grammar.ml 34.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
open UnparameterizedSyntax
open Syntax
open Positions

(* ------------------------------------------------------------------------ *)
(* Precedence levels for tokens or pseudo-tokens alike. *)

module TokPrecedence = struct

  (* This set records, on a token by token basis, whether the token's
     precedence level is ever useful. This allows emitting warnings
     about useless precedence declarations. *)

  let ever_useful : StringSet.t ref =
    ref StringSet.empty

  let use id =
    ever_useful := StringSet.add id !ever_useful

  (* This function is invoked when someone wants to consult a token's
     precedence level. This does not yet mean that this level is
     useful, though. Indeed, if it is subsequently compared against
     [UndefinedPrecedence], it will not allow solving a conflict. So,
     in addition to the desired precedence level, we return a delayed
     computation which, when evaluated, records that this precedence
     level was useful. *)

  let levelip id properties =
    lazy (use id), properties.tk_priority

  let leveli id = 
    let properties =
      try
	StringMap.find id Front.grammar.tokens
      with Not_found ->
	assert false (* well-formedness check has been performed earlier *)
    in
    levelip id properties    

  (* This function is invoked after the automaton has been constructed.
     It warns about unused precedence levels. *)

  let diagnostics () =
    StringMap.iter (fun id properties ->
      if not (StringSet.mem id !ever_useful) then
	match properties.tk_priority with
	| UndefinedPrecedence ->
	    ()
	| PrecedenceLevel (_, _, pos1, pos2) ->
	    Error.grammar_warning (Positions.two pos1 pos2)
	      (Printf.sprintf "the precedence level assigned to %s is never useful." id)
    ) Front.grammar.tokens

end

(* ------------------------------------------------------------------------ *)
(* Nonterminals. *)

module Nonterminal = struct

  type t = int

  let n2i i = i

  let compare = (-)

  (* Determine how many nonterminals we have and build mappings
     both ways between names and indices. A new nonterminal is
     created for every start symbol. *)

  let new_start_nonterminals =
    StringSet.fold (fun symbol ss -> (symbol ^ "'") :: ss) Front.grammar.start_symbols []

  let original_nonterminals =
75
    nonterminals Front.grammar
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  
  let start =
    List.length new_start_nonterminals

  let (n : int), (name : string array), (map : int StringMap.t) =
    Misc.index (new_start_nonterminals @ original_nonterminals)

  let () =
    Error.logG 1 (fun f ->
      Printf.fprintf f
	"Grammar has %d nonterminal symbols, among which %d start symbols.\n"
	(n - start) start
    )

  let is_start nt =
    nt < start

  let print normalize nt =
    if normalize then
      Misc.normalize name.(nt)
    else
      name.(nt)

  let lookup name =
    StringMap.find name map

  let positions nt =
    (StringMap.find (print false nt) Front.grammar.rules).positions

  let iter f =
    Misc.iteri n f

  let fold f accu =
    Misc.foldi n f accu

  let map f =
    Misc.mapi n f

  let iterx f =
    for nt = start to n - 1 do
      f nt
    done

  let foldx f accu =
    Misc.foldij start n f accu

  let ocamltype nt =
    assert (not (is_start nt));
    try
      Some (StringMap.find (print false nt) Front.grammar.types)
    with Not_found ->
      None

129 130 131 132 133 134 135 136
  let ocamltype_of_start_symbol nt =
    match ocamltype nt with
    | Some typ ->
        typ
    | None ->
        (* Every start symbol has a type. *)
        assert false

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  let tabulate f =
    Array.get (Array.init n f)

end

(* Sets and maps over nonterminals, used only below. *)

module NonterminalMap = Patricia.Big

module NonterminalSet = Patricia.Big.Domain

(* ------------------------------------------------------------------------ *)
(* Terminals. *)

module Terminal = struct

  type t = int

  let t2i i = i

  let compare = (-)

  let equal (tok1 : t) (tok2 : t) =
    tok1 = tok2

  (* Determine how many terminals we have and build mappings
     both ways between names and indices. A new terminal "#"
     is created. A new terminal "error" is created. The fact
     that the integer code assigned to the "#" pseudo-terminal
     is the last one is exploited in the table-based back-end.
     (The right-most row of the action table is not created.)

     Pseudo-tokens (used in %prec declarations, but never
     declared using %token) are filtered out. *)

POTTIER Francois's avatar
POTTIER Francois committed
172 173 174
  (* In principle, the number of the [error] token is irrelevant.
     It is currently 0, but we do not rely on that. *)

175
  let (n : int), (name : string array), (map : int StringMap.t) =
176
    let tokens = tokens Front.grammar in
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    match tokens with
    | [] ->
	Error.error [] "no tokens have been declared."
    | _ ->
	Misc.index ("error" :: tokens @ [ "#" ])

  let print tok =
    name.(tok)

  let lookup name =
    StringMap.find name map

  let sharp =
    lookup "#"

  let error =
    lookup "error"

  let pseudo tok =
    (tok = sharp) || (tok = error)

  let token_properties = 
    let not_so_dummy_properties = (* applicable to [error] and [#] *)
      {
	tk_filename      = "__primitives__";
	tk_priority      = UndefinedPrecedence;
	tk_associativity = UndefinedAssoc;
	tk_ocamltype     = None;
	tk_is_declared   = true;
	tk_position      = Positions.dummy;
      }
    in
    Array.init n (fun tok ->
      try 
	 StringMap.find name.(tok) Front.grammar.tokens 
       with Not_found ->
	 assert (tok = sharp || tok = error);
	 not_so_dummy_properties
    )

  let () =
    Error.logG 1 (fun f ->
      Printf.fprintf f "Grammar has %d terminal symbols.\n" (n - 2)
    )

  let precedence_level tok = 
    TokPrecedence.levelip (print tok) token_properties.(tok)

  let associativity tok =
    token_properties.(tok).tk_associativity

  let ocamltype tok =
    token_properties.(tok).tk_ocamltype

  let iter f =
    Misc.iteri n f

  let fold f accu =
    Misc.foldi n f accu

  let map f =
    Misc.mapi n f

  let mapx f =
    assert (sharp = n - 1);
    Misc.mapi (n-1) f

  (* If a token named [EOF] exists, then it is assumed to represent
245
     ocamllex's [eof] pattern. *)
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

  let eof =
    try
      Some (lookup "EOF")
    with Not_found ->
      None

end

(* Sets of terminals are used intensively in the LR(1) construction,
   so it is important that they be as efficient as possible. *)

module TerminalSet = struct

  include CompressedBitSet 

  let print toks =
    let _, accu =
      fold (fun tok (first, accu) ->
	false,
	if first then
          accu ^ (Terminal.print tok)
	else
	  accu ^ " " ^ (Terminal.print tok)
    ) toks (true, "") in
    accu

  let universe =
    remove Terminal.sharp (
      remove Terminal.error (
        Terminal.fold add empty
      )
    )

280 281 282 283 284 285 286 287 288 289 290 291
  (* The following definitions are used in the computation of FIRST sets
     below. They are not exported outside of this file. *)

  type property =
    t

  let bottom =
    empty

  let is_maximal _ =
    false

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
end

(* Maps over terminals. *)

module TerminalMap = Patricia.Big

(* ------------------------------------------------------------------------ *)
(* Symbols. *)

module Symbol = struct

  type t =
    | N of Nonterminal.t
    | T of Terminal.t

  let compare sym1 sym2 =
    match sym1, sym2 with
    | N nt1, N nt2 ->
	Nonterminal.compare nt1 nt2
    | T tok1, T tok2 ->
	Terminal.compare tok1 tok2
    | N _, T _ ->
	1
    | T _, N _ ->
	-1

  let equal sym1 sym2 =
    compare sym1 sym2 = 0

  let rec lequal syms1 syms2 =
    match syms1, syms2 with
    | [], [] ->
	true
    | sym1 :: syms1, sym2 :: syms2 ->
	equal sym1 sym2 && lequal syms1 syms2
    | _ :: _, []
    | [], _ :: _ ->
	false

  let print = function
    | N nt ->
	Nonterminal.print false nt
    | T tok ->
	Terminal.print tok

  let nonterminal = function
    | T _ ->
	false
    | N _ ->
	true

  (* Printing an array of symbols. [offset] is the start offset -- we
     print everything to its right. [dot] is the dot offset -- we
     print a dot at this offset, if we find it. *)

  let printaod offset dot symbols =
    let buffer = Buffer.create 512 in
    let length = Array.length symbols in
    for i = offset to length do
      if i = dot then
	Buffer.add_string buffer ". ";
      if i < length then begin
	Buffer.add_string buffer (print symbols.(i));
	Buffer.add_char buffer ' '
      end
    done;
    Buffer.contents buffer

  let printao offset symbols =
    printaod offset (-1) symbols

  let printa symbols =
    printao 0 symbols

  let printl symbols =
    printa (Array.of_list symbols)

  let lookup name =
    try
      T (Terminal.lookup name)
    with Not_found ->
      try
	N (Nonterminal.lookup name)
      with Not_found ->
	assert false (* well-formedness check has been performed earlier *)

end

(* Sets of symbols. *)

module SymbolSet = Set.Make(Symbol)

(* Maps over symbols. *)

module SymbolMap = struct

  include Map.Make(Symbol)

  let domain m =
    fold (fun symbol _ accu ->
      symbol :: accu
    ) m []

  let purelynonterminal m =
    fold (fun symbol _ accu ->
      accu && Symbol.nonterminal symbol
    ) m true

end

(* ------------------------------------------------------------------------ *)
(* Productions. *)

module Production = struct

  type index =
      int

  (* Create an array of productions. Record which productions are
     associated with every nonterminal. A new production S' -> S
     is created for every start symbol S. It is known as a
     start production. *)

  let n : int =
    let n = StringMap.fold (fun _ { branches = branches } n ->
      n + List.length branches
    ) Front.grammar.rules 0 in
    Error.logG 1 (fun f -> Printf.fprintf f "Grammar has %d productions.\n" n);
    n + StringSet.cardinal Front.grammar.start_symbols

  let p2i prod =
    prod

  let i2p prod =
    assert (prod >= 0 && prod < n);
    prod

  let table : (Nonterminal.t * Symbol.t array) array =
    Array.make n (-1, [||])

  let identifiers : identifier array array =
    Array.make n [||]

  let used : bool array array =
    Array.make n [||]

  let actions : action option array =
    Array.make n None

  let ntprods : (int * int) array =
    Array.make Nonterminal.n (-1, -1)

  let positions : Positions.t list array =
    Array.make n []

  let (start : int),
      (startprods : index NonterminalMap.t) =
    StringSet.fold (fun nonterminal (k, startprods) ->
      let nt = Nonterminal.lookup nonterminal
      and nt' = Nonterminal.lookup (nonterminal ^ "'") in
      table.(k) <- (nt', [| Symbol.N nt |]);
      identifiers.(k) <- [| "_1" |];
      used.(k) <- [| true |];
      ntprods.(nt') <- (k, k+1);
      positions.(k) <- Nonterminal.positions nt;
      k+1,
      NonterminalMap.add nt k startprods
    ) Front.grammar.start_symbols (0, NonterminalMap.empty)

  let prec_decl : symbol located option array = 
    Array.make n None

  let reduce_precedence : precedence_level array = 
    Array.make n UndefinedPrecedence

  let (_ : int) = StringMap.fold (fun nonterminal { branches = branches } k ->
    let nt = Nonterminal.lookup nonterminal in
    let k' = List.fold_left (fun k branch ->
      let action = branch.action
      and sprec = branch.branch_shift_precedence 
      and rprec = branch.branch_reduce_precedence in	
      let symbols = Array.of_list branch.producers in
      table.(k) <- (nt, Array.map (fun (v, _) -> Symbol.lookup v) symbols);
      identifiers.(k) <- Array.mapi (fun i (_, ido) ->
	match ido with
	| None ->
	    (* Symbols for which no name was chosen will be represented
	       by variables named _1, _2, etc. *)
	    Printf.sprintf "_%d" (i + 1)
        | Some id ->
	    (* Symbols for which a name was explicitly chosen will be
	       known by that name in semantic actions. *)
	    id
      ) symbols;
      used.(k) <- Array.mapi (fun i (_, ido) ->
	match ido with
	| None ->
	    (* A symbol referred to as [$i] is used if and only if the
	       [$i] keyword appears in the semantic action. *)
            Action.has_dollar (i + 1) action
	| Some _ ->
	    (* A symbol referred to via a name is considered used.
	       This is a conservative approximation. *)
            true
      ) symbols;
      actions.(k) <- Some action;
      reduce_precedence.(k) <- rprec;
      prec_decl.(k) <- sprec;
      positions.(k) <- [ branch.branch_position ];
      k+1
    ) k branches in
    ntprods.(nt) <- (k, k');
    k'
  ) Front.grammar.rules start

  (* Iteration over the productions associated with a specific
     nonterminal. *)

  let iternt nt f =
    let k, k' = ntprods.(nt) in
    for prod = k to k' - 1 do
      f prod
    done

  let foldnt (nt : Nonterminal.t) (accu : 'a) (f : index -> 'a -> 'a) : 'a =
    let k, k' = ntprods.(nt) in
    let rec loop accu prod =
      if prod < k' then
	loop (f prod accu) (prod + 1)
      else
	accu
    in
    loop accu k

526 527 528 529 530 531 532 533 534 535 536 537
  (* This funny variant is lazy. If at some point [f] does not demand its
     second argument, then iteration stops. *)
  let foldnt_lazy (nt : Nonterminal.t) (f : index -> 'a Lazy.t -> 'a) (seed : 'a) : 'a =
    let k, k' = ntprods.(nt) in
    let rec loop prod seed =
      if prod < k' then
        f prod (lazy (loop (prod + 1) seed))
      else
        seed
    in
    loop k seed

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  (* Accessors. *)

  let def prod =
    table.(prod)

  let nt prod =
    let nt, _ = table.(prod) in
    nt

  let rhs prod =
    let _, rhs = table.(prod) in
    rhs

  let length prod =
    Array.length (rhs prod)

  let identifiers prod =
    identifiers.(prod)

  let used prod =
    used.(prod)

  let is_start prod =
    prod < start

  let classify prod =
    if is_start prod then
      match (rhs prod).(0) with
      | Symbol.N nt ->
	  Some nt
      | Symbol.T _ ->
	  assert false
    else
      None

  let action prod =
    match actions.(prod) with
    | Some action ->
	action
    | None ->
	(* Start productions have no action. *)
	assert (is_start prod);
	assert false

  let positions prod =
    positions.(prod)

  let startsymbol2startprod nt =
    try
      NonterminalMap.find nt startprods
    with Not_found ->
      assert false (* [nt] is not a start symbol *)

  (* Iteration. *)

  let iter f =
    Misc.iteri n f

  let fold f accu =
    Misc.foldi n f accu

  let map f =
    Misc.mapi n f

POTTIER Francois's avatar
POTTIER Francois committed
602 603 604
  let amap f =
    Array.init n f

605 606 607 608 609 610 611 612
  let iterx f =
    for prod = start to n - 1 do
      f prod
    done

  let foldx f accu =
    Misc.foldij start n f accu

613 614 615
  let mapx f =
    Misc.mapij start n f

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
  (* Printing a production. *)

  let print prod =
    assert (not (is_start prod));
    let nt, rhs = table.(prod) in
    Printf.sprintf "%s -> %s" (Nonterminal.print false nt) (Symbol.printao 0 rhs)

  (* Tabulation. *)

  let tabulate f =
    Misc.tabulate n f

  let tabulateb f =
    Misc.tabulateb n f

  (* This array allows recording, on a production by production basis,
     whether the production's shift precedence is ever useful. This
     allows emitting warnings about useless %prec declarations. *)

  let prec_decl_ever_useful =
    Array.make n false

  let consult_prec_decl prod =
    lazy (prec_decl_ever_useful.(prod) <- true),
    prec_decl.(prod)

  let diagnostics () =
    iterx (fun prod ->
      if not prec_decl_ever_useful.(prod) then
	match prec_decl.(prod) with
	| None ->
	    ()
	| Some id ->
	    Error.grammar_warning [Positions.position id] "this %prec declaration is never useful."
    )

  (* Determining the precedence level of a production. If no %prec
     declaration was explicitly supplied, it is the precedence level
     of the rightmost terminal symbol in the production's right-hand
     side. *)

  type production_level =
    | PNone
    | PRightmostToken of Terminal.t
    | PPrecDecl of symbol

  let rightmost_terminal prod =
    Array.fold_left (fun accu symbol ->
      match symbol with
      | Symbol.T tok ->
	  PRightmostToken tok
      | Symbol.N _ ->
	  accu
    ) PNone (rhs prod)

  let combine e1 e2 =
    lazy (Lazy.force e1; Lazy.force e2)

  let shift_precedence prod =
    let fact1, prec_decl = consult_prec_decl prod in
    let oterminal =
      match prec_decl with
      | None ->
	  rightmost_terminal prod
      | Some { value = terminal } ->
	  PPrecDecl terminal
    in
    match oterminal with
    | PNone ->
	fact1, UndefinedPrecedence
    | PRightmostToken tok ->
	let fact2, level = Terminal.precedence_level tok in
	combine fact1 fact2, level
    | PPrecDecl id ->
	let fact2, level = TokPrecedence.leveli id  in
	combine fact1 fact2, level

end

(* ------------------------------------------------------------------------ *)
(* Maps over productions. *)

module ProductionMap = struct

  include Patricia.Big

  (* Iteration over the start productions only. *)

  let start f =
    Misc.foldi Production.start (fun prod m ->
      add prod (f prod) m
    ) empty

end

(* ------------------------------------------------------------------------ *)
712 713 714
(* If requested, build and print the forward reference graph of the grammar.
   There is an edge of a nonterminal symbol [nt1] to every nonterminal symbol
   [nt2] that occurs in the definition of [nt1]. *)
715 716

let () =
717
  if Settings.graph then begin
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
    (* Allocate. *)

    let forward : NonterminalSet.t array =
      Array.make Nonterminal.n NonterminalSet.empty
    in

    (* Populate. *)

    Array.iter (fun (nt1, rhs) ->
      Array.iter (function
        | Symbol.T _ ->
            ()
        | Symbol.N nt2 ->
            forward.(nt1) <- NonterminalSet.add nt2 forward.(nt1)
      ) rhs
    ) Production.table;

    (* Print. *)
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

    let module P = Dot.Print (struct
      type vertex = Nonterminal.t
      let name nt =
	Printf.sprintf "nt%d" nt
      let successors (f : ?style:Dot.style -> label:string -> vertex -> unit) nt =
	NonterminalSet.iter (fun successor ->
	  f ~label:"" successor
	) forward.(nt)
      let iter (f : ?style:Dot.style -> label:string -> vertex -> unit) =
	Nonterminal.iter (fun nt ->
	  f ~label:(Nonterminal.print false nt) nt
	)
    end) in
    let f = open_out (Settings.base ^ ".dot") in
    P.print f;
    close_out f

755 756
  end

757 758 759 760
(* ------------------------------------------------------------------------ *)
(* Support for analyses of the grammar, expressed as fixed point computations.
   We exploit the generic fixed point algorithm in [Fix]. *)

POTTIER Francois's avatar
POTTIER Francois committed
761 762 763 764 765
(* We perform memoization only at nonterminal symbols. We assume that the
   analysis of a symbol is the analysis of its definition (as opposed to,
   say, a computation that depends on the occurrences of this symbol in
   the grammar). *)

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
module GenericAnalysis
  (P : Fix.PROPERTY)
  (S : sig
    open P

    (* An analysis is specified by the following functions. *)

    (* [terminal] maps a terminal symbol to a property. *)
    val terminal: Terminal.t -> property
    
    (* [disjunction] abstracts a binary alternative. That is, when we analyze
       an alternative between several productions, we compute a property for
       each of them independently, then we combine these properties using
       [disjunction]. *)
    val disjunction: property -> property Lazy.t -> property

    (* [P.bottom] should be a neutral element for [disjunction]. We use it in
       the analysis of an alternative with zero branches. *)

    (* [conjunction] abstracts a binary sequence. That is, when we analyze a
       sequence, we compute a property for each member independently, then we
       combine these properties using [conjunction]. In general, conjunction
       needs access to the first member of the sequence (a symbol), not just
       to its analysis (a property). *)
    val conjunction: Symbol.t -> property -> property Lazy.t -> property

    (* [epsilon] abstracts the empty sequence. It should be a neutral element
       for [conjunction]. *)
    val epsilon: property

  end)
: sig
  open P

  (* The results of the analysis take the following form. *)

  (* To every nonterminal symbol, we associate a property. *)
POTTIER Francois's avatar
POTTIER Francois committed
803 804 805 806
  val nonterminal: Nonterminal.t -> property

  (* To every symbol, we associate a property. *)
  val symbol: Symbol.t -> property
807 808 809 810 811 812 813 814 815 816

  (* To every suffix of every production, we associate a property.
     The offset [i], which determines the beginning of the suffix,
     must be contained between [0] and [n], inclusive, where [n]
     is the length of the production. *)
  val production: Production.index -> int -> property

end = struct
  open P

POTTIER Francois's avatar
POTTIER Francois committed
817 818 819 820 821
  (* The following analysis functions are parameterized over [get], which allows
     making a recursive call to the analysis at a nonterminal symbol. [get] maps
     a nonterminal symbol to a property. *)

  (* Analysis of a symbol. *)
822

POTTIER Francois's avatar
POTTIER Francois committed
823 824 825 826 827 828 829 830 831
  let symbol sym get : property =
    match sym with
    | Symbol.T tok ->
        S.terminal tok
    | Symbol.N nt ->
        (* Recursive call to the analysis, via [get]. *)
        get nt    

  (* Analysis of (a suffix of) a production [prod], starting at index [i]. *)
832

POTTIER Francois's avatar
POTTIER Francois committed
833
  let production prod i get : property =
834 835 836 837 838 839 840 841 842 843
    let rhs = Production.rhs prod in
    let n = Array.length rhs in
    (* Conjunction over all symbols in the right-hand side. This can be viewed
       as a version of [Array.fold_right], which does not necessarily begin at
       index [0]. Note that, because [conjunction] is lazy, it is possible
       to stop early. *)
    let rec loop i =
      if i = n then
        S.epsilon
      else
POTTIER Francois's avatar
POTTIER Francois committed
844 845 846 847
        let sym = rhs.(i) in
        S.conjunction sym
          (symbol sym get)
          (lazy (loop (i+1)))
848 849 850 851 852 853 854
    in
    loop i

  (* The analysis is the least fixed point of the following function, which
     analyzes a nonterminal symbol by looking up and analyzing its definition
     as a disjunction of conjunctions of symbols. *)

POTTIER Francois's avatar
POTTIER Francois committed
855
  let nonterminal nt get : property =
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
    (* Disjunction over all productions for this nonterminal symbol. *)
    Production.foldnt_lazy nt (fun prod rest ->
      S.disjunction
        (production prod 0 get)
        rest
    ) P.bottom

  (* The least fixed point is taken as follows. Note that it is computed
     on demand, as [lfp] is called by the user. *)

  module F =
    Fix.Make
      (Maps.ConsecutiveIntegerKeysToImperativeMaps(Nonterminal))
      (P)

POTTIER Francois's avatar
POTTIER Francois committed
871 872 873 874
  let nonterminal =
    F.lfp nonterminal

  (* The auxiliary functions can be published too. *)
875

POTTIER Francois's avatar
POTTIER Francois committed
876 877
  let symbol sym =
    symbol sym nonterminal
878

POTTIER Francois's avatar
POTTIER Francois committed
879 880
  let production prod i =
    production prod i nonterminal
881 882 883

end

884 885 886 887 888 889
(* ------------------------------------------------------------------------ *)
(* The computation of FOLLOW sets does not follow the above model. Instead, we
   need to explicitly compute a system of equations over sets of terminal
   symbols (in a first pass), then solve the constraints (in a second
   pass). *)

890
(* An equation's right-hand side is a set expression. *)
891

892 893 894 895
type expr =
| EVar of Nonterminal.t
| EConstant of TerminalSet.t
| EUnion of expr * expr
896 897

(* A system of equations is represented as an array, which maps nonterminal
898
   symbols to expressions. *)
899 900

type equations =
901
  expr array
902 903 904 905 906

(* This solver computes the least solution of a set of equations. *)

let solve (eqs : equations) : Nonterminal.t -> TerminalSet.t =

907 908 909
  let rec expr e get =
    match e with
    | EVar nt ->
910
        get nt
911
    | EConstant c ->
912
        c
913 914
    | EUnion (e1, e2) ->
        TerminalSet.union (expr e1 get) (expr e2 get)
915 916 917
  in

  let nonterminal nt get =
918
    expr eqs.(nt) get
919 920 921 922 923 924 925 926 927 928
  in

  let module F =
    Fix.Make
      (Maps.ConsecutiveIntegerKeysToImperativeMaps(Nonterminal))
      (TerminalSet)
  in
  
  F.lfp nonterminal

929 930 931 932 933 934 935
(* ------------------------------------------------------------------------ *)
(* Compute which nonterminals are nonempty, that is, recognize a
   nonempty language. Also, compute which nonterminals are
   nullable. The two computations are almost identical. The only
   difference is in the base case: a single terminal symbol is not
   nullable, but is nonempty. *)

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
module NONEMPTY =
  GenericAnalysis
    (Boolean)
    (struct
      (* A terminal symbol is nonempty. *)
      let terminal _ = true
      (* An alternative is nonempty if at least one branch is nonempty. *)
      let disjunction p q = p || (Lazy.force q)
      (* A sequence is nonempty if both members are nonempty. *)
      let conjunction _ p q = p && (Lazy.force q)
      (* The sequence epsilon is nonempty. It generates the singleton
         language {epsilon}. *)
      let epsilon = true
     end)

module NULLABLE =
  GenericAnalysis
    (Boolean)
    (struct
      (* A terminal symbol is not nullable. *)
      let terminal _ = false
      (* An alternative is nullable if at least one branch is nullable. *)
      let disjunction p q = p || (Lazy.force q)
      (* A sequence is nullable if both members are nullable. *)
      let conjunction _ p q = p && (Lazy.force q)
      (* The sequence epsilon is nullable. *)
      let epsilon = true
     end)
964

965 966 967
(* ------------------------------------------------------------------------ *)
(* Compute FIRST sets. *)

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
module FIRST =
  GenericAnalysis
    (TerminalSet)
    (struct
      (* A terminal symbol has a singleton FIRST set. *)
      let terminal = TerminalSet.singleton
      (* The FIRST set of an alternative is the union of the FIRST sets. *)
      let disjunction p q = TerminalSet.union p (Lazy.force q)
      (* The FIRST set of a sequence is the union of:
           the FIRST set of the first member, and
           the FIRST set of the second member, if the first member is nullable. *)
      let conjunction symbol p q =
        if NULLABLE.symbol symbol then
          TerminalSet.union p (Lazy.force q)
        else
          p
      (* The FIRST set of the empty sequence is empty. *)
      let epsilon = TerminalSet.empty
     end)

988 989 990 991 992 993 994 995 996 997 998
(* ------------------------------------------------------------------------ *)

let () =
  (* If a start symbol generates the empty language or generates
     the language {epsilon}, report an error. In principle, this
     could be just a warning. However, in [Engine], in the function
     [start], it is convenient to assume that neither of these
     situations can arise. This means that at least one token must
     be read. *)
  StringSet.iter (fun symbol ->
    let nt = Nonterminal.lookup symbol in
999
    if not (NONEMPTY.nonterminal nt) then
1000 1001 1002
      Error.error
	(Nonterminal.positions nt)
	(Printf.sprintf "%s generates the empty language." (Nonterminal.print false nt));
1003
    if TerminalSet.is_empty (FIRST.nonterminal nt) then
1004 1005 1006 1007 1008 1009
      Error.error
	(Nonterminal.positions nt)
	(Printf.sprintf "%s generates the language {epsilon}." (Nonterminal.print false nt))
  ) Front.grammar.start_symbols;
  (* If a nonterminal symbol generates the empty language, issue a warning. *)
  for nt = Nonterminal.start to Nonterminal.n - 1 do
1010
    if not (NONEMPTY.nonterminal nt) then
1011 1012 1013 1014 1015
      Error.grammar_warning
	(Nonterminal.positions nt)
	(Printf.sprintf "%s generates the empty language." (Nonterminal.print false nt));
  done

1016 1017 1018 1019 1020 1021 1022 1023
(* ------------------------------------------------------------------------ *)
(* Dump the analysis results. *)

let () =
  Error.logG 2 (fun f ->
    for nt = 0 to Nonterminal.n - 1 do
      Printf.fprintf f "nullable(%s) = %b\n"
	(Nonterminal.print false nt)
1024
	(NULLABLE.nonterminal nt)
1025 1026 1027 1028
    done;
    for nt = 0 to Nonterminal.n - 1 do
      Printf.fprintf f "first(%s) = %s\n"
	(Nonterminal.print false nt)
1029
	(TerminalSet.print (FIRST.nonterminal nt))
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    done
  )

let () =
  Time.tick "Analysis of the grammar"

(* ------------------------------------------------------------------------ *)
(* Compute FOLLOW sets. Unnecessary for us, but requested by a user. Also,
   this is useful for the SLR(1) test. Thus, we perform this analysis only
   on demand. *)

1041
let follow : Nonterminal.t -> TerminalSet.t =
1042

1043 1044
  (* First pass. Build a system of equations between sets of nonterminal
     symbols. *)
1045

1046
  let follow : equations =
1047
    Array.make Nonterminal.n (EConstant TerminalSet.empty)
1048
  in
1049

1050
  (* Iterate over all start symbols. *)
1051
  let sharp = EConstant (TerminalSet.singleton Terminal.sharp) in
1052 1053 1054
  for nt = 0 to Nonterminal.start - 1 do
    assert (Nonterminal.is_start nt);
    (* Add # to FOLLOW(nt). *)
1055
    follow.(nt) <- EUnion (sharp, follow.(nt))
1056 1057 1058 1059
  done;
  (* We need to do this explicitly because our start productions are
     of the form S' -> S, not S' -> S #, so # will not automatically
     appear into FOLLOW(S) when the start productions are examined. *)
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
  (* Iterate over all productions. *)
  Array.iteri (fun prod (nt1, rhs) ->
    (* Iterate over all nonterminal symbols [nt2] in the right-hand side. *)
    Array.iteri (fun i symbol ->
      match symbol with
      | Symbol.T _ ->
          ()
      | Symbol.N nt2 ->
          let nullable = NULLABLE.production prod (i+1)
          and first = FIRST.production prod (i+1) in
          (* The FIRST set of the remainder of the right-hand side
             contributes to the FOLLOW set of [nt2]. *)
1073
          follow.(nt2) <- EUnion (EConstant first, follow.(nt2));
1074 1075 1076
          (* If the remainder of the right-hand side is nullable,
             FOLLOW(nt1) contributes to FOLLOW(nt2). *)
          if nullable then
1077
            follow.(nt2) <- EUnion (EVar nt1, follow.(nt2))
1078 1079
    ) rhs
  ) Production.table;
1080

1081
  (* Second pass. Solve the equations (on demand). *)
1082

1083
  solve follow
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

(* At log level 2, display the FOLLOW sets. *)

let () =
  Error.logG 2 (fun f ->
    for nt = 0 to Nonterminal.n - 1 do
      Printf.fprintf f "follow(%s) = %s\n"
	(Nonterminal.print false nt)
	(TerminalSet.print (follow nt))
    done
  )

(* Compute FOLLOW sets for the terminal symbols as well. Again, unnecessary
   for us, but requested by a user. This is done in a single pass over the
   grammar -- no new fixpoint computation is required. *)

let tfollow : TerminalSet.t array Lazy.t =
  lazy (

    let tfollow =
      Array.make Terminal.n TerminalSet.empty
    in

    (* Iterate over all productions. *)
1108
    Array.iteri (fun prod (nt1, rhs) ->
1109 1110 1111 1112 1113 1114
      (* Iterate over all terminal symbols [t2] in the right-hand side. *)
      Array.iteri (fun i symbol ->
	match symbol with
	| Symbol.N _ ->
	    ()
	| Symbol.T t2 ->
1115 1116
            let nullable = NULLABLE.production prod (i+1)
            and first = FIRST.production prod (i+1) in
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	    (* The FIRST set of the remainder of the right-hand side
	       contributes to the FOLLOW set of [t2]. *)
	    tfollow.(t2) <- TerminalSet.union first tfollow.(t2);
	    (* If the remainder of the right-hand side is nullable,
	       FOLLOW(nt1) contributes to FOLLOW(t2). *)
	    if nullable then
	      tfollow.(t2) <- TerminalSet.union (follow nt1) tfollow.(t2)
      ) rhs
    ) Production.table;

    tfollow

  )

(* Define another accessor. *)

let tfollow t =
  (Lazy.force tfollow).(t)

(* At log level 3, display the FOLLOW sets for terminal symbols. *)

let () =
  Error.logG 3 (fun f ->
    for t = 0 to Terminal.n - 1 do
      Printf.fprintf f "follow(%s) = %s\n"
	(Terminal.print t)
	(TerminalSet.print (tfollow t))
    done
  )

(* ------------------------------------------------------------------------ *)
(* Provide explanations about FIRST sets. *)

(* The idea is to explain why a certain token appears in the FIRST set
   for a certain sequence of symbols. Such an explanation involves
   basic assertions of the form (i) symbol N is nullable and (ii) the
   token appears in the FIRST set for symbol N. We choose to take
   these basic facts for granted, instead of recursively explaining
   them, so as to keep explanations short. *)

(* We first produce an explanation in abstract syntax, then
   convert it to a human-readable string. *)

type explanation =
  | EObvious                                 (* sequence begins with desired token *)
  | EFirst of Terminal.t * Nonterminal.t     (* sequence begins with a nonterminal that produces desired token *)
  | ENullable of Symbol.t list * explanation (* sequence begins with a list of nullable symbols and ... *)

let explain (tok : Terminal.t) (rhs : Symbol.t array) (i : int) =
  let length = Array.length rhs in
  let rec loop i =
    assert (i < length);
    let symbol = rhs.(i) in
    match symbol with
    | Symbol.T tok' ->
	assert (Terminal.equal tok tok');
	EObvious
    | Symbol.N nt ->
1175
	if TerminalSet.mem tok (FIRST.nonterminal nt) then
1176 1177
	  EFirst (tok, nt)
	else begin
1178
	  assert (NULLABLE.nonterminal nt);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	  match loop (i + 1) with
	  | ENullable (symbols, e) ->
	      ENullable (symbol :: symbols, e)
	  | e ->
	      ENullable ([ symbol ], e)
	end
  in
  loop i

let rec convert = function
  | EObvious ->
      ""
  | EFirst (tok, nt) ->
      Printf.sprintf "%s can begin with %s"
	(Nonterminal.print false nt)
	(Terminal.print tok)
  | ENullable (symbols, e) ->
      let e = convert e in
      Printf.sprintf "%scan vanish%s%s"
	(Symbol.printl symbols)
	(if e = "" then "" else " and ")
	e

(* ------------------------------------------------------------------------ *)
(* Package the analysis results. *)

module Analysis = struct

1207
  let nullable = NULLABLE.nonterminal
1208

1209
  let first = FIRST.nonterminal
POTTIER Francois's avatar
POTTIER Francois committed
1210

1211
  let nullable_first_prod prod i =
1212 1213
    NULLABLE.production prod i,
    FIRST.production prod i
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

  let explain_first_rhs (tok : Terminal.t) (rhs : Symbol.t array) (i : int) =
    convert (explain tok rhs i)

  let follow = follow

end

(* ------------------------------------------------------------------------ *)
(* Conflict resolution via precedences. *)

module Precedence = struct

  type choice =
    | ChooseShift
    | ChooseReduce
    | ChooseNeither
    | DontKnow

  type order = Lt | Gt | Eq | Ic

  let precedence_order p1 p2 = 
    match p1, p2 with
      |	UndefinedPrecedence, _
      | _, UndefinedPrecedence -> 
	  Ic

      | PrecedenceLevel (m1, l1, _, _), PrecedenceLevel (m2, l2, _, _) ->
	  if not (Mark.same m1 m2) then
	    Ic
	  else
	    if l1 > l2 then 
	      Gt 
	    else if l1 < l2 then 
	      Lt
	    else 
	      Eq

  let shift_reduce tok prod =
    let fact1, tokp  = Terminal.precedence_level tok
    and fact2, prodp = Production.shift_precedence prod in
    match precedence_order tokp prodp with
   
      (* Our information is inconclusive. Drop [fact1] and [fact2],
	 that is, do not record that this information was useful. *)

    | Ic ->
	DontKnow

      (* Our information is useful. Record that fact by evaluating
	 [fact1] and [fact2]. *)

    | (Eq | Lt | Gt) as c ->
	Lazy.force fact1;
	Lazy.force fact2;
	match c with

	| Ic ->
	    assert false (* already dispatched *)

	| Eq -> 
	    begin
	      match Terminal.associativity tok with
	      | LeftAssoc  -> ChooseReduce
	      | RightAssoc -> ChooseShift
	      | NonAssoc   -> ChooseNeither
	      | _          -> assert false
			      (* If [tok]'s precedence level is defined, then
				 its associativity must be defined as well. *)
	    end

	| Lt ->
	    ChooseReduce

	| Gt ->
	    ChooseShift


  let reduce_reduce prod1 prod2 =
    let rp1 = Production.reduce_precedence.(prod1) 
    and rp2 = Production.reduce_precedence.(prod2) in
    match precedence_order rp1 rp2 with
    | Lt -> 
	Some prod1
    | Gt -> 
	Some prod2
    | Eq -> 
	(* the order is strict except in presence of inlining: 
	   two branches can have the same precedence level when
	   they come from an inlined one. *)
	None
    | Ic -> 
	None

end
  
let diagnostics () =
  TokPrecedence.diagnostics();
  Production.diagnostics()