Commit c2d1f286 authored by ALVES Guilherme's avatar ALVES Guilherme
Browse files

.

parent 17135b6c
# ExpOut
This project is an extension of LimeOut[1]. It aims at tackle process fairness for classification, while keeping the accuracy level (or improving).
More precisely, ExpOut incorporates different explainers.
Classifiers available:
* Multilayer Perceptron
* Logistic Regression
* Random Forest
* Bagging
* AdaBoost
* Gaussian Mixture
* Gradiente Boosting
Explainers
* LIME
* Anchors
# Example
`runner --data german.data --trainsize 0.8 --algo mlp --cat_features 0 2 3 5 6 8 9 11 13 14 16 18 19 --drop 8 18 19`
# References
[1] Vaishnavi Bhargava, Miguel Couceiro, Amedeo Napoli. LimeOut: An Ensemble Approach To Improve Process Fairness. 2020. ⟨hal-02864059v2⟩
## Dependencies
* Python >= 3.7
* Scikit-learn >= 0.20.3
* numpy 1.16.4
* pandas 0.24.2
* scipy 1.3.0
# ExpOut
This project is an extension of LimeOut[1]. It aims at tackle process fairness for classification, while keeping the accuracy level (or improving).
More precisely, ExpOut incorporates different explainers.
Classifiers available:
* Multilayer Perceptron
* Logistic Regression
* Random Forest
* Bagging
* AdaBoost
* Gaussian Mixture
* Gradiente Boosting
Explainers
* LIME
* Anchors
# Example
`runner --data german.data --trainsize 0.8 --algo mlp --cat_features 0 2 3 5 6 8 9 11 13 14 16 18 19 --drop 8 18 19`
# References
[1] Vaishnavi Bhargava, Miguel Couceiro, Amedeo Napoli. LimeOut: An Ensemble Approach To Improve Process Fairness. 2020. ⟨hal-02864059v2⟩
## Dependencies
* Python >= 3.7
* Scikit-learn >= 0.20.3
* numpy 1.16.4
* pandas 0.24.2
* scipy 1.3.0
* seaborn 0.9.0
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment