Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mpri-2.4-public
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
POTTIER Francois
mpri-2.4-public
Commits
117d0f3b
Commit
117d0f3b
authored
Feb 15, 2018
by
Pierre-Évariste Dagand
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add takeaways
parent
39b02d70
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
39 additions
and
11 deletions
+39
-11
agda/01-effectful/Monad.lagda.rst
agda/01-effectful/Monad.lagda.rst
+8
-1
agda/02-dependent/Indexed.lagda.rst
agda/02-dependent/Indexed.lagda.rst
+22
-10
agda/03-total/Recursion.lagda.rst
agda/03-total/Recursion.lagda.rst
+9
-0
No files found.
agda/01-effectful/Monad.lagda.rst
View file @
117d0f3b
...
...
@@ -23,12 +23,19 @@ Today, we shall:
- present a general framework for modelling *algebraic* effects
- meet a few monads (reader, writer, non-determinism, random, CPS, etc.)
`Notions of computations determine monads`_:
Vision: `Notions of computations determine monads`_
1. syntax of effectful operations
2. equational theory of effectful operations
3. denotational semantics = quotiented syntax
4. interpreter / monad!
Takeaways:
- you will be *able* to define a monad (``return``, ``bind``) and its supporting operations
- you will be *able* to use the following monads: exceptions, reader, writer, state, non-determinism
- you will be *able* to relate an equational theory with a monadic presentation (normalization-by-evaluation)
- you will be *familiar* with algebraic effects
- you will be *familiar* with the most commonly used monads
************************************************
Historical background
...
...
agda/02-dependent/Indexed.lagda.rst
View file @
117d0f3b
...
...
@@ -34,6 +34,13 @@ Today, we shall:
The vision: `The Proof Assistant as an Integrated Development Environment`_
Takeaways:
- you will be *able* to use inductive families to encode structural invariants
- you will be *able* to write dependently-typed programs over inductive families
- you will be *able* to construct denotational models in type theory
- you will be *familiar* with the Yoneda lemma
- you will be *familiar* with the notion of functor and presheaf
- you will be *familiar* with normalization-by-evaluation for the simply-typed calculus
..
::
...
...
@@ -45,6 +52,7 @@ The vision: `The Proof Assistant as an Integrated Development Environment`_
Typing ``sprintf``
************************************************
..
::
...
...
@@ -1258,15 +1266,18 @@ implementation::
By defining a richly-structured model, we have seen how we could
implement a typed model of the λ-calculus and manipulate binders in
the model.
************************************************
Conclusion
************************************************
In the first and second part, we have seen how inductive types and
families can be used to build initial models, supporting the
definition of various interpretations in Agda itself.
In the third part, we have seen how, by defining a richly-structured
model, we could implement a typed model of the λ-calculus and
manipulate binders in the model.
Takeaways:
* You are *familiar* with the construction of denotational models in type theory
* You are *able* to define an inductive family that captures exactly some structural invariant
* You are *able* to write a dependently-typed program
* You are *familiar* with normalization-by-evaluation proofs for the simply-typed calculus
**Exercises (difficulty: open ended):**
...
...
@@ -1284,9 +1295,10 @@ Takeaways:
categorical semantics (described in the next section) provides
the blueprint of the necessary proofs.
-------------------------------------
************************************************
Optional: Categorical spotting
-------------------------------------
************************************************
..
::
...
...
agda/03-total/Recursion.lagda.rst
View file @
117d0f3b
...
...
@@ -62,6 +62,14 @@ The vision: `Total Functional Programming`_
- zealously pursued with dependent types by `Conor McBride <http://strictlypositive.org/>`_
- at the origin of *all* of today's examples
Takeaways:
- you will be *able* to reify a measure by indexing an inductive type
- you will be *able* to define your own induction principles
- you will be *able* to give a "step-indexed" interpretation of a general recursive function
- you will be *familiar* with the Bove-Capretta technique
- you will be *familiar* with the notion of monad morphism
************************************************
First-order Unification
************************************************
...
...
@@ -483,6 +491,7 @@ underlying composition of substitutions::
Structurally: most-general unifier
--------------------------------------
The implementation of the most-general unifier is exactly the same,
excepted that termination has become self-evident: when performing the
substitution (case ``amgu {suc k} _ _ (m , (σ ∷[ r / z ]))``), the
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment