LRijkstra.ml 10.6 KB
Newer Older
1 2
open Grammar

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
  let id x = x
  let some x = Some x

let update_ref r f : bool =
  let v = !r in
  let v' = f v in
  v != v' && (r := v'; true)

module MyMap (X : Map.OrderedType) = struct
  include Map.Make(X)
  let update none some key m f =
    match find key m with
    | data ->
        let data' = f (some data) in
        if data' == data then
          m
        else
          add key data' m
    | exception Not_found ->
        let data' = f none in
        add key data' m
end

26 27 28 29 30 31 32 33
module W : sig

  type word
  val epsilon: word
  val singleton: Terminal.t -> word
  val append: word -> word -> word
  val length: word -> int
  val first: word -> Terminal.t (* word must be nonempty *)
34
  val print: word -> string
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

end = struct

  type word = {
    data: Terminal.t Seq.seq;
    length: int;
  }

  let epsilon = {
    data = Seq.empty;
    length = 0;
  }

  (* TEMPORARY tabulate? *)
  let singleton t = {
    data = Seq.singleton t;
    length = 1;
  }

  let append w1 w2 =
    if w1.length = 0 then
      w2
    else if w2.length = 0 then
      w1
    else {
      data = Seq.append w1.data w2.data;
      length = w1.length + w2.length;
    }

  let length w =
    w.length

  let first w =
    Seq.first w.data

70 71 72 73
  let print w =
    string_of_int w.length ^ " " ^
    String.concat " " (List.map Terminal.print (Seq.elements w.data))

74 75 76 77 78 79 80 81 82
end

module Q = LowIntegerPriorityQueue

type fact = {
  source: Lr1.node;
  height: int;
  target: Lr1.node;
  word: W.word;
83
  lookahead: Terminal.t
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
let print_fact fact =
  Printf.fprintf stderr
    "from state %d in %d steps to state %d via %s . %s\n%!"
    (Lr1.number fact.source)
    fact.height
    (Lr1.number fact.target)
    (W.print fact.word)
    (Terminal.print fact.lookahead)

(* TEMPORARY not really satisfactory; conservative bound *)
let max_height (s : Lr1.node) =
  let items = Lr0.items (Lr0.core (Lr1.state s)) in
  Item.Set.fold (fun item accu ->
    let prod, i = Item.export item in
    let height = Production.length prod - i in
    max height accu
  ) items 0

let extensible fact =
  fact.height < max_height fact.source

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
let foreach_terminal f =
  Terminal.iter (fun t ->
    if not (Terminal.equal t Terminal.error) then
      f t
  )

exception Found

let has_nonterminal_transition s =
  try
    SymbolMap.iter (fun sym _ ->
      match sym with
      | Symbol.T _ ->
          ()
      | Symbol.N _ ->
          raise Found
    ) (Lr1.transitions s);
    false
  with Found ->
    true

(* This returns the list of reductions of [state] on token [z]. This
   is a list of zero or one elements. *)

let reductions s z =
  assert (not (Terminal.equal z Terminal.error));
  try
    TerminalMap.find z (Lr1.reductions s)
  with Not_found ->
    []

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
(* This tests whether state [s] is willing to reduce some production
   when the lookahead symbol is [z]. This test takes a possible default
   reduction into account. *)

let has_reduction s z : Production.index option =
  assert (not (Terminal.equal z Terminal.error));
  match Invariant.has_default_reduction s with
  | Some (prod, _) ->
      Some prod
  | None ->
      match reductions s z with
      | prod :: prods ->
          assert (prods = []);
          Some prod
      | [] ->
          None

155 156 157 158 159 160 161 162 163
let q =
  Q.create()

let add fact =
  (* The length of the word serves as the priority of this fact. *)
  Q.add q fact (W.length fact.word)

let init s =
  if has_nonterminal_transition s then
164 165 166 167 168 169 170 171 172
    foreach_terminal (fun z ->
      add {
        source = s;
        height = 0;
        target = s;
        word = W.epsilon;
        lookahead = z
      }
    )
173

174 175 176
let first w z =
  if W.length w > 0 then W.first w else z

177
module T : sig
178 179 180 181 182 183 184 185

  (* [register fact] registers the fact [fact]. It returns [true] if this fact
     is new, i.e., no fact concerning the same quintuple of [source], [height],
     [target], [a], and [z] was previously known. *)
  val register: fact -> bool

  (* [query target z f] enumerates all known facts whose target state is [target]
     and whose lookahead assumption is [z]. *)
186
  val query: Lr1.node -> Terminal.t -> (fact -> unit) -> unit
187

188
end = struct
189

190
  (* We use a map of [target, z] to a map of [source, height, a] to facts. *)
191

192 193 194 195
  module M1 =
    MyMap(struct
      type t = Lr1.node * Terminal.t
      let compare (target1, z1) (target2, z2) =
196 197 198 199 200
        let c = Lr1.Node.compare target1 target2 in
        if c <> 0 then c else
        Terminal.compare z1 z2
    end)

201 202 203 204 205 206 207 208 209 210
  module M2 =
    MyMap(struct
      type t = Lr1.node * int * Terminal.t
      let compare (source1, height1, a1) (source2, height2, a2) =
        let c = Lr1.Node.compare source1 source2 in
        if c <> 0 then c else
        let c = Pervasives.compare height1 height2 in
        if c <> 0 then c else
        Terminal.compare a1 a2
    end)
211

212 213
  let m : fact M2.t M1.t ref =
    ref M1.empty
214

215 216 217
  let register fact =
    let z = fact.lookahead in
    let a = first fact.word z in
218 219 220 221 222 223 224 225 226 227 228
    update_ref m (fun m1 ->
      M1.update M2.empty id (fact.target, z) m1 (fun m2 ->
        M2.update None some (fact.source, fact.height, a) m2 (function
          | None ->
              fact
          | Some earlier_fact ->
              assert (W.length earlier_fact.word <= W.length fact.word);
              earlier_fact
        )
      )
    )
229

230 231 232 233 234 235 236 237
  let query target z f =
    match M1.find (target, z) !m with
    | m2 ->
        M2.iter (fun _ fact ->
          f fact
        ) m2
    | exception Not_found ->
        ()
238

239 240 241 242 243 244 245 246 247
end

(* The module [E] is in charge of recording the non-terminal edges that we have
   discovered, or more precisely, the conditions under which these edges can be
   taken. *)

module E : sig

  (* [register s nt w z] records that, in state [s], the outgoing edge labeled
248 249 250
     [nt] can be taken by consuming the word [w], if the next symbol is [z].
     It returns [true] if this information is new. *)
  val register: Lr1.node -> Nonterminal.t -> W.word -> Terminal.t -> bool
251 252 253 254

  (* [query s nt a z] answers whether, in state [s], the outgoing edge labeled
     [nt] can be taken by consuming some word [w], under the assumption that
     the next symbol is [z], and under the constraint that the first symbol of
255 256
     [w.z] is [a]. *)
  val query: Lr1.node -> Nonterminal.t -> Terminal.t -> Terminal.t -> (W.word -> unit) -> unit
257 258 259 260 261 262

end = struct

  (* For now, we implement a mapping of [s, nt, a, z] to [w]. *)

  module M =
263
    MyMap(struct
264 265 266 267 268 269 270 271 272 273 274 275 276 277
      type t = Lr1.node * Nonterminal.t * Terminal.t * Terminal.t
      let compare (s1, nt1, a1, z1) (s2, nt2, a2, z2) =
        let c = Lr1.Node.compare s1 s2 in
        if c <> 0 then c else
        let c = Nonterminal.compare nt1 nt2 in
        if c <> 0 then c else
        let c = Terminal.compare a1 a2 in
        if c <> 0 then c else
        Terminal.compare z1 z2
    end)

  let m =
    ref M.empty

278 279
  let register s nt w z =
    let a = first w z in
280 281 282 283 284 285 286 287 288
    update_ref m (fun m ->
      M.update None some (s, nt, a, z) m (function
      | None ->
          w
      | Some earlier_w ->
          assert (W.length earlier_w <= W.length w);
          earlier_w
      )
    )
289

290 291 292 293
  let query s nt a z f =
    match M.find (s, nt, a, z) !m with
    | w -> f w
    | exception Not_found -> ()
294 295 296

end

297 298
let extend fact target w z =
  assert (Terminal.equal fact.lookahead (first w z));
299 300 301 302 303
  {
    source = fact.source;
    height = fact.height + 1;
    target = target;
    word = W.append fact.word w;
304
    lookahead = z
305 306
  }

307 308 309
let new_edge s nt w z =
  if E.register s nt w z then
    T.query s (first w z) (fun fact ->
310 311
      if extensible fact then
        add (extend fact s w z)
312
    )
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

(* [consequences fact] is invoked when we discover a new fact (i.e., one that
   was not previously known). It studies the consequences of this fact. These
   consequences are of two kinds:

   - As in Dijkstra's algorithm, the new fact can be viewed as a newly
   discovered vertex. We study its (currently known) outgoing edges,
   and enqueue new facts in the priority queue.

   - Sometimes, a fact can also be viewed as a newly discovered edge.
   This is the case when the word from [fact.source] to [fact.target]
   represents a production of the grammar and [fact.target] is willing
   to reduce this production. We record the existence of this edge,
   and re-inspect any previously discovered vertices which are
   interested in this outgoing edge.
*)
(**)

let consequences fact =

  (* 1. View [fact] as a vertex. Examine the transitions out of [fact.target]. *)
  
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
  if extensible fact then
    SymbolMap.iter (fun sym s ->
      match sym with
      | Symbol.T t ->

          (* 1a. There is a transition labeled [t] out of [fact.target]. If the
             lookahead assumption [fact.lookahead] accepts [t], then we derive a
             new fact, where one more edge has been taken. We enqueue this new
             fact for later examination. *)
          (**)

          if Terminal.equal fact.lookahead t then
            foreach_terminal (fun z ->
              add (extend fact s (W.singleton t) z)
            )

      | Symbol.N nt ->

          (* 1b. There is a transition labeled [nt] out of [fact.target]. We
             need to know how this nonterminal edge can be taken. We query for a
             word [w] that allows us to take this edge. The answer depends on
             the terminal symbol [z] that comes *after* this word: we try all
             such symbols. Furthermore, we need the first symbol of [w.z] to
             satisfy the lookahead assumption [fact.lookahead], so the answer
             also depends on this assumption. *)
          (**)
361

362
          foreach_terminal (fun z ->
363 364 365
            E.query fact.target nt fact.lookahead z (fun w ->
              add (extend fact s w z)
            )
366
          )
367

368
    ) (Lr1.transitions fact.target);
369 370 371 372 373 374 375 376 377 378 379

  (* 2. View [fact] as a possible edge. This is possible if the path from
     [fact.source] to [fact.target] represents a production [prod] and
     [fact.target] is willing to reduce this production. We check that
     [fact.height] equals the length of [prod]. This guarantees that
     reducing [prod] takes us all the way back to [fact.source]. Thus,
     this production gives rise to an edge labeled [nt] -- the left-hand
     side of [prod] -- out of [fact.source]. This edge is subject to the
     lookahead assumption [fact.lookahead], so we record that. *)
  (**)

380 381 382 383 384 385 386
  match has_reduction fact.target fact.lookahead with
  | Some prod when Production.length prod = fact.height ->
      new_edge fact.source (Production.nt prod) fact.word fact.lookahead
  | _ ->
      ()

let facts = ref 0
387 388

let discover fact =
389 390 391 392 393 394 395 396
  if T.register fact then begin

    incr facts;
    Printf.fprintf stderr "facts = %d, current length = %d\n%!"
      !facts (W.length fact.word);

    print_fact fact;

397
    consequences fact
398
  end
399

400
let main =
401 402
  Lr1.iter init;
  Q.repeat q discover