Commit b3562aa3 authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

Bump Iris.

parent 473ba705
......@@ -11,6 +11,6 @@ install: [make "install"]
remove: [ "sh" "-c" "rm -rf '%{lib}%/coq/user-contrib/iris_time" ]
depends: [
"coq" { (>= "8.10.2" & < "8.13~") | (= "dev") }
"coq-iris" { (= "dev.2021-02-10.0.7b4a04ce") | (= "dev") }
"coq-iris" { (= "dev.2021-03-03.2.f38829da") | (= "dev") }
"coq-tlc" { (= "20200328") | (= "dev") }
]
From iris Require Export algebra.auth algebra.numbers.
From iris Require Import algebra.excl base_logic.lib.own proofmode.tactics.
Notation "'●max_nat' n" := (auth_auth (A:=max_natUR) 1%Qp n%nat) (at level 20).
Notation "'●max_nat' n" := (auth_auth (A:=max_natUR) (DfracOwn 1%Qp) n%nat) (at level 20).
Notation "'◯max_nat' n" := (auth_frag (A:=max_natUR) n%nat) (at level 20).
Local Coercion max_nat_car : max_nat >-> nat.
Section Auth_max_nat.
Context `{inG Σ (authR max_natUR)}.
Lemma auth_max_nat_alloc (n : max_nat) :
......@@ -87,5 +84,4 @@ Section Auth_max_nat.
- rewrite max_nat_op. f_equal. lia.
Qed.
Global Arguments auth_max_nat_update_incr' _ (_ _ _)%nat_scope.
End Auth_max_nat.
From iris Require Export algebra.auth algebra.numbers.
From iris Require Import base_logic.lib.own proofmode.tactics.
Notation "'●nat' n" := (auth_auth (A:=natUR) 1%Qp n%nat) (at level 20).
Notation "'◯nat' n" := (auth_frag (A:=natUR) n%nat) (at level 20).
Notation "'●nat' n" := (auth_auth (A:=natUR) (DfracOwn 1%Qp) n%nat) (at level 20).
Notation "'◯nat' n" := (auth_frag (A:=natUR) n%nat) (at level 20).
Section Auth_nat.
Context `{inG Σ (authR natUR)}.
Lemma auth_nat_alloc (n : nat) :
......@@ -65,5 +62,4 @@ Section Auth_nat.
iMod (own_update_2 with "H● H◯") as "[$ $]" ; last done.
apply auth_update, nat_local_update. lia.
Qed.
End Auth_nat.
......@@ -282,11 +282,8 @@ Proof.
iDestruct (gen_heap_valid with "Hheap2 Hc") as %Eq.
rewrite lookup_insert in Eq.
injection Eq as ->.
(* close the invariant (in fact, this is not required): *)
iMod ("InvClose" with "[-]") as "_" ; first by auto with iFrame.
(* conclude: *)
iMod (fupd_intro_mask' ) as "_" ; first done. iPureIntro.
lia.
(* close the invariant (in fact, this is not required), and conclue: *)
iMod ("InvClose" with "[-]") as "_" ; by auto with iFrame lia.
Qed.
(* The simulation lemma with no assumption that m ≤ n. *)
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment