# ExpOut This project is an extension of LimeOut[1]. It aims at tackle process fairness for classification, while keeping the accuracy level (or improving). More precisely, ExpOut incorporates different explainers. Classifiers available: * Multilayer Perceptron * Logistic Regression * Random Forest * Bagging * AdaBoost * Gaussian Mixture * Gradiente Boosting Explainers * LIME * Anchors # Example `runner --data german.data --trainsize 0.8 --algo mlp --cat_features 0 2 3 5 6 8 9 11 13 14 16 18 19 --drop 8 18 19` # References [1] Vaishnavi Bhargava, Miguel Couceiro, Amedeo Napoli. LimeOut: An Ensemble Approach To Improve Process Fairness. 2020. ⟨hal-02864059v2⟩ ## Dependencies * Python >= 3.7 * Scikit-learn >= 0.20.3 * numpy 1.16.4 * pandas 0.24.2 * scipy 1.3.0 * seaborn 0.9.0