interpret.ml 18 KB
Newer Older
1 2 3 4 5 6 7
(* This module is in charge of handling the [--interpret] option,
   if it is present. *)

module I = Invariant (* artificial dependency; ensures that [Invariant] runs first *)

(* --------------------------------------------------------------------------- *)

8
open Grammar
9 10 11
open SentenceParserAux

(* An error message. *)
12

13 14
type message =
  string
15

16 17 18 19
(* A run is a series of sentences or comments together with an error message. *)

type run =
  located_sentence or_comment list * message
20

21 22
(* A targeted sentence is a located sentence together with the state
   into which it leads. *)
23

24 25 26 27 28
type targeted_sentence =
  located_sentence * Lr1.node

(* A targeted run is a series of targeted sentences or comments together with
   an error message. *)
29

30 31
type maybe_targeted_run =
  targeted_sentence option or_comment list * message
32

33 34 35 36 37 38 39 40
type targeted_run =
  targeted_sentence or_comment list * message

(* A filtered targeted run is a series of targeted sentences together with an
   error message. (The comments have been filtered out.) *)

type filtered_targeted_run =
  targeted_sentence list * message
41 42

(* --------------------------------------------------------------------------- *)
POTTIER Francois's avatar
POTTIER Francois committed
43

44
(* Display and debugging. *)
45 46 47 48

let print_sentence (nto, terminals) : string =
  let b = Buffer.create 128 in
  Option.iter (fun nt ->
49
    Printf.bprintf b "%s: " (Nonterminal.print false nt)
50 51 52 53 54 55 56
  ) nto;
  List.iter (fun t ->
    Printf.bprintf b "%s " (Terminal.print t)
  ) terminals;
  Printf.bprintf b "\n";
  Buffer.contents b

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
(* --------------------------------------------------------------------------- *)

(* [stream] turns a finite list of terminals into a stream of terminals. *)

exception EndOfStream

let stream (toks : Terminal.t list) : unit -> Terminal.t * Lexing.position * Lexing.position =
  let toks = ref toks in
  fun () ->

    let tok =
      match !toks with
      | tok :: more ->

	  (* Take a token off the list, and return it. *)

	  toks := more;
	  tok

      | [] ->

	  (* The finite list has been exhausted. Here, two plausible behaviors
	     come to mind.

	     The first behavior consists in raising an exception. In that case,
	     we are creating a finite stream, and it is up to the parser to not
	     read past its end.

	     The second behavior consists in returning a designated token. In
	     that case, we are creating an infinite, eventually constant,
	     stream.

	     The choice between these two behaviors is somewhat arbitrary;
	     furthermore, in the second case, the choice of the designated
	     token is arbitrary as well. Here, we adopt the second behavior if
	     and only if the grammar has an EOF token, and we use EOF as the
	     designated token. Again, this is arbitrary, and could be changed
	     in the future. *)

	  match Terminal.eof with
	  | Some eof ->
	      eof
	  | None ->
	      raise EndOfStream

    in

    (* For now, return dummy positions. *)

    tok, Lexing.dummy_pos, Lexing.dummy_pos

(* --------------------------------------------------------------------------- *)

110 111 112 113 114 115 116
(* [start sentence] returns the start symbol that we should use to interpret
   the sentence [sentence]. *)

(* If a start symbol was explicitly provided as part of the sentence, we use
   it. Otherwise, we use the grammar's unique start symbol, if there is
   one. *)

117
let start poss ((nto, _) : sentence) : Nonterminal.t =
118 119 120 121 122 123
  match nto with
  | Some nt ->
      nt
  | None ->
      match ProductionMap.is_singleton Lr1.entry with
      | None ->
124
          Error.error poss
125 126 127 128 129 130 131 132 133
            "Because the grammar has multiple start symbols, each of the\n\
             sentences provided on the standard input channel must be of the\n\
             form: <start symbol>: <token>*"
      | Some (prod, _) ->
          match Production.classify prod with
          | Some nt ->
              nt
          | None ->
              assert false
134

135
(* --------------------------------------------------------------------------- *)
136

137
(* [interpret] interprets a sentence. *)
138

139
let interpret ((_, toks) as sentence) : unit =
140

141
  let nt = start [] sentence in
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

  (* Run the reference interpreter. This can produce a concrete syntax tree
     ([Some cst]), fail with a parser error ([None]), or fail with a lexer error
     ([EndOfStream]). *)

  (* In either case, we produce just one line of output, so it should be clear
     to the user which outcomes correspond to which sentences (should multiple
     sentences be supplied). *)

  begin try
    match
      MenhirLib.Convert.Simplified.traditional2revised
	(ReferenceInterpreter.interpret Settings.trace nt)
	(stream toks)
    with

    | Some cst ->

	(* Success. *)

	Printf.printf "ACCEPT";
	if Settings.interpret_show_cst then begin
	  print_newline();
	  Cst.show stdout cst
	end

    | None ->

	(* Parser failure. *)

	Printf.printf "REJECT"

  with EndOfStream ->

    (* Lexer failure. *)
    
    Printf.printf "OVERSHOOT"

  end;
  print_newline()

(* --------------------------------------------------------------------------- *)

185 186
(* [interpret_error_aux] interprets a sentence, expecting it to end in an
   error. Failure or success is reported via two continuations. *)
187

188 189
let interpret_error_aux poss ((_, terminals) as sentence) fail succeed =
  let nt = start poss sentence in
190
  let open ReferenceInterpreter in
191
  match check_error_path nt terminals with
192
  | OInputReadPastEnd ->
193
      fail "No syntax error occurs."
194
  | OInputNotFullyConsumed ->
195
      fail "A syntax error occurs before the last token is reached."
196
  | OUnexpectedAccept ->
197
      fail "No syntax error occurs; in fact, this input is accepted."
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  | OK s' ->
      succeed nt terminals s'

(* --------------------------------------------------------------------------- *)

(* This default error message is produced by [--list-errors] when it creates a
   [.messages] file, and is recognized by [--compare-errors] when it compares
   two such files. *)

let default_message =
  "<YOUR SYNTAX ERROR MESSAGE HERE>\n"

(* [print_messages_item] displays one data item. The item is of the form [nt,
   w, s'], which means that beginning at the start symbol [nt], the sentence
   [w] ends in an error in state [s']. The display obeys the [.messages] file
   format. *)

let print_messages_item (nt, w, s') : unit =
  (* Print the sentence, followed with a few comments, followed with a
     blank line, followed with a proposed error message, followed with
     another blank line. *)
  Printf.printf
    "%s##\n## Ends in an error in state: %d.\n##\n%s\n%s\n"
    (print_sentence (Some nt, w))
    (Lr1.number s')
    (* [Lr0.print] or [Lr0.print_closure] could be used here. The latter
       could sometimes be helpful, but is usually intolerably verbose. *)
    (Lr0.print "## " (Lr1.state s'))
    default_message
227

228
(* --------------------------------------------------------------------------- *)
229

230 231 232 233 234
(* [interpret_error] interprets a sentence, expecting it to end in an error.
   Failure or success is reported on the standard output channel. This is
   used by [--interpret-error]. *)

let fail msg =
235
  Error.error [] msg
236

237 238
let succeed nt terminals s' =
  print_messages_item (nt, terminals, s');
239 240 241 242 243 244 245
  exit 0

let interpret_error sentence =
  interpret_error_aux [] sentence fail succeed

(* --------------------------------------------------------------------------- *)

246 247 248 249 250 251
(* [target_sentence] interprets a (located) sentence, expecting it to end in
   an error, computes the state in which the error is obtained, and constructs
   a targeted sentence. *)

let fail poss msg =
  Error.signal poss (Printf.sprintf
252
    "This sentence does not end with a syntax error, as it should.\n%s"
253 254
    msg
  );
255
  None (* no result *)
256

257
let target_sentence : located_sentence -> targeted_sentence option =
258 259 260
  fun (poss, sentence) ->
    interpret_error_aux poss sentence
      (fail poss)
261 262 263 264 265
      (fun _nt _terminals s' -> Some ((poss, sentence), s'))

let target_run_1 : run -> maybe_targeted_run =
  fun (sentences, message) ->
    List.map (or_comment_map target_sentence) sentences, message
266

267
let target_run_2 : maybe_targeted_run -> targeted_run =
268
  fun (sentences, message) ->
269
    List.map (or_comment_map Misc.unSome) sentences, message
270 271 272

let target_runs : run list -> targeted_run list =
  fun runs ->
273 274 275
    (* Interpret all sentences, possibly displaying multiple errors. *)
    let runs = List.map target_run_1 runs in
    (* Abort if an error occurred. *)
276
    if Error.errors() then exit 1;
277 278
    (* Remove the options introduced by the first phase above. *)
    let runs = List.map target_run_2 runs in
279
    runs
280

281
(* --------------------------------------------------------------------------- *)
282

283 284 285 286 287 288 289 290
(* [filter_run] filters out the comments in a run. *)

let filter_run : targeted_run -> filtered_targeted_run =
  fun (sentences, message) ->
    List.flatten (List.map unSentence sentences), message

(* --------------------------------------------------------------------------- *)

291 292
(* [setup()] returns a function [read] which reads one sentence from the
   standard input channel. *)
293

294
let setup () : unit -> sentence option =
295

296 297 298
  let open Lexing in
  let lexbuf = from_channel stdin in
  lexbuf.lex_curr_p <- { lexbuf.lex_curr_p with pos_fname = "(stdin)" };
299

300 301
  let read () =
    try
302
      SentenceParser.optional_sentence SentenceLexer.lex lexbuf
303 304 305
    with Parsing.Parse_error ->
      Error.error (Positions.lexbuf lexbuf) "Ill-formed input sentence."
  in
306

307 308 309 310 311 312
  read

(* --------------------------------------------------------------------------- *)

(* If [--interpret] is set, interpret the sentences found on the standard
   input channel, then stop, without generating a parser. *)
313

314 315 316 317 318 319 320
(* We read a series of sentences from the standard input channel. To allow
   interactive use, we interpret each sentence as soon as it is read. *)

let () =
  if Settings.interpret then
    let read = setup() in
    while true do
321 322
      match read() with
      | None ->
323
  	  exit 0
324
      | Some sentence ->
325 326
	  interpret sentence
    done
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
(* --------------------------------------------------------------------------- *)

(* If [--interpret-error] is set, interpret one sentence found on the standard
   input channel, then stop, without generating a parser. *)

(* We read just one sentence, confirm that this sentence ends in an error, and
   (if that is the case) display the number of the state that is reached. *)

let () =
  if Settings.interpret_error then
    let read = setup() in
    match read() with
    | None ->
      exit 1 (* abnormal: no input *)
    | Some sentence ->
        interpret_error sentence (* never returns *)
344

345 346
(* --------------------------------------------------------------------------- *)

347 348 349 350 351 352 353 354 355 356 357 358
(* Reading a [.messages] file. *)

let read_messages filename : run list =
  (* Read and segment the file. *)
  let segments : (string * Lexing.lexbuf) list = Segment.segment filename in
  (* Process the segments, two by two. We expect one segment to contain
     a non-empty series of sentences, and the next segment to contain
     free-form text. *)
  let rec loop accu segments =
    match segments with
    | [] ->
        List.rev accu
359 360
    | (_, lexbuf) :: segments ->
        (* Read a series of located sentences. *)
361 362
        match SentenceParser.entry SentenceLexer.lex lexbuf with
        | exception Parsing.Parse_error ->
363
            Error.error
364
              (Positions.one (Lexing.lexeme_start_p lexbuf))
365
              "Ill-formed sentence."
366
        | sentences ->
367 368 369 370 371 372 373 374
            (* Read a segment of text. *)
            match segments with
            | [] ->
              Error.error
                (Positions.one (Lexing.lexeme_end_p lexbuf))
                "Syntax error: missing a final message. I may be desynchronized."
            | (text, _) :: segments ->
                loop ((sentences, text) :: accu) segments
375
  in
376
  loop [] segments
377 378 379

(* --------------------------------------------------------------------------- *)

380
(* [message_table] converts a list of targeted runs to a table (a mapping) of
381 382
   states to located sentences and messages. Optionally, it can detect that
   two sentences lead to the same state, and report an error. *)
383

384
let message_table (detect_redundancy : bool) (runs : filtered_targeted_run list)
385
  : (located_sentence * message) Lr1.NodeMap.t =
386 387

  let table =
388
    List.fold_left (fun table (sentences_and_states, message) ->
389 390
      List.fold_left (fun table (sentence2, s) ->
        match Lr1.NodeMap.find s table with
391
        | sentence1, _ ->
392 393 394 395 396 397 398
            if detect_redundancy then
              Error.signal (fst sentence1 @ fst sentence2)
                (Printf.sprintf
                   "Redundancy: these sentences both cause an error in state %d."
                   (Lr1.number s));
            table
        | exception Not_found ->
399
            Lr1.NodeMap.add s (sentence2, message) table
400 401 402 403 404 405 406 407 408 409 410 411
      ) table sentences_and_states
    ) Lr1.NodeMap.empty runs
  in
  if Error.errors() then exit 1;
  table

(* --------------------------------------------------------------------------- *)

(* [compile_runs] converts a list of targeted runs to OCaml code that encodes
   a mapping of state numbers to error messages. The code is sent to the
   standard output channel. *)

412
let compile_runs filename (runs : filtered_targeted_run list) : unit =
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

  (* We wish to produce a function that maps a state number to a message.
     By convention, we call this function [message]. *)

  let name = "message" in

  let open IL in
  let open CodeBits in
  let default = {
    branchpat  = PWildcard;
    branchbody = eraisenotfound
  (* The default branch raises an exception, which can be caught by
     the user, who can then produce a generic error message. *)
  } in
  let branches =
    List.fold_left (fun branches (sentences_and_states, message) ->
      (* Create an or-pattern for these states. *)
      let states = List.map (fun (_, s) ->
        pint (Lr1.number s)
      ) sentences_and_states in
      (* Map all these states to this message. *)
      { branchpat = POr states;
        branchbody = EStringConst message } :: branches
    ) [ default ] runs
  in
  let messagedef = {
    valpublic = true;
    valpat = PVar name;
    valval = EFun ([ PVar "s" ], EMatch (EVar "s", branches))
  } in
  let program = [
    SIComment (Printf.sprintf
      "This file was auto-generated based on \"%s\"." filename);
    SIComment (Printf.sprintf
      "Please note that the function [%s] can raise [Not_found]." name);
    SIValDefs (false,
      [ messagedef ]);
  ] in

  (* Write this program to the standard output channel. *)

  let module P = Printer.Make (struct
    let f = stdout
    let locate_stretches = None
  end) in
  P.program program

(* --------------------------------------------------------------------------- *)

462 463 464 465 466
(* If [--compile-errors <filename>] is set, compile the error message
   descriptions found in file [filename] down to OCaml code, then stop. *)

let () =
  Settings.compile_errors |> Option.iter (fun filename ->
467

468 469
    (* Read the file. *)
    let runs = read_messages filename in
470

471 472
    (* Convert every sentence to a state number. We signal an error if a
       sentence does not end in an error, as expected. *)
473
    let runs = target_runs runs in
474

475 476 477
    (* Remove comments. *)
    let runs = List.map filter_run runs in

478 479
    (* Build a mapping of states to located sentences. This allows us to
       detect if two sentences lead to the same state. *)
480
    let _ = message_table true runs in
481

482 483 484 485 486 487
    (* In principle, we would like to check whether this set of sentences is
       complete (i.e., covers all states where an error can arise), but this
       may be costly -- it requires running [LRijkstra]. Instead, we offer a
       separate facility for comparing two [.messages] files, one of which can
       be produced via [--list-errors]. This can be used to ensure
       completeness. *)
POTTIER Francois's avatar
POTTIER Francois committed
488

489 490 491
    (* Now, compile this information down to OCaml code. We wish to
       produce a function that maps a state number to a message. By
       convention, we call this function [message]. *)
492
    compile_runs filename runs;
493

494 495 496
    exit 0
  )

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
(* --------------------------------------------------------------------------- *)

(* If two [--compare-errors <filename>] directives are provided, compare the
   two message descriptions files, and stop. We wish to make sure that every
   state that appears on the left-hand side appears on the right-hand side as
   well. *)

let () =
  Settings.compare_errors |> Option.iter (fun (filename1, filename2) ->

    (* Read and convert both files, as above. *)
    let runs1 = read_messages filename1
    and runs2 = read_messages filename2 in
    let runs1 = target_runs runs1
    and runs2 = target_runs runs2 in (* here, it would be OK to ignore errors *)
512 513
    let runs1 = List.map filter_run runs1
    and runs2 = List.map filter_run runs2 in
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    let table1 = message_table false runs1
    and table2 = message_table false runs2 in
    
    (* Check that the domain of [table1] is a subset of the domain of [table2]. *)
    table1 |> Lr1.NodeMap.iter (fun s ((poss1, _), _) ->
      if not (Lr1.NodeMap.mem s table2) then
        Error.signal poss1 (Printf.sprintf
          "This sentence leads to an error in state %d.\n\
           No sentence that leads to this state exists in \"%s\"."
          (Lr1.number s) filename2
        )
    );

    (* Check that [table1] is a subset of [table2], that is, for every state
       [s] in the domain of [table1], [s] is mapped by [table1] and [table2]
529 530 531 532 533
       to the same error message. As an exception, if the message found in
       [table1] is the default message, then no comparison takes place. This
       allows using [--list-errors] and [--compare-errors] in conjunction to
       ensure that a [.messages] file is complete, without seeing warnings
       about different messages. *)
534
    table1 |> Lr1.NodeMap.iter (fun s ((poss1, _), message1) ->
535 536 537 538 539 540 541 542 543 544 545
      if message1 <> default_message then
        try
          let (poss2, _), message2 = Lr1.NodeMap.find s table2 in
          if message1 <> message2 then
            Error.warning (poss1 @ poss2) (Printf.sprintf
              "These sentences lead to an error in state %d.\n\
               The corresponding messages in \"%s\" and \"%s\" differ."
              (Lr1.number s) filename1 filename2
            )
        with Not_found ->
          ()
546 547 548 549 550 551 552
    );

    if Error.errors() then exit 1;
    exit 0

  )