LRijkstra.ml 24.2 KB
Newer Older
1 2
open Grammar

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
(* ------------------------------------------------------------------------ *)

(* First, we implement the computation of forward shortest paths in the
   automaton. We view the automaton as a graph whose vertices are states. We
   label each edge with the minimum length of a word that it generates. This
   yields a lower bound on the actual distance to every state from any entry
   state. *)

let approximate : Lr1.node -> int =

  let module A = Astar.Make(struct

    type node =
      Lr1.node

    let equal s1 s2 =
      Lr1.Node.compare s1 s2 = 0

    let hash s =
      Hashtbl.hash (Lr1.number s)

    type label =
      unit

    let sources f =
      (* The sources are the entry states. *)
      ProductionMap.iter (fun _ s -> f s) Lr1.entry

    let successors s edge =
      SymbolMap.iter (fun sym s' ->
        (* The weight of the edge from [s] to [s'] is given by the function
           [Grammar.Analysis.minimal_symbol]. If [sym] produces the empty
           language, this could be infinite, in which case no edge exists. *)
        match Analysis.minimal_symbol sym with
        | CompletedNatWitness.Finite (w, _) ->
            edge () w s'
        | CompletedNatWitness.Infinity ->
            ()
      ) (Lr1.transitions s)

    let estimate _ =
      (* A* with a zero [estimate] behaves like Dijkstra's algorithm. *)
      0

  end) in
        
  let distance, _ = A.search (fun (_, _) -> ()) in
  distance

(* ------------------------------------------------------------------------ *)

(* This returns the list of reductions of [state] on token [z]. This
   is a list of zero or one elements. *)

let reductions s z =
  assert (not (Terminal.equal z Terminal.error));
  try
    TerminalMap.find z (Lr1.reductions s)
  with Not_found ->
    []

(* This tests whether state [s] is willing to reduce some production
   when the lookahead symbol is [z]. This test takes a possible default
   reduction into account. *)

let has_reduction s z : Production.index option =
  assert (not (Terminal.equal z Terminal.error));
  match Invariant.has_default_reduction s with
  | Some (prod, _) ->
      Some prod
  | None ->
      match reductions s z with
      | prod :: prods ->
          assert (prods = []);
          Some prod
      | [] ->
          None

(* This tests whether state [s] will initiate an error on the lookahead
   symbol [z]. *)

let causes_an_error s z =
  assert (not (Terminal.equal z Terminal.error));
  match Invariant.has_default_reduction s with
  | Some _ ->
      false
  | None ->
      reductions s z = [] &&
      not (SymbolMap.mem (Symbol.T z) (Lr1.transitions s))

93 94 95 96 97 98 99 100
  let id x = x
  let some x = Some x

let update_ref r f : bool =
  let v = !r in
  let v' = f v in
  v != v' && (r := v'; true)

101 102 103 104 105 106 107 108 109 110 111 112
let update add find none some key m f =
  match find key m with
  | data ->
      let data' = f (some data) in
      if data' == data then
        m
      else
        add key data' m
  | exception Not_found ->
      let data' = f none in
      add key data' m

113 114 115
module MyMap (X : Map.OrderedType) = struct
  include Map.Make(X)
  let update none some key m f =
116
    update add find none some key m f
117 118
end

119 120 121 122 123 124 125
module W : sig

  type word
  val epsilon: word
  val singleton: Terminal.t -> word
  val append: word -> word -> word
  val length: word -> int
126
  val first: word -> Terminal.t -> Terminal.t
127
  val elements: word -> Terminal.t list
128
  val print: word -> string
129 130 131

end = struct

132 133 134 135 136 137 138
  type word = Terminal.t list
  let epsilon = []
  let singleton t = [t]
  let append = (@)
  let length = List.length
  let first w z = match w with a :: _ -> a | [] -> z
  let elements w = w
139
  let print w =
140
    string_of_int (length w) ^ " " ^
141
    String.concat " " (List.map Terminal.print (elements w))
142

143 144 145 146
end

module Q = LowIntegerPriorityQueue

147 148 149 150 151
module Trie = struct

  let c = ref 0

  type trie =
152
    | Trie of int * Production.index list * trie SymbolMap.t
153

154
  let mktrie prods children =
155
    let stamp = Misc.postincrement c in
156
    Trie (stamp, prods, children)
157 158

  let empty =
159
    mktrie [] SymbolMap.empty
160

161 162
  let is_empty (Trie (_, prods, children)) =
    prods = [] && SymbolMap.is_empty children
163

164 165
  let accepts prod (Trie (_, prods, _)) =
    List.mem prod prods
166 167 168 169

  let update : Symbol.t -> trie SymbolMap.t -> (trie -> trie) -> trie SymbolMap.t =
    update SymbolMap.add SymbolMap.find empty id

170
  let rec insert w prod (Trie (_, prods, children)) =
171 172
    match w with
    | [] ->
173
        mktrie (prod :: prods) children
174
    | a :: w ->
175
        mktrie prods (update a children (insert w prod))
176 177 178 179 180 181 182 183

  let derivative a (Trie (_, _, children)) =
    try
      SymbolMap.find a children
    with Not_found ->
      empty

  let compare (Trie (stamp1, _, _)) (Trie (stamp2, _, _)) =
184
    Pervasives.compare (stamp1 : int) stamp2
185

186 187
  let rec size (Trie (_, _, children)) =
    SymbolMap.fold (fun _ child accu -> size child + accu) children 1
188

189 190
end

191 192 193
type fact = {
  source: Lr1.node;
  target: Lr1.node;
194
  future: Trie.trie;
195
  word: W.word;
196
  lookahead: Terminal.t
197 198
}

199 200
let print_fact fact =
  Printf.fprintf stderr
201
    "from state %d to state %d via %s . %s\n%!"
202 203 204 205 206
    (Lr1.number fact.source)
    (Lr1.number fact.target)
    (W.print fact.word)
    (Terminal.print fact.lookahead)

207 208
let extensible fact sym =
  not (Trie.is_empty (Trie.derivative sym fact.future))
209

210 211 212 213 214 215
let foreach_terminal f =
  Terminal.iter (fun t ->
    if not (Terminal.equal t Terminal.error) then
      f t
  )

216 217 218 219 220 221 222 223
let star s : Trie.trie =
  SymbolMap.fold (fun sym _ accu ->
    match sym with
    | Symbol.T _ ->
        accu
    | Symbol.N nt ->
        Production.foldnt nt accu (fun prod accu ->
          let w = Array.to_list (Production.rhs prod) in
224
          (* could insert this branch only if viable -- leads to 12600 instead of 12900 in ocaml.mly --lalr *)
225
          Trie.insert w prod accu
226 227 228
        )
  ) (Lr1.transitions s) Trie.empty

229 230 231 232 233 234
let q =
  Q.create()

let add fact =
  (* The length of the word serves as the priority of this fact. *)
  Q.add q fact (W.length fact.word)
POTTIER Francois's avatar
POTTIER Francois committed
235 236
    (* In principle, there is no need to insert the fact into the queue
       if [T] already stores a comparable fact. *)
237

238 239
let stars = ref 0

240
let init s =
241
  let trie = star s in
242 243 244 245
  let size = (Trie.size trie) in
  stars := !stars + size;
  Printf.fprintf stderr "State %d has a star of size %d\n.%!"
    (Lr1.number s) size;
POTTIER Francois's avatar
POTTIER Francois committed
246
  if not (Trie.is_empty trie) then
247 248 249 250
    foreach_terminal (fun z ->
      add {
        source = s;
        target = s;
251
        future = trie;
252 253 254 255
        word = W.epsilon;
        lookahead = z
      }
    )
256 257

module T : sig
258 259

  (* [register fact] registers the fact [fact]. It returns [true] if this fact
260
     is new, i.e., no fact concerning the same quintuple of [source], [future],
261 262 263 264 265
     [target], [a], and [z] was previously known. *)
  val register: fact -> bool

  (* [query target z f] enumerates all known facts whose target state is [target]
     and whose lookahead assumption is [z]. *)
266
  val query: Lr1.node -> Terminal.t -> (fact -> unit) -> unit
267

268
  val stats: unit -> unit
269
  val debug: unit -> unit
270

271
end = struct
272

273 274 275 276 277 278
  (* We use a map of [target, z] to a map of [future, a] to facts. *)

  (* A minor and subtle optimization: we need not use [source] as part
     of the key in [M2], because [future] determines [source]. Indeed,
     [future] is (a sub-trie of) the trie generated by [init source],
     and every trie contains unique stamps. *)
279

280 281 282 283
  module M1 =
    MyMap(struct
      type t = Lr1.node * Terminal.t
      let compare (target1, z1) (target2, z2) =
284 285 286 287 288
        let c = Lr1.Node.compare target1 target2 in
        if c <> 0 then c else
        Terminal.compare z1 z2
    end)

289 290
  module M2 =
    MyMap(struct
291 292 293
      type t = fact
      let compare fact1 fact2 =
        let c = Trie.compare fact1.future fact2.future in
294
        if c <> 0 then c else
295 296
        let a1 = W.first fact1.word fact1.lookahead
        and a2 = W.first fact2.word fact2.lookahead in
297 298
        Terminal.compare a1 a2
    end)
299

300 301
  let m : fact M2.t M1.t ref =
    ref M1.empty
302

303 304
  let count = ref 0

305 306
  let register fact =
    let z = fact.lookahead in
307 308
    update_ref m (fun m1 ->
      M1.update M2.empty id (fact.target, z) m1 (fun m2 ->
309
        M2.update None some fact m2 (function
310
          | None ->
311
              incr count;
312 313
              fact
          | Some earlier_fact ->
314
              (* assert (W.length earlier_fact.word <= W.length fact.word); *)
315 316 317 318
              earlier_fact
        )
      )
    )
319

320 321 322 323 324 325 326 327
  let query target z f =
    match M1.find (target, z) !m with
    | m2 ->
        M2.iter (fun _ fact ->
          f fact
        ) m2
    | exception Not_found ->
        ()
328

329 330 331
  let stats () =
    Printf.fprintf stderr "T stores %d facts.\n%!" !count

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  let iter f =
    let m1 = !m in
    M1.iter (fun _ m2 ->
      M2.iter (fun _ fact ->
        f fact
      ) m2
    ) m1

  (* Empirical verification that [future] determines [source] and [target]. *)
  let debug () =
    let module F = MyMap(struct
      type t = Trie.trie
      let compare = Trie.compare
    end) in
    let f = ref F.empty in
    let c = ref 0 in
    iter (fun fact ->
      incr c;
      try
        let older_fact = F.find fact.future !f in
        assert (Lr1.Node.compare older_fact.source fact.source = 0);
        assert (Lr1.Node.compare older_fact.target fact.target = 0);
      with Not_found ->
        f := F.add fact.future fact !f
    );
    Printf.fprintf stderr "Yes (%d facts, %d distinct futures)\n" !c (F.cardinal !f)

359 360 361 362 363 364 365 366 367
end

(* The module [E] is in charge of recording the non-terminal edges that we have
   discovered, or more precisely, the conditions under which these edges can be
   taken. *)

module E : sig

  (* [register s nt w z] records that, in state [s], the outgoing edge labeled
368 369 370
     [nt] can be taken by consuming the word [w], if the next symbol is [z].
     It returns [true] if this information is new. *)
  val register: Lr1.node -> Nonterminal.t -> W.word -> Terminal.t -> bool
371 372 373 374

  (* [query s nt a z] answers whether, in state [s], the outgoing edge labeled
     [nt] can be taken by consuming some word [w], under the assumption that
     the next symbol is [z], and under the constraint that the first symbol of
375 376
     [w.z] is [a]. *)
  val query: Lr1.node -> Nonterminal.t -> Terminal.t -> Terminal.t -> (W.word -> unit) -> unit
377

378 379
  val stats: unit -> unit

380 381 382 383 384
end = struct

  (* For now, we implement a mapping of [s, nt, a, z] to [w]. *)

  module M =
385
    MyMap(struct
386 387 388 389 390 391 392 393 394 395 396 397 398 399
      type t = Lr1.node * Nonterminal.t * Terminal.t * Terminal.t
      let compare (s1, nt1, a1, z1) (s2, nt2, a2, z2) =
        let c = Lr1.Node.compare s1 s2 in
        if c <> 0 then c else
        let c = Nonterminal.compare nt1 nt2 in
        if c <> 0 then c else
        let c = Terminal.compare a1 a2 in
        if c <> 0 then c else
        Terminal.compare z1 z2
    end)

  let m =
    ref M.empty

400 401
  let count = ref 0

402
  let register s nt w z =
403
    let a = W.first w z in
404 405 406
    update_ref m (fun m ->
      M.update None some (s, nt, a, z) m (function
      | None ->
407
          incr count;
408 409
          w
      | Some earlier_w ->
410
          (* assert (W.length earlier_w <= W.length w); *)
411 412 413
          earlier_w
      )
    )
414

415 416 417 418
  let query s nt a z f =
    match M.find (s, nt, a, z) !m with
    | w -> f w
    | exception Not_found -> ()
419

420 421 422
  let stats () =
    Printf.fprintf stderr "E stores %d facts.\n%!" !count

423 424
end

425
let extend fact target sym w z =
426
  (* assert (Terminal.equal fact.lookahead (first w z)); *)
427 428
  let future = Trie.derivative sym fact.future in
  assert (not (Trie.is_empty future));
429 430 431
  {
    source = fact.source;
    target = target;
432
    future = future;
433
    word = W.append fact.word w;
434
    lookahead = z
435 436
  }

437
let new_edge s nt w z =
POTTIER Francois's avatar
POTTIER Francois committed
438 439 440 441
  (*
  Printf.fprintf stderr "Considering reduction on %s in state %d\n"
    (Terminal.print z) (Lr1.number s);
  *)
442
  if E.register s nt w z then
443
    let sym = (Symbol.N nt) in
444
    let s' = try SymbolMap.find sym (Lr1.transitions s) with Not_found -> assert false in
445
    T.query s (W.first w z) (fun fact ->
446
      if extensible fact sym then
447
        add (extend fact s' sym w z)
448
    )
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

(* [consequences fact] is invoked when we discover a new fact (i.e., one that
   was not previously known). It studies the consequences of this fact. These
   consequences are of two kinds:

   - As in Dijkstra's algorithm, the new fact can be viewed as a newly
   discovered vertex. We study its (currently known) outgoing edges,
   and enqueue new facts in the priority queue.

   - Sometimes, a fact can also be viewed as a newly discovered edge.
   This is the case when the word from [fact.source] to [fact.target]
   represents a production of the grammar and [fact.target] is willing
   to reduce this production. We record the existence of this edge,
   and re-inspect any previously discovered vertices which are
   interested in this outgoing edge.
*)
(**)

let consequences fact =

  (* 1. View [fact] as a vertex. Examine the transitions out of [fact.target]. *)
  
471 472
  SymbolMap.iter (fun sym s ->
    if extensible fact sym then
473 474 475
      match sym with
      | Symbol.T t ->

476 477 478 479
          (* 1a. There is a transition labeled [t] out of [fact.target]. If
             the lookahead assumption [fact.lookahead] is compatible with [t],
             then we derive a new fact, where one more edge has been taken. We
             enqueue this new fact for later examination. *)
480 481 482 483
          (**)

          if Terminal.equal fact.lookahead t then
            foreach_terminal (fun z ->
484
              add (extend fact s sym (W.singleton t) z)
485 486 487 488 489 490 491 492 493 494 495 496
            )

      | Symbol.N nt ->

          (* 1b. There is a transition labeled [nt] out of [fact.target]. We
             need to know how this nonterminal edge can be taken. We query for a
             word [w] that allows us to take this edge. The answer depends on
             the terminal symbol [z] that comes *after* this word: we try all
             such symbols. Furthermore, we need the first symbol of [w.z] to
             satisfy the lookahead assumption [fact.lookahead], so the answer
             also depends on this assumption. *)
          (**)
497

498
          foreach_terminal (fun z ->
499
            E.query fact.target nt fact.lookahead z (fun w ->
500
              add (extend fact s sym w z)
501
            )
502
          )
503

504
  ) (Lr1.transitions fact.target);
505 506 507 508

  (* 2. View [fact] as a possible edge. This is possible if the path from
     [fact.source] to [fact.target] represents a production [prod] and
     [fact.target] is willing to reduce this production. We check that
509 510 511 512 513
     [fact.future] accepts [epsilon]. This guarantees that reducing [prod]
     takes us all the way back to [fact.source]. Thus, this production gives
     rise to an edge labeled [nt] -- the left-hand side of [prod] -- out of
     [fact.source]. This edge is subject to the lookahead assumption
     [fact.lookahead], so we record that. *)
514 515
  (**)

516
  match has_reduction fact.target fact.lookahead with
517
  | Some prod when Trie.accepts prod fact.future ->
518 519 520 521
      new_edge fact.source (Production.nt prod) fact.word fact.lookahead
  | _ ->
      ()

522
let level = ref 0
523 524

let discover fact =
525
  if T.register fact then begin
526 527 528 529 530

    if W.length fact.word > ! level then begin
      Printf.fprintf stderr "Done with level %d.\n" !level;
      level := W.length fact.word;
      T.stats();
531 532
      E.stats();
      Printf.fprintf stderr "Q stores %d facts.\n%!" (Q.cardinal q)
533
    end;
534
(*
535
    incr facts;
536
    Printf.fprintf stderr "Facts = %d, current length = %d\n%!"
537
      !facts ();
538
    Printf.fprintf stderr "New fact:\n";
539
    print_fact fact;
540
*)
541
    consequences fact
542
  end
543

544
let main =
545
  Lr1.iter init;
546
  Printf.fprintf stderr "Cumulated star size: %d\n%!" !stars;
547
  Q.repeat q discover;
548 549
  Time.tick "Running LRijkstra";
  T.stats();
550 551
  E.stats();
  T.debug()
552

553 554
(* ------------------------------------------------------------------------ *)

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
(* The following code validates the fact that an error can be triggered in
   state [s'] by beginning in the initial state [s] and reading the
   sequence of terminal symbols [w]. We use this for debugging purposes. *)

let fail msg =
  Printf.fprintf stderr "coverage: internal error: %s.\n%!" msg;
  false

open ReferenceInterpreter

let validate s s' w : bool =
  match
    ReferenceInterpreter.check_error_path (Lr1.nt_of_entry s) (W.elements w)
  with
  | OInputReadPastEnd ->
      fail "input was read past its end"
  | OInputNotFullyConsumed ->
      fail "input was not fully consumed"
  | OUnexpectedAccept ->
      fail "input was unexpectedly accepted"
  | OK state ->
      Lr1.Node.compare state s' = 0 ||
      fail (
        Printf.sprintf "error occurred in state %d instead of %d"
          (Lr1.number state)
          (Lr1.number s')
      )

(* ------------------------------------------------------------------------ *)

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
(* We now wish to determine, given a state [s'] and a terminal symbol [z], a
   minimal path that takes us from some entry state to state [s'] with [z] as
   the next (unconsumed) symbol. *)

(* This can be formulated as a search for a shortest path in a graph. The
   graph is not just the automaton, though. It is a (much) larger graph whose
   vertices are pairs [s, z] and whose edges are obtained by querying the
   module [E] above. Because we perform a backward search, from [s', z] to any
   entry state, we use reverse edges, from a state to its predecessors in the
   automaton. *)

(* Debugging. TEMPORARY *)
let es = ref 0

exception Success of Lr1.node * W.word

let backward (s', z) : unit =

  let module A = Astar.Make(struct

    (* A vertex is a pair [s, z].
       [z] cannot be the [error] token. *)
    type node =
        Lr1.node * Terminal.t

    let equal (s'1, z1) (s'2, z2) =
      Lr1.Node.compare s'1 s'2 = 0 && Terminal.compare z1 z2 = 0

    let hash (s, z) =
      Hashtbl.hash (Lr1.number s, z)

    (* An edge is labeled with a word. *)
    type label =
      W.word

    (* Backward search from the single source [s', z]. *)
    let sources f = f (s', z)

    let successors (s', z) edge =
      assert (not (Terminal.equal z Terminal.error));
      match Lr1.incoming_symbol s' with
      | None ->
          (* An entry state has no predecessor states. *)
          ()

      | Some (Symbol.T t) ->
          if not (Terminal.equal t Terminal.error) then
            (* There is an edge from [s] to [s'] labeled [t] in the automaton.
               Thus, our graph has an edge from [s', z] to [s, t], labeled [t]. *)
            let w = W.singleton t in
            List.iter (fun s ->
              edge w 1 (s, t)
            ) (Lr1.predecessors s')

      | Some (Symbol.N nt) ->
          (* There is an edge from [s] to [s'] labeled [nt] in the automaton.
             For every letter [a], we query [E] for a word [w] that begins in
             [s] and allows us to take the edge labeled [nt] when the
             lookahead symbol is [z]. Such a path [w] takes us from [s, a] to
             [s', z]. Thus, our graph has an edge, labeled [w], in the reverse
             direction. *)
          (**)
          List.iter (fun s ->
            foreach_terminal (fun a ->
              assert (not (Terminal.equal a Terminal.error));
              E.query s nt a z (fun w ->
                edge w (W.length w) (s, a)
              )
            )
          ) (Lr1.predecessors s')

    let estimate (s', _z) =
      approximate s'

  end) in

  (* Search backwards from [s', z], stopping as soon as an entry state [s] is
     reached. In that case, return the state [s] and the path that has been
     found. *)

665
  let _, _ = A.search (fun ((s, _), path) ->
666 667 668 669 670
    (* Debugging. TEMPORARY *)
    incr es;
    if !es mod 10000 = 0 then
      Printf.fprintf stderr "es = %d\n%!" !es;
    (* If [s] is a start state... *)
671
    let _, ws = A.reverse path in
POTTIER Francois's avatar
POTTIER Francois committed
672
    let ws = List.rev ws in
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    if Lr1.incoming_symbol s = None then
      (* [labels] is a list of properties. Projecting onto the second
         component yields a list of paths (sequences of terminal symbols),
         which we concatenate to obtain a path. Because the edges that were
         followed last are in front of the list, and because this is a
         reverse graph, we obtain a path that makes direct sense: it is a
         sequence of terminal symbols that will take the automaton into
         state [s'] if the next (unconsumed) symbol is [z]. We append [z]
         at the end of this path. *)
      let w = List.fold_right W.append ws (W.singleton z) in
      raise (Success (s, w))
  ) in
  ()

(* ------------------------------------------------------------------------ *)

689
(* Forward search. *)
690

691
let forward () =
692

693
  let module A = Astar.Make(struct
694

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    (* A vertex is a pair [s, z].
       [z] cannot be the [error] token. *)
    type node =
        Lr1.node * Terminal.t

    let equal (s'1, z1) (s'2, z2) =
      Lr1.Node.compare s'1 s'2 = 0 && Terminal.compare z1 z2 = 0

    let hash (s, z) =
      Hashtbl.hash (Lr1.number s, z)

    (* An edge is labeled with a word. *)
    type label =
      W.word

    (* Forward search from every [s, z], where [s] is an initial state. *)
    let sources f =
      foreach_terminal (fun z ->
        ProductionMap.iter (fun _ s ->
          f (s, z)
        ) Lr1.entry
716 717
      )

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
    let successors (s, z) edge =
      assert (not (Terminal.equal z Terminal.error));
      SymbolMap.iter (fun sym s' ->
        match sym with
        | Symbol.T t ->
            if Terminal.equal z t then
              let w = W.singleton t in
              foreach_terminal (fun z ->
                edge w 1 (s', z)
              )
        | Symbol.N nt ->
           foreach_terminal (fun z' ->
             E.query s nt z z' (fun w ->
               edge w (W.length w) (s', z')
             )
           )
      ) (Lr1.transitions s)

    let estimate _ =
      0

  end) in

  (* Search forward. *)

743
  Printf.fprintf stderr "Forward search:\n%!";
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
  let es = ref 0 in
  let seen = ref Lr1.NodeSet.empty in
  let _, _ = A.search (fun ((s', z), (path : A.path)) ->
    (* Debugging. TEMPORARY *)
    incr es;
    if !es mod 10000 = 0 then
      Printf.fprintf stderr "es = %d\n%!" !es;
    if causes_an_error s' z && not (Lr1.NodeSet.mem s' !seen) then begin
      seen := Lr1.NodeSet.add s' !seen;
      (* An error can be triggered in state [s'] by beginning in the initial
         state [s] and reading the sequence of terminal symbols [w]. *)
      let (s, _), ws = A.reverse path in
      let w = List.fold_right W.append ws (W.singleton z) in
      Printf.fprintf stderr
        "An error can be reached from state %d to state %d:\n%!"
        (Lr1.number s)
        (Lr1.number s');
      Printf.fprintf stderr "%s\n%!" (W.print w);
762
      (*
763 764 765 766 767
      let approx = approximate s'
      and real = W.length w - 1 in
      assert (approx <= real);
      if approx < real then
        Printf.fprintf stderr "Approx = %d, real = %d\n" approx real;
768
      *)
769 770 771
      assert (validate s s' w)
    end
  ) in
772 773 774
  Printf.fprintf stderr "Reachable (forward): %d states\n%!"
    (Lr1.NodeSet.cardinal !seen);
  !seen
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
(* ------------------------------------------------------------------------ *)

(* For each state [s'] and for each terminal symbol [z] such that [z] triggers
   an error in [s'], backward search is performed. For each state [s'], we
   stop as soon as one [z] is found, i.e., as soon as one way of causing an
   error in state [s'] is found. *)

let backward s' : W.word option =
  
  (* Debugging. TEMPORARY *)
  Printf.fprintf stderr
    "Attempting to reach an error in state %d:\n%!"
    (Lr1.number s');

  try

    (* This loop stops as soon as we are able to reach one error at [s']. *)
    Terminal.iter (fun z ->
      if not (Terminal.equal z Terminal.error) && causes_an_error s' z then
        backward (s', z)
    );
    (* No error can be triggered in state [s']. *)
    None

  with Success (s, w) ->
    (* An error can be triggered in state [s'] by beginning in the initial
       state [s] and reading the sequence of terminal symbols [w]. *)
    assert (validate s s' w);
    Some w

(* Test. TEMPORARY *)

808 809
let backward () =
  let reachable = ref Lr1.NodeSet.empty in
810 811 812
  Lr1.iter (fun s' ->
    begin match backward s' with
    | None ->
813
        Printf.fprintf stderr "infinity\n%!"
814
    | Some w ->
815 816
        Printf.fprintf stderr "%s\n%!" (W.print w);
        reachable := Lr1.NodeSet.add s' !reachable
817
    end;
818 819 820 821 822 823
    Printf.fprintf stderr "Edges so far: %d\n" !es
  );
  Printf.fprintf stderr "Reachable (backward): %d states\n%!"
    (Lr1.NodeSet.cardinal !reachable);
  !reachable

824 825
(* TEMPORARY what about the pseudo-token [#]? *)
(* TEMPORARY the code in this module should run only if --coverage is set *)
826 827

let () =
828
(*
829 830
  let b = backward() in
  Time.tick "Backward search";
831
*)
832 833
  let f = forward() in
  Time.tick "Forward search";
834 835
  ignore f
(*
836
  assert (Lr1.NodeSet.equal b f)
837
*)