Open Problems
Release 1.0

Pierre-Evariste Dagand

Feb 23, 2018

CONTENTS

1 The Good 3
1.1 Lecture 0: The Evolution of a Typechecker 3
1.2 Lecture 1: Effects o e 3
1.3 Lecture 2: Indices e e 4
1.4 Lecture 3: Recursion e e 4
1.5 Lecture 4: Generic programming« . ..ot e e e e e e e e 5
1.6 Other examples L e e 5

2 The Bad 7

3 The Ugly 11

Open Problems, Release 1.0

In this course, we have seen that there may be such a thing as “dependently-typed programming” after all.
We saw that it can be:

o effectufl (lecture 1)

o correct-by-construction (lecture 2)

o structurally recursive or not (lecture 3)
o generic (lecture 4)

And it is not just “as good as” languages of the ML family: it enables genuinely novel and interesting forms
of programming.

However, some would argue that programming with dependent type is unbearably difficult (watch out for
disgruntled Coq users). They may not be absolutely right but perhaps not absolutely wrong either. For
instance, we never had to perform a type cast along a propositional equality: this is too good to be true.
In this last lecture, we explain why we were able to write these programs so elegantly, we dissect a few bad
programs and highlight some very ugly (or impossible) ones.

This time, we shall not try to come to a conclusion: we are touching upon research questions, only the future
will tell whether the AI robot take over the planet will be programmed with Haskell type families, C++
template, or ANSI C.

CONTENTS 1

Open Problems, Release 1.0

2 CONTENTS

CHAPTER
ONE

THE GOOD

We review a few, salient definitions of each lecture. For the definitions I had to come up with myself or
had to reconstruct from a paper, I provide an estimate of the time it took me to find the “right” definition
(Conor McBride talks about the act of “engineering coincidences”). This measure must be interpreted in
relative terms as I am, after all, only a moderately clever person with only one PhD (whose topic was on
programming in the inductive fragment of type theory).

1.1 Lecture 0: The Evolution of a Typechecker

The tricky definition is the typechecker itself

F?2 3 : (I' : context)(T : type)(t : term v) — I' F[¢]-view T 3 t
F? € : (I' : context)(t : term n) — ' F[¢]-view t €

that uses r[]-view to ensure that the type-checking or type-failing derivation produced corresponds to
the original term through the forgetful function | |:

data +[]-view (I' : context)(d : dir) : Dir d — Set where
yes : V{Ty (A : T [d1T) — I'F[d]-view | A |
no V{1 A :Tr[d1T) — ITFrldIl-view [=A |

The trick is to notice that not only is the function | | injective but it is also merely mapping each con-
structor of the source datatype to a constructor of the target datatype. Therefore, as we pattern match on
derivations, the type becomes more precise by revealing a constructor and therefore the forgetful function
mechanically unfolds. If the forgetful map was recursively non trivial, it would have been another story.

Estimated time: It took me about 3 weeks of full-time work to converge on the final implementation of the
type-checker. I initially thought that I could exploit a monad-generic implementation of the type-checker
to use it for type-directed parsing & pretty-printing but this was incompatible with the dependently-typed
implementation for which it is not clear how to write it monadically, let alone monad-generically.

1.2 Lecture 1: Effects

The programs we wrote were simply typed so we had it easy. Nonetheless, we were not able to write the
generic definition of the free monad, which would be:

data Free (F : Set — Set)(X : Set) : Set where
return : X — Free F X
op : F (Free F X) — Free F X

Open Problems, Release 1.0

because the positivity-checker would reject this definition: F provides no guarantee that it will use Free F X
in a strictly-positive position. This is one of those instances were relying exclusively on oracles as a way of
introducing definitions impedes compositionality. We have seen in Lecture 4 that it could be addressed by
reflecting inductive types in the type theory itself.

1.3 Lecture 2: Indices

Good news, using inductive families for typing sprintf seems to qualify as industrial-strength, being faster
and safer that the untyped alternative.

The expression and machine code are indexed by a type-level tag, which is almost literally transferred by
the compiler

’compile : ¥V {T o} — exp T — code o (T : 0)

If significantly distinct types were used on either side of the compiler, a non-trivial translation function would
be necessary to state the type of the compiler

’compile : ¥V {T o} — exp T — code o (non-trivial T o)

which would probably make for a few sleepless nights and type-casting proofs.

The difficulty of the normalization-by-evaluation program is mostly conceptual: to deal with binders, one
must construct the right model, which was an issue for category theorists before being one for dependently-
typed programmers.

As part of this exercise, we saw a structural definition of substitution: this is a folklore trick (that I learned
from Conor McBride), meaning that we can assume that countless hours were spent by the first person that
tried implementing it. Note that it is not a particularly efficient implementation.

Estimated time: It took me about 2 days of full-time work, mostly studying the literature, to extract
the right abstractions to write the normalization-by-evaluation program. However, dependent types were
instrumental in forcing me to identify these abstractions: in a simply-typed setting, there is no incentive to
do this effort (or one end up doing pure category theory).

1.4 Lecture 3: Recursion

The representation of terms for the MGU relies once again on the folkore representation of well-scoped terms.

The recursion scheme justifying the proof search was found and explained by McBride. This is indeed hard
work but that needs to be done anyway. It could be done in a proof-irrelevant manner (using an accessibility
predicate to justify the general-recursive definition, for example) or in a proof-relevant manner (which is
what we did here).

Estimated time: It took me about 5 days of full-time work to translate the ideas set forward in McBride’s
Djinn Monotonic into a workable implementation. Knowing which datatype to define (it is given by the
paper) and the overall recursion scheme is but one small step: writing a (correct) implementation handling
ordered formuli was far from trivial. For instance, the straightforward zipper is gone, replaced by a head-
scratching search procedure.

4 Chapter 1. The Good

https://ocaml.org/meetings/ocaml/2013/proposals/formats-as-gadts.pdf

Open Problems, Release 1.0

1.5 Lecture 4: Generic programming

Programming with algebraic structures was made possible by the availability of instance arguments (ie.
type-classes) in Agda. However, not all objects lend themselves to being instances. Attaching structures to
(inductive) type formers works like a charm, since the unifier can rely on a concrete object (the type former)
to drive the instance search.

Attaching structure to a compute type did not work at all. For instance, I was not able to define any (useful)
instance for the functor Hyper Fs:

Hyper : List (Set — Set) — Set — Set
Hyper [] A=A
Hyper (F @z Fs) A = Hyper Fs (F A)

As a poor man’s alternative, I reified the identity and composition of functors as inductive type formers:

data Id (A : Set) : Set where
I:A—IdA

data Seq (G : Set — Set)(F : Set — Set)(A : Set) : Set where
S:F (GA) — Seq GFA

and attached structure to those: when Hyper computes, it will reveal a chain of Seq, potentially closed by an
Id, all of which have the structures wwe are interested in. However, this is not a silver bullet: on Hyper Fs,
with Fs a quantified variable, we cannot access any of its structure. We cannot rely on ad-hoc polymorphism
and must manually instantiate the dictionaries.

Also, the paper becomes really interesting in Section 6, in which alignment between matrices of different
dimensions is automatically computed through the following (simplified) type family:

instance Alignable (F :: Fs) (F i Gs) where
(...)

instance Alignable [] (F : Fs) where
(...)

From a type-theoretic point of view, the first instance is meaningless: what does it mean for F : Set —
Set to be “equal” on both sides? Equality of functions is notoriously ill-behaved in type theory. I therefore
stopped right before Section 6, retreating from a doomed attempt: the very definition of hyper as List (Set
— Set) was already an admission of defeat.

The definition of the Desc was suspiciously redundant: the sum product (_“+_) codes could have been
simulated by II Bool A { true — _ ; false — _ }. However, the former encoding enables a purely first-
order implementation (as an inductively-defined sum) whereas the latter involves a function type. First,
intensional equality is not well-behaved (understand: useless) on functions, hence a general tendency to
avoid them at all cost. Second, having sums allows us to levitate the description of descriptions as a purely
first-order object (no function lying around).

1.6 Other examples

The Mathcomp library defines tuples, which are equivalent to our very own vector. However, rather than
defining an inductive family, a tuple of size n is implemented as “a list whose length is n”. Crucially, the
constraint that the length is equal to n does not use propositional equality but decidable equality over
natural numbers:

1.5. Lecture 4: Generic programming 5

https://math-comp.github.io/math-comp/htmldoc/mathcomp.ssreflect.tuple.html

Open Problems, Release 1.0

’Structure tuple of : Type := Tuple {tval :> seq T; : size tval == n}.

Hedberg theorem tells us that this implies that two tuples are equal if and only if they package the same
list (irrespectively of the proof that established that these lists are of the right size). This is not an issue in
Vanilla Agda, for which all proofs of equality are equal (“uniqueness of identity proofs”, UIP). It is in Coq
or in Agda with the flag “—without-k”.

Aside from allowing us to avoid relying on UIP, this style also enables the definition of operations on vectors
(concatenation, reversal, etc.) to directly re-use the existing operations on lists: one just need to prove that
the constraints on lengths are respected.

6 Chapter 1. The Good

https://doi.org/10.1017/S0956796898003153

CHAPTER
TWO

THE BAD

Gibbons definition of hyper-matrices is given as a (nested) datatype:

data Hyper' (A : Set) : List (Set — Set) — Set where
Scalar : A — Hyper' A []
Prism : V {F Fs} — Hyper' (F A) Fs — Hyper' A (F : Fs)

Once again, this definition would not be manageable in type theory because it implicitly introduces propo-
sitional equality to enforce the constraint Hyper A (F :: Fs) in the target of the Prism constructor, which is
meaningless for the function F.

Sometimes, even apparently good definitions, such as the pervasive vectors, are behaving frustratingly. In
each of the following examples, we shall give a working definition with lists and a computationally-equivalent
but non-working version on vectors. The point is not that the desired functionality cannot be implemented
(most of the time, one can rewrite them to side-step the problem) but rather that a “morally correct”
definition or property is forbidden.

The first example is a failure of compositionality, first between two functions:

module NCons-List (A : Set) where

ncons : N — A — List A — List A
ncons zero a vs = Vs
ncons (suc m) a vs = a i ncons m a vs

nseq : N - A — List A
nseq m a = ncons m a []

module NCons-Vec (A : Set) where

ncons : ¥ {n} (m:N) — A —>Vec An — Vec A (m+ n)
ncons zero a vs = Vs
ncons (suc m) a vs = a i ncons m a vs

nseq : (m: N) - A — Vec Am
nseq ma = {!/ncons ma []!}
- m+ zero !=m of type N
- when checking that the expression ncons m a [] has type Vec A m

and, second, between a single (recursive) function:

module RCons-List (A : Set) where

++r : ¥V {A : Set}— List A — List A — List A
[1 ++r ys = ys
(X 1 XS) ++r ys = Xs ++r (x i ys)

Open Problems, Release 1.0

module RCons-Vec (A : Set) where

++r_: ¥V {A : Set}{m n} — Vec Am — Vec An — Vec A (n +m)

[1 ++r ys = {lys!}

--.n !=.n+ 0 of type N

-- when checking that the expression ys has type Vec .A (.n + 0)

(X 1 XS) ++r ys = {/xs ++r (x ys)!}

-- suc (.n; + .n) != .n; + suc .n of type N

-- when checking that the expression xs ++r (x i ys) has type Vec .A (.n; + suc .n)

This sort of annoyance also happens when stating properties:

module Cats-List (A : Set) where
cats®@ : V (v : List A) — v ++L [] = v
cats0® [] = refl
catsO® (x : v) rewrite catsO v = refl

module Cats-Vec (A : Set) where

cats®@ : V {n} (v : Vec An) — v ++ [] = {!Iv!}
--n!=n+ zero of type N
-- when checking that the expression v has type Vec A (n + zero)

cats0 = {//}

which means that some proofs are themselves impossible to do compositionally since the necessary lemmas
are simply not expressible:

module Rcons-List (A : Set) where

rcons : List A - A — List A
rcons [] a =a @ []
rcons (x :# Xs) a = X i rcons xs a

last' : (a : A) — List A — A
last' a [] = a
last' (a = xs) = last' a xs

last-rcons : V x s z — last' x (rcons s z) = z
last-rcons x s z = trans (cong (last' x) (catl s z)) (last-cat x s (z = []))

where postulate
last-cat : V¥V x (s; : List A)(sp; : List A) — last' x (s; ++L s;) = last' (last' x si1) s»

catl : Y s z — rcons s z=s ++L (z = [1])
module Rcons-Vec (A : Set) where

rcons : ¥V {n} — Vec An — A — Vec A (suc n)
rcons [] a = a = []
rcons (x : Xs) a = X i rcons xs a

last' : V {n} — (a : A) - VecAn — A
last' a [] = a
last' (a i xs) = last' a xs

postulate
last-cat : ¥ {m n} x (s; : Vec Am)(s; : Vec A n) — last' x (s; ++ s;) = last' (last' x si) s;
catl : V {n} (s : Vec An) z — rcons s z={!s ++ (z = [])!}
-- n + suc zero != suc n of type N

8 Chapter 2. The Bad

Open Problems, Release 1.0

-- when checking that the expression s ++ z : [] has type Vec A (suc n)

last-rcons : ¥V {n} x (s : Vec An) z — last' x (rcons s z) = z
last-rcons {n} x s z = trans {/cong (last' {suc n / n + 1}) 7!} (last-cat x s (z = []))
-- Heterogeneous equality necessary

An elegant solution (due to Conor McBride) to the problem of stating and using the above equalities consists
in generalizing slightly the definition of equality so that it becomes heterogeneous:

data = {A : Set} (x : A) : {B : Set} — B — Set where
refl : x = x

However, we are still at a loss to write programs such as nseq or _++r_in a compositional, proof-free manner.

http://strictlypositive.org/thesis.pdf

Open Problems, Release 1.0

10 Chapter 2. The Bad

CHAPTER

THREE

THE UGLY

Nested datatypes, such as:

data Bush (A : Set) : Set where
leaf : A — Bush A
node : Bush (A x A) — Bush A

size : V¥ {A} — Bush A — N
size (leaf x) =1
size (node b) = let n = size b in n + n

are slightly suspicious in the sense that the constructors are actually encoding the size of the container, the
constructor leaf containing a tuple whose shape is determined by the previous node constructors. First,
programming with such a definition is not going to be pleasant. Second, to encode structural properties, we
have a better tool at hand: indices and inductive families!

Addressing the second point, one could write:

data Bush' (A : Set)(n : N) : Set where
leaf : Vec An — Bush' An
node : Bush' A (n + n) — Bush' A n

Addressing the first point, one realizes that Peano numbers are not the right fit for indexing this structure:

data BinN : Set where
#0 : BinN
#1 : BinN — BinN

toN : BinN — N
toN #0 = 1
toN (#1 n) = let x = toN n in x + Xx

data Bush'' (A : Set) : BinN — Set where
leaf : A — Bush'' A #0
node : V {n} — Bush'' A n — Bush'' A n — Bush'' A (#1 n)

11

	The Good
	Lecture 0: The Evolution of a Typechecker
	Lecture 1: Effects
	Lecture 2: Indices
	Lecture 3: Recursion
	Lecture 4: Generic programming
	Other examples

	The Bad
	The Ugly

