,~/custom_hypervisor"

Kadeploy has the same feature, so please refer to the use case about speci�c PXE pro�le for more
information.

Other environments

On an Other environment, you eventually have to update your bootloader in order to boot on the
new kernel.

CHAPTER 4. USER GUIDE 63

4.4 Extra

4.4.1 Kadeploy3 Environment variables

When writing a script for an admin pre-install, an admin/user post-install or some custom opera-
tions, you can use the following environment variables :

• KADEPLOY_CLUSTER : cluster on which the pre/post install is launched

• KADEPLOY_ENV : environment deployed

• KADEPLOY_ENV_KERNEL : the path to the kernel �le inside the deployed environment
directory

• KADEPLOY_ENV_INITRD : the path to the initrd �le inside the deployed environment
directory

• KADEPLOY_ENV_KERNEL_PARAMS : the deployed environment kernel parameters

• KADEPLOY_ENV_HYPERVISOR : the path to the hypervisor's kernel �le inside the de-
ployed environment directory (usefull when deploying a Xen environment for example)

• KADEPLOY_ENV_HYPERVISOR_PARAMS : the deployed environment hypervisor pa-
rameters

• KADEPLOY_DEPLOY_PART : path to the deployment partition

• KADEPLOY_TMP_PART : path to the tmp partition

• KADEPLOY_SWAP_PART : path to the swap partition

• KADEPLOY_DISK_NAME : the Kadeploy3 name of the disk used in deployment

• KADEPLOY_BLOCK_DEVICE : the path to the block device used in deployment

• KADEPLOY_ENV_EXTRACTION_DIR : path where the environment tarball is extracted

• KADEPLOY_PREPOST_EXTRACTION_DIR : path where the pre/post tarball are ex-
tracted

• KADEPLOY_TMP_DIR : a temporary directory (to be used for your scripts)

• KADEPLOY_OS_KIND : the kind of operating system being deployed (the value of the
environment_kind �eld of the environment description)

• KADEPLOY_PART_TYPE : the MSDOS partition type of the deployment partition (the
value of the fdisk_type �eld of the environment description)

• KADEPLOY_FS_TYPE : the �lesystem format of the deployment partition (the value of
the �lesystem �eld of the environment description)

• KADEPLOY_FS_TYPE_TMP : the �lesystem format of the tmp partition (if the tmp
partition is reformated with the option �reformat-tmp)

CHAPTER 4. USER GUIDE 64

• KADEPLOY_KEXEC_KIND : used for kexec script. Specify what kind of kexec is happen-
ing. value are to_deployed_env or to_deploy_kernel

• KADEPLOY_FORMAT_PART : used for formating script. Specify what disk is being for-
mated. value are DEPLOY,TMP or SWAP

• KADEPLOY_DEPLOY_ENV_KERNEL_PARAMS : the deployment kernel kernel param-
eters

• KADEPLOY_ENV_KEXEC_REPOSITORY : the location where deploy kernel are copied
for kexec purpose

4.4.2 Specifying �les to the server

Files can be speci�ed to the server using three di�erent URI-based notations:

• http:// The �le is hosted on some HTTP server, sample: http://testbed.lan/�le.tgz;

• server:// The �le locaclly hosted on the Kadeploy server, sample: server:///tmp/�le.tgz;

• local:// or no URI pre�x The �le is hosted on the client and will be exported to the server,
sample: local:///home/user/�le.tgz.

4.4.3 Build a custom pre-install

The goal of the pre-install in the Kadeploy work�ow is to prepare the disk of the nodes before the
copy of the environment. It can include:

• setting disk parameters (with hdparm for instance) ;

• partitioning the disk (with fdisk or parted) ;

• formating the deployment and the /tmp partition ;

• mounting partition(s).

To setup a custom pre-install you �rst have to create an archive that contains your scripts.
After that you have to tell kadeploy which script of your archive has to be executed, this is done
by specifying the preinstall �eld in your environment description �le (see section 4.2.4). Please be
careful to use relative paths in your scripts since you dont know where they will be uncompressed.

You can do want you want in the pre-install but you must know that Kadeploy will extract the
environment in the directory de�ned by the /environments/deployment/extraction_dir �eld of the
general con�guration �le. Commonly, this directory is /mnt/dest. Thus, you have to mount all the
partitions you need in this directory. If you wish to deploy the environment onto several partitions,
you can use for instance the following map:

• /dev/sda3 7→ /mnt/dest

• /dev/sda4 7→ /mnt/dest/var

• /dev/sda5 7→ /mnt/dest/usr

CHAPTER 4. USER GUIDE 65

• /dev/sda6 7→ /mnt/dest/tmp

If you choose to mount more than one partition in the pre-install, remember to umount all the
partitions excepted the one mounted on /environments/deployment/extraction_dir (/mnt/dest in
principle) in the post-install step. Indeed, the common Kadeploy work�ow will automatically
umount the partition mounted on /environments/deployment/extraction_dir. Thus, if other par-
titions are mounted, the umount will fail.

4.4.4 Do a custom partitioning

To perform a custom partitioning, you can use a substitute custom operation.
You can use the Kadeploy3 client's option --set-custom-operations (see 4.2.2) to setup custom

micro-step operations.
The �eld to con�gure is the �eld /SetDeploymentEnv/create_partition_table/[substitute].
Be careful to use the same partitioning scheme than the one which is con�gured by default on

the server in order for the deployment process to perform properly.
If you want to change the partitioning scheme, you'll have to substitute the microsteps

format_deploy_part, mount_deploy_part, umount_deploy_part, format_swap_part and for-
mat_tmp_part in order to mount and format the right partitions during the deployment.

Here is a example of the client command:

> kadeploy3 -m gri�on-1.nancy.grid5000.fr \
-e squeeze-x64-base \
--set-custom-operations ~/custom_ops.yml

Here is a example of a the custom operations �le:

> cat ~/custom_ops.yml
SetDeploymentEnvUntrusted:
create_partition_table:
substitute:
- action: run
name: my_custom_partitioning
�le: partitioning.sh

SendEnvironment:
reboot:
post-ops:
- action: send
�le: hostname
destination: $KADEPLOY_ENV_EXTRACTION_DIR/etc/
retries: 1
scattering: chain

Note: It is also possible for administrators to add systematic custom opera-
tions in the deployment process in order to perform a custom partitioning: the set-
ting to modify in the cluster-speci�c con�guration �le (see section 2.4.2) is /au-
tomata/macrosteps/[SetDeploymentEnv]/[microsteps]/format_deploy_part/[substitute]. The cus-
tom operations to add will look the same as the ones created in the custom_ops.yml script.

CHAPTER 4. USER GUIDE 66

4.4.5 Fsarchiver environements

Fsarchiver allow to save several partition in one single �le. It supports a bunch of di�erent �lesys-
tems, it's also possible to specify the compression algorithm used to compress the archive.

A documentation about creating fsarchiver images is available on the project's website (http:
//www.fsarchiver.org/).

Note: Be careful to clean the system that will be booted in the image from node-speci�c �les
(for example, udev �les on Linux systems).

Once the image is generated, it's possible to install it with Kadeploy3. In the environment �le
(see section 4.2.4), the type of the image �le (�eld /kind) have to be set to fsa. If several partitions
are saved in the fsarchiver image, the �eld /multipart need to be set to true, it's also necessary to
specify where each partitions should be installed on the node (�eld /options/[partitions]) and the
partition where the system to boot is locates (�elds /boot/block_device and /boot/partition).

Note: The ID number of each partition (�eld /options/[partitions]/id) is a�ected depending on
the order the partitions was saved in the fsarchiver �le when it was generated.

Here is an example of an fsa environment description:

name: debian-min
version: 1
description: https://www.grid5000.fr/mediawiki/index.php/Squeeze-x64-base-1.0
author: John Smith
visibility: shared
destructive: true
multipart: true
os: linux
image:
kind: fsa
compression: 3
�le: /grid5000/debian-multipart.fsa

boot:
kernel: /vmlinuz
initrd: /initrd.img
block_device: /dev/sda
partition: 2

�lesystem: ext3
partition_type: 0x83
options:
partitions:
- id: 0
device: /dev/sda1

- id: 1
device: /dev/sda2

- id: 2
device: /dev/sda3

http://www.fsarchiver.org/
http://www.fsarchiver.org/

	Overview
	What is it?
	How it works?
	How does Kadeploy control the boot of the nodes ?

	Installation
	Requirements
	Packages
	DHCP and TFTP
	HTTP server (optional)
	MySQL
	TakTuk

	Kadeploy installation
	Installation with Rake
	Build packages
	RedHat packages

	Launching the Kadeploy server
	Automatic launch on a Debian and a RedHat based distribution

	Server side configuration
	General configuration file
	Example of a general configuration file
	Explanation of the fields used in the general configuration file

	Booting over the network
	Clusters file
	Example of a clusters file
	Explanation of the fields used in the clusters file

	Cluster-specific configuration files
	Example of a cluster-specific configuration file
	Explanation of the fields used in the cluster-specific configuration file

	Bootloader install script
	Partitioning script
	Formating script
	Specific commands configuration files
	Example of a commands file
	Explanation of the fields used in the commands file

	Deployment environment
	Configuration of the production environment
	Creation of the dedicated environment
	Creation of the NFSRoot environment

	Configuration of the deploy user
	Configuration of SSH-agent

	Client side configuration
	User guide
	Overview of the Kadeploy tools
	Kadeploy
	Kareboot
	Kaenv
	Kaconsole
	Kastat
	Kanodes
	Kapower
	Karights

	Use the Kadeploy tools
	Kadeploy server
	Kadeploy client
	Kareboot
	Kaenv
	Kaconsole
	Kastat
	Kanodes
	Kapower
	Karights

	What you should know if you want to do kernel development on deployed nodes
	Kadeploy 3 behavior
	Tips to simply use your new kernel

	Extra
	Kadeploy3 Environment variables
	Specifying files to the server
	Build a custom pre-install
	Do a custom partitioning
	Fsarchiver environements

