Attention une mise à jour du service Gitlab va être effectuée le mardi 30 novembre entre 17h30 et 18h00. Cette mise à jour va générer une interruption du service dont nous ne maîtrisons pas complètement la durée mais qui ne devrait pas excéder quelques minutes. Cette mise à jour intermédiaire en version 14.0.12 nous permettra de rapidement pouvoir mettre à votre disposition une version plus récente.

Commit 97dc2796 authored by ALVES Guilherme's avatar ALVES Guilherme
Browse files

Update README.md

parent 42076923
# ExpOut
This project is an extension of LimeOut[1]. It aims at tackle process fairness for classification, while keeping the accuracy level (or improving).
More precisely, ExpOut incorporates different explainers.
# FixOut
FixOut addresses fairness issues of ML models based on decision outcomes, and shows how the simple idea of “feature dropout” followed by an “ensemble approach” can improve model fairness.
Originally, it was conceived to tackle process fairness of ML Models based on decision outcomes (see LimeOut [1]). For that it uses an explanation method to assess a model’s reliance on salient or sensitive features, that is integrated in a human-centered workflow: given a classifier M, a dataset D, a set F of sensitive features and an explanation method of choice, FIXOut outputs a competitive classifier M’ that improves in process fairness as well as in other fairness metrics.
Classifiers available:
* Multilayer Perceptron
* Logistic Regression
* Random Forest
* Bagging
* AdaBoost
* Multilayer Perceptron
* Gaussian Mixture
* Gradiente Boosting
Explainers
* LIME
* Anchors
* SHAP
# Example
`python runner.py --data german.data --trainsize 0.8 --algo mlp --max_features 10 --cat_features 0 2 3 5 6 8 9 11 13 14 16 18 19 --drop 8 18 19 --exp anchors`
# References
[1] Vaishnavi Bhargava, Miguel Couceiro, Amedeo Napoli. LimeOut: An Ensemble Approach To Improve Process Fairness. 2020. ⟨hal-02864059v2⟩
[1] Vaishnavi Bhargava, Miguel Couceiro, Amedeo Napoli. LimeOut: An Ensemble Approach To Improve Process Fairness. XKDD Workshop 2020. ⟨hal-02864059v2⟩
[2] Guilherme Alves, Vaishnavi Bhargava, Miguel Couceiro, Amedeo Napoli. Making ML models fairer through explanations: the case of LimeOut. AIST 2020. ⟨hal-02864059v5⟩
## Dependencies
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment