open UnparameterizedSyntax open Syntax open Positions (* ------------------------------------------------------------------------ *) (* Precedence levels for tokens or pseudo-tokens alike. *) module TokPrecedence = struct (* This set records, on a token by token basis, whether the token's precedence level is ever useful. This allows emitting warnings about useless precedence declarations. *) let ever_useful : StringSet.t ref = ref StringSet.empty let use id = ever_useful := StringSet.add id !ever_useful (* This function is invoked when someone wants to consult a token's precedence level. This does not yet mean that this level is useful, though. Indeed, if it is subsequently compared against [UndefinedPrecedence], it will not allow solving a conflict. So, in addition to the desired precedence level, we return a delayed computation which, when evaluated, records that this precedence level was useful. *) let levelip id properties = lazy (use id), properties.tk_priority let leveli id = let properties = try StringMap.find id Front.grammar.tokens with Not_found -> assert false (* well-formedness check has been performed earlier *) in levelip id properties (* This function is invoked after the automaton has been constructed. It warns about unused precedence levels. *) let diagnostics () = StringMap.iter (fun id properties -> if not (StringSet.mem id !ever_useful) then match properties.tk_priority with | UndefinedPrecedence -> () | PrecedenceLevel (_, _, pos1, pos2) -> Error.grammar_warning (Positions.two pos1 pos2) (Printf.sprintf "the precedence level assigned to %s is never useful." id) ) Front.grammar.tokens end (* ------------------------------------------------------------------------ *) (* Nonterminals. *) module Nonterminal = struct type t = int let n2i i = i let compare = (-) (* Determine how many nonterminals we have and build mappings both ways between names and indices. A new nonterminal is created for every start symbol. *) let new_start_nonterminals = StringSet.fold (fun symbol ss -> (symbol ^ "'") :: ss) Front.grammar.start_symbols [] let original_nonterminals = nonterminals Front.grammar let start = List.length new_start_nonterminals let (n : int), (name : string array), (map : int StringMap.t) = Misc.index (new_start_nonterminals @ original_nonterminals) let () = Error.logG 1 (fun f -> Printf.fprintf f "Grammar has %d nonterminal symbols, among which %d start symbols.\n" (n - start) start ) let is_start nt = nt < start let print normalize nt = if normalize then Misc.normalize name.(nt) else name.(nt) let lookup name = StringMap.find name map let positions nt = (StringMap.find (print false nt) Front.grammar.rules).positions let iter f = Misc.iteri n f let fold f accu = Misc.foldi n f accu let map f = Misc.mapi n f let iterx f = for nt = start to n - 1 do f nt done let foldx f accu = Misc.foldij start n f accu let ocamltype nt = assert (not (is_start nt)); try Some (StringMap.find (print false nt) Front.grammar.types) with Not_found -> None let ocamltype_of_start_symbol nt = match ocamltype nt with | Some typ -> typ | None -> (* Every start symbol has a type. *) assert false let tabulate f = Array.get (Array.init n f) end (* Sets and maps over nonterminals, used only below. *) module NonterminalMap = Patricia.Big module NonterminalSet = Patricia.Big.Domain (* ------------------------------------------------------------------------ *) (* Terminals. *) module Terminal = struct type t = int let t2i i = i let compare = (-) let equal (tok1 : t) (tok2 : t) = tok1 = tok2 (* Determine how many terminals we have and build mappings both ways between names and indices. A new terminal "#" is created. A new terminal "error" is created. The fact that the integer code assigned to the "#" pseudo-terminal is the last one is exploited in the table-based back-end. (The right-most row of the action table is not created.) Pseudo-tokens (used in %prec declarations, but never declared using %token) are filtered out. *) (* In principle, the number of the [error] token is irrelevant. It is currently 0, but we do not rely on that. *) let (n : int), (name : string array), (map : int StringMap.t) = let tokens = tokens Front.grammar in match tokens with | [] -> Error.error [] "no tokens have been declared." | _ -> Misc.index ("error" :: tokens @ [ "#" ]) let print tok = name.(tok) let lookup name = StringMap.find name map let sharp = lookup "#" let error = lookup "error" let pseudo tok = (tok = sharp) || (tok = error) let token_properties = let not_so_dummy_properties = (* applicable to [error] and [#] *) { tk_filename = "__primitives__"; tk_priority = UndefinedPrecedence; tk_associativity = UndefinedAssoc; tk_ocamltype = None; tk_is_declared = true; tk_position = Positions.dummy; } in Array.init n (fun tok -> try StringMap.find name.(tok) Front.grammar.tokens with Not_found -> assert (tok = sharp || tok = error); not_so_dummy_properties ) let () = Error.logG 1 (fun f -> Printf.fprintf f "Grammar has %d terminal symbols.\n" (n - 2) ) let precedence_level tok = TokPrecedence.levelip (print tok) token_properties.(tok) let associativity tok = token_properties.(tok).tk_associativity let ocamltype tok = token_properties.(tok).tk_ocamltype let iter f = Misc.iteri n f let fold f accu = Misc.foldi n f accu let map f = Misc.mapi n f let mapx f = assert (sharp = n - 1); Misc.mapi (n-1) f (* If a token named [EOF] exists, then it is assumed to represent ocamllex's [eof] pattern. *) let eof = try Some (lookup "EOF") with Not_found -> None end (* Sets of terminals are used intensively in the LR(1) construction, so it is important that they be as efficient as possible. *) module TerminalSet = struct include CompressedBitSet let print toks = let _, accu = fold (fun tok (first, accu) -> false, if first then accu ^ (Terminal.print tok) else accu ^ " " ^ (Terminal.print tok) ) toks (true, "") in accu let universe = remove Terminal.sharp ( remove Terminal.error ( Terminal.fold add empty ) ) (* The following definitions are used in the computation of FIRST sets below. They are not exported outside of this file. *) type property = t let bottom = empty let is_maximal _ = false end (* Maps over terminals. *) module TerminalMap = Patricia.Big (* ------------------------------------------------------------------------ *) (* Symbols. *) module Symbol = struct type t = | N of Nonterminal.t | T of Terminal.t let compare sym1 sym2 = match sym1, sym2 with | N nt1, N nt2 -> Nonterminal.compare nt1 nt2 | T tok1, T tok2 -> Terminal.compare tok1 tok2 | N _, T _ -> 1 | T _, N _ -> -1 let equal sym1 sym2 = compare sym1 sym2 = 0 let rec lequal syms1 syms2 = match syms1, syms2 with | [], [] -> true | sym1 :: syms1, sym2 :: syms2 -> equal sym1 sym2 && lequal syms1 syms2 | _ :: _, [] | [], _ :: _ -> false let print = function | N nt -> Nonterminal.print false nt | T tok -> Terminal.print tok let nonterminal = function | T _ -> false | N _ -> true (* Printing an array of symbols. [offset] is the start offset -- we print everything to its right. [dot] is the dot offset -- we print a dot at this offset, if we find it. *) let printaod offset dot symbols = let buffer = Buffer.create 512 in let length = Array.length symbols in for i = offset to length do if i = dot then Buffer.add_string buffer ". "; if i < length then begin Buffer.add_string buffer (print symbols.(i)); Buffer.add_char buffer ' ' end done; Buffer.contents buffer let printao offset symbols = printaod offset (-1) symbols let printa symbols = printao 0 symbols let printl symbols = printa (Array.of_list symbols) let lookup name = try T (Terminal.lookup name) with Not_found -> try N (Nonterminal.lookup name) with Not_found -> assert false (* well-formedness check has been performed earlier *) end (* Sets of symbols. *) module SymbolSet = Set.Make(Symbol) (* Maps over symbols. *) module SymbolMap = struct include Map.Make(Symbol) let domain m = fold (fun symbol _ accu -> symbol :: accu ) m [] let purelynonterminal m = fold (fun symbol _ accu -> accu && Symbol.nonterminal symbol ) m true end (* ------------------------------------------------------------------------ *) (* Productions. *) module Production = struct type index = int (* Create an array of productions. Record which productions are associated with every nonterminal. A new production S' -> S is created for every start symbol S. It is known as a start production. *) let n : int = let n = StringMap.fold (fun _ { branches = branches } n -> n + List.length branches ) Front.grammar.rules 0 in Error.logG 1 (fun f -> Printf.fprintf f "Grammar has %d productions.\n" n); n + StringSet.cardinal Front.grammar.start_symbols let p2i prod = prod let i2p prod = assert (prod >= 0 && prod < n); prod let table : (Nonterminal.t * Symbol.t array) array = Array.make n (-1, [||]) let identifiers : identifier array array = Array.make n [||] let used : bool array array = Array.make n [||] let actions : action option array = Array.make n None let ntprods : (int * int) array = Array.make Nonterminal.n (-1, -1) let positions : Positions.t list array = Array.make n [] let (start : int), (startprods : index NonterminalMap.t) = StringSet.fold (fun nonterminal (k, startprods) -> let nt = Nonterminal.lookup nonterminal and nt' = Nonterminal.lookup (nonterminal ^ "'") in table.(k) <- (nt', [| Symbol.N nt |]); identifiers.(k) <- [| "_1" |]; used.(k) <- [| true |]; ntprods.(nt') <- (k, k+1); positions.(k) <- Nonterminal.positions nt; k+1, NonterminalMap.add nt k startprods ) Front.grammar.start_symbols (0, NonterminalMap.empty) let prec_decl : symbol located option array = Array.make n None let reduce_precedence : precedence_level array = Array.make n UndefinedPrecedence let (_ : int) = StringMap.fold (fun nonterminal { branches = branches } k -> let nt = Nonterminal.lookup nonterminal in let k' = List.fold_left (fun k branch -> let action = branch.action and sprec = branch.branch_shift_precedence and rprec = branch.branch_reduce_precedence in let symbols = Array.of_list branch.producers in table.(k) <- (nt, Array.map (fun (v, _) -> Symbol.lookup v) symbols); identifiers.(k) <- Array.mapi (fun i (_, ido) -> match ido with | None -> (* Symbols for which no name was chosen will be represented by variables named _1, _2, etc. *) Printf.sprintf "_%d" (i + 1) | Some id -> (* Symbols for which a name was explicitly chosen will be known by that name in semantic actions. *) id ) symbols; used.(k) <- Array.mapi (fun i (_, ido) -> match ido with | None -> (* A symbol referred to as [$i] is used if and only if the [$i] keyword appears in the semantic action. *) Action.has_dollar (i + 1) action | Some _ -> (* A symbol referred to via a name is considered used. This is a conservative approximation. *) true ) symbols; actions.(k) <- Some action; reduce_precedence.(k) <- rprec; prec_decl.(k) <- sprec; positions.(k) <- [ branch.branch_position ]; k+1 ) k branches in ntprods.(nt) <- (k, k'); k' ) Front.grammar.rules start (* Iteration over the productions associated with a specific nonterminal. *) let iternt nt f = let k, k' = ntprods.(nt) in for prod = k to k' - 1 do f prod done let foldnt (nt : Nonterminal.t) (accu : 'a) (f : index -> 'a -> 'a) : 'a = let k, k' = ntprods.(nt) in let rec loop accu prod = if prod < k' then loop (f prod accu) (prod + 1) else accu in loop accu k (* This funny variant is lazy. If at some point [f] does not demand its second argument, then iteration stops. *) let foldnt_lazy (nt : Nonterminal.t) (f : index -> 'a Lazy.t -> 'a) (seed : 'a) : 'a = let k, k' = ntprods.(nt) in let rec loop prod seed = if prod < k' then f prod (lazy (loop (prod + 1) seed)) else seed in loop k seed (* Accessors. *) let def prod = table.(prod) let nt prod = let nt, _ = table.(prod) in nt let rhs prod = let _, rhs = table.(prod) in rhs let length prod = Array.length (rhs prod) let identifiers prod = identifiers.(prod) let used prod = used.(prod) let is_start prod = prod < start let classify prod = if is_start prod then match (rhs prod).(0) with | Symbol.N nt -> Some nt | Symbol.T _ -> assert false else None let action prod = match actions.(prod) with | Some action -> action | None -> (* Start productions have no action. *) assert (is_start prod); assert false let positions prod = positions.(prod) let startsymbol2startprod nt = try NonterminalMap.find nt startprods with Not_found -> assert false (* [nt] is not a start symbol *) (* Iteration. *) let iter f = Misc.iteri n f let fold f accu = Misc.foldi n f accu let map f = Misc.mapi n f let amap f = Array.init n f let iterx f = for prod = start to n - 1 do f prod done let foldx f accu = Misc.foldij start n f accu let mapx f = Misc.mapij start n f (* Printing a production. *) let print prod = assert (not (is_start prod)); let nt, rhs = table.(prod) in Printf.sprintf "%s -> %s" (Nonterminal.print false nt) (Symbol.printao 0 rhs) (* Tabulation. *) let tabulate f = Misc.tabulate n f let tabulateb f = Misc.tabulateb n f (* This array allows recording, on a production by production basis, whether the production's shift precedence is ever useful. This allows emitting warnings about useless %prec declarations. *) let prec_decl_ever_useful = Array.make n false let consult_prec_decl prod = lazy (prec_decl_ever_useful.(prod) <- true), prec_decl.(prod) let diagnostics () = iterx (fun prod -> if not prec_decl_ever_useful.(prod) then match prec_decl.(prod) with | None -> () | Some id -> Error.grammar_warning [Positions.position id] "this %prec declaration is never useful." ) (* Determining the precedence level of a production. If no %prec declaration was explicitly supplied, it is the precedence level of the rightmost terminal symbol in the production's right-hand side. *) type production_level = | PNone | PRightmostToken of Terminal.t | PPrecDecl of symbol let rightmost_terminal prod = Array.fold_left (fun accu symbol -> match symbol with | Symbol.T tok -> PRightmostToken tok | Symbol.N _ -> accu ) PNone (rhs prod) let combine e1 e2 = lazy (Lazy.force e1; Lazy.force e2) let shift_precedence prod = let fact1, prec_decl = consult_prec_decl prod in let oterminal = match prec_decl with | None -> rightmost_terminal prod | Some { value = terminal } -> PPrecDecl terminal in match oterminal with | PNone -> fact1, UndefinedPrecedence | PRightmostToken tok -> let fact2, level = Terminal.precedence_level tok in combine fact1 fact2, level | PPrecDecl id -> let fact2, level = TokPrecedence.leveli id in combine fact1 fact2, level end (* ------------------------------------------------------------------------ *) (* Maps over productions. *) module ProductionMap = struct include Patricia.Big (* Iteration over the start productions only. *) let start f = Misc.foldi Production.start (fun prod m -> add prod (f prod) m ) empty end (* ------------------------------------------------------------------------ *) (* Build the grammar's forward and backward reference graphs. In the backward reference graph, edges relate each nonterminal [nt] to each of the nonterminals whose definition mentions [nt]. The reverse reference graph is used in the computation of the nullable, nonempty, and FIRST sets. The forward reference graph is unused but can be printed on demand. *) let forward : NonterminalSet.t array = Array.make Nonterminal.n NonterminalSet.empty let backward : NonterminalSet.t array = Array.make Nonterminal.n NonterminalSet.empty let () = Array.iter (fun (nt1, rhs) -> Array.iter (function | Symbol.T _ -> () | Symbol.N nt2 -> forward.(nt1) <- NonterminalSet.add nt2 forward.(nt1); backward.(nt2) <- NonterminalSet.add nt1 backward.(nt2) ) rhs ) Production.table (* ------------------------------------------------------------------------ *) (* If requested, dump the forward reference graph. *) let () = if Settings.graph then let module P = Dot.Print (struct type vertex = Nonterminal.t let name nt = Printf.sprintf "nt%d" nt let successors (f : ?style:Dot.style -> label:string -> vertex -> unit) nt = NonterminalSet.iter (fun successor -> f ~label:"" successor ) forward.(nt) let iter (f : ?style:Dot.style -> label:string -> vertex -> unit) = Nonterminal.iter (fun nt -> f ~label:(Nonterminal.print false nt) nt ) end) in let f = open_out (Settings.base ^ ".dot") in P.print f; close_out f (* ------------------------------------------------------------------------ *) (* Support for analyses of the grammar, expressed as fixed point computations. We exploit the generic fixed point algorithm in [Fix]. *) (* We perform memoization only at nonterminal symbols. We assume that the analysis of a symbol is the analysis of its definition (as opposed to, say, a computation that depends on the occurrences of this symbol in the grammar). *) module GenericAnalysis (P : Fix.PROPERTY) (S : sig open P (* An analysis is specified by the following functions. *) (* [terminal] maps a terminal symbol to a property. *) val terminal: Terminal.t -> property (* [disjunction] abstracts a binary alternative. That is, when we analyze an alternative between several productions, we compute a property for each of them independently, then we combine these properties using [disjunction]. *) val disjunction: property -> property Lazy.t -> property (* [P.bottom] should be a neutral element for [disjunction]. We use it in the analysis of an alternative with zero branches. *) (* [conjunction] abstracts a binary sequence. That is, when we analyze a sequence, we compute a property for each member independently, then we combine these properties using [conjunction]. In general, conjunction needs access to the first member of the sequence (a symbol), not just to its analysis (a property). *) val conjunction: Symbol.t -> property -> property Lazy.t -> property (* [epsilon] abstracts the empty sequence. It should be a neutral element for [conjunction]. *) val epsilon: property end) : sig open P (* The results of the analysis take the following form. *) (* To every nonterminal symbol, we associate a property. *) val nonterminal: Nonterminal.t -> property (* To every symbol, we associate a property. *) val symbol: Symbol.t -> property (* To every suffix of every production, we associate a property. The offset [i], which determines the beginning of the suffix, must be contained between [0] and [n], inclusive, where [n] is the length of the production. *) val production: Production.index -> int -> property end = struct open P (* The following analysis functions are parameterized over [get], which allows making a recursive call to the analysis at a nonterminal symbol. [get] maps a nonterminal symbol to a property. *) (* Analysis of a symbol. *) let symbol sym get : property = match sym with | Symbol.T tok -> S.terminal tok | Symbol.N nt -> (* Recursive call to the analysis, via [get]. *) get nt (* Analysis of (a suffix of) a production [prod], starting at index [i]. *) let production prod i get : property = let rhs = Production.rhs prod in let n = Array.length rhs in (* Conjunction over all symbols in the right-hand side. This can be viewed as a version of [Array.fold_right], which does not necessarily begin at index [0]. Note that, because [conjunction] is lazy, it is possible to stop early. *) let rec loop i = if i = n then S.epsilon else let sym = rhs.(i) in S.conjunction sym (symbol sym get) (lazy (loop (i+1))) in loop i (* The analysis is the least fixed point of the following function, which analyzes a nonterminal symbol by looking up and analyzing its definition as a disjunction of conjunctions of symbols. *) let nonterminal nt get : property = (* Disjunction over all productions for this nonterminal symbol. *) Production.foldnt_lazy nt (fun prod rest -> S.disjunction (production prod 0 get) rest ) P.bottom (* The least fixed point is taken as follows. Note that it is computed on demand, as [lfp] is called by the user. *) module F = Fix.Make (Maps.ConsecutiveIntegerKeysToImperativeMaps(Nonterminal)) (P) let nonterminal = F.lfp nonterminal (* The auxiliary functions can be published too. *) let symbol sym = symbol sym nonterminal let production prod i = production prod i nonterminal end (* ------------------------------------------------------------------------ *) (* Generic support for fixpoint computations. A fixpoint computation associates a property with every nonterminal. A monotone function tells how properties are computed. [compute nt] updates the property associated with nonterminal [nt] and returns a flag that tells whether the property actually needed an update. The state of the computation is maintained entirely inside [compute] and is invisible here. Whenever a property of [nt] is updated, the properties of the terminals whose definitions depend on [nt] are updated. The dependency graph must be explicitly supplied. *) let fixpoint (dependencies : NonterminalSet.t array) (compute : Nonterminal.t -> bool) : unit = let queue : Nonterminal.t Queue.t = Queue.create () in let onqueue : bool array = Array.make Nonterminal.n true in for i = 0 to Nonterminal.n - 1 do Queue.add i queue done; Misc.qiter (fun nt -> onqueue.(nt) <- false; let changed = compute nt in if changed then NonterminalSet.iter (fun nt -> if not onqueue.(nt) then begin Queue.add nt queue; onqueue.(nt) <- true end ) dependencies.(nt) ) queue (* ------------------------------------------------------------------------ *) (* Compute which nonterminals are nonempty, that is, recognize a nonempty language. Also, compute which nonterminals are nullable. The two computations are almost identical. The only difference is in the base case: a single terminal symbol is not nullable, but is nonempty. *) module NONEMPTY = GenericAnalysis (Boolean) (struct (* A terminal symbol is nonempty. *) let terminal _ = true (* An alternative is nonempty if at least one branch is nonempty. *) let disjunction p q = p || (Lazy.force q) (* A sequence is nonempty if both members are nonempty. *) let conjunction _ p q = p && (Lazy.force q) (* The sequence epsilon is nonempty. It generates the singleton language {epsilon}. *) let epsilon = true end) module NULLABLE = GenericAnalysis (Boolean) (struct (* A terminal symbol is not nullable. *) let terminal _ = false (* An alternative is nullable if at least one branch is nullable. *) let disjunction p q = p || (Lazy.force q) (* A sequence is nullable if both members are nullable. *) let conjunction _ p q = p && (Lazy.force q) (* The sequence epsilon is nullable. *) let epsilon = true end) (* ------------------------------------------------------------------------ *) (* Compute FIRST sets. *) let first = Array.make Nonterminal.n TerminalSet.empty let first_symbol = function | Symbol.T tok -> TerminalSet.singleton tok | Symbol.N nt -> first.(nt) let nullable_first_rhs (rhs : Symbol.t array) (i : int) : bool * TerminalSet.t = let length = Array.length rhs in assert (i <= length); let rec loop i toks = if i = length then true, toks else let symbol = rhs.(i) in let toks = TerminalSet.union (first_symbol symbol) toks in if NULLABLE.symbol symbol then loop (i+1) toks else false, toks in loop i TerminalSet.empty let () = fixpoint backward (fun nt -> let original = first.(nt) in (* union over all productions for this nonterminal *) let updated = Production.foldnt nt TerminalSet.empty (fun prod accu -> let rhs = Production.rhs prod in let _, toks = nullable_first_rhs rhs 0 in TerminalSet.union toks accu ) in first.(nt) <- updated; TerminalSet.compare original updated <> 0 ) let first', _first_prod', _first_symbol' = let module FIRST = GenericAnalysis (TerminalSet) (struct (* A terminal symbol has a singleton FIRST set. *) let terminal = TerminalSet.singleton (* The FIRST set of an alternative is the union of the FIRST sets. *) let disjunction p q = TerminalSet.union p (Lazy.force q) (* The FIRST set of a sequence is the union of: the FIRST set of the first member, and the FIRST set of the second member, if the first member is nullable. *) let conjunction symbol p q = if NULLABLE.symbol symbol then TerminalSet.union p (Lazy.force q) else p (* The FIRST set of the empty sequence is empty. *) let epsilon = TerminalSet.empty end) in FIRST.nonterminal, FIRST.production, FIRST.symbol (* TEMPORARY sanity check *) let () = for nt = Nonterminal.start to Nonterminal.n - 1 do assert (TerminalSet.equal first.(nt) (first' nt)) done (* ------------------------------------------------------------------------ *) let () = (* If a start symbol generates the empty language or generates the language {epsilon}, report an error. In principle, this could be just a warning. However, in [Engine], in the function [start], it is convenient to assume that neither of these situations can arise. This means that at least one token must be read. *) StringSet.iter (fun symbol -> let nt = Nonterminal.lookup symbol in if not (NONEMPTY.nonterminal nt) then Error.error (Nonterminal.positions nt) (Printf.sprintf "%s generates the empty language." (Nonterminal.print false nt)); if TerminalSet.is_empty first.(nt) then Error.error (Nonterminal.positions nt) (Printf.sprintf "%s generates the language {epsilon}." (Nonterminal.print false nt)) ) Front.grammar.start_symbols; (* If a nonterminal symbol generates the empty language, issue a warning. *) for nt = Nonterminal.start to Nonterminal.n - 1 do if not (NONEMPTY.nonterminal nt) then Error.grammar_warning (Nonterminal.positions nt) (Printf.sprintf "%s generates the empty language." (Nonterminal.print false nt)); done (* ------------------------------------------------------------------------ *) (* Dump the analysis results. *) let () = Error.logG 2 (fun f -> for nt = 0 to Nonterminal.n - 1 do Printf.fprintf f "nullable(%s) = %b\n" (Nonterminal.print false nt) (NULLABLE.nonterminal nt) done; for nt = 0 to Nonterminal.n - 1 do Printf.fprintf f "first(%s) = %s\n" (Nonterminal.print false nt) (TerminalSet.print first.(nt)) done ) let () = Time.tick "Analysis of the grammar" (* ------------------------------------------------------------------------ *) (* Compute FOLLOW sets. Unnecessary for us, but requested by a user. Also, this is useful for the SLR(1) test. Thus, we perform this analysis only on demand. *) let follow : TerminalSet.t array Lazy.t = lazy ( let follow = Array.make Nonterminal.n TerminalSet.empty and forward : NonterminalSet.t array = Array.make Nonterminal.n NonterminalSet.empty and backward : NonterminalSet.t array = Array.make Nonterminal.n NonterminalSet.empty in (* Iterate over all start symbols. *) for nt = 0 to Nonterminal.start - 1 do assert (Nonterminal.is_start nt); (* Add # to FOLLOW(nt). *) follow.(nt) <- TerminalSet.singleton Terminal.sharp done; (* We need to do this explicitly because our start productions are of the form S' -> S, not S' -> S #, so # will not automatically appear into FOLLOW(S) when the start productions are examined. *) (* Iterate over all productions. *) Array.iter (fun (nt1, rhs) -> (* Iterate over all nonterminal symbols [nt2] in the right-hand side. *) Array.iteri (fun i symbol -> match symbol with | Symbol.T _ -> () | Symbol.N nt2 -> let nullable, first = nullable_first_rhs rhs (i+1) in (* The FIRST set of the remainder of the right-hand side contributes to the FOLLOW set of [nt2]. *) follow.(nt2) <- TerminalSet.union first follow.(nt2); (* If the remainder of the right-hand side is nullable, FOLLOW(nt1) contributes to FOLLOW(nt2). *) if nullable then begin forward.(nt1) <- NonterminalSet.add nt2 forward.(nt1); backward.(nt2) <- NonterminalSet.add nt1 backward.(nt2) end ) rhs ) Production.table; (* The fixpoint computation used here is not the most efficient algorithm -- one could do better by first collapsing the strongly connected components, then walking the graph in topological order. But this will do. *) fixpoint forward (fun nt -> let original = follow.(nt) in (* union over all contributors *) let updated = NonterminalSet.fold (fun nt' accu -> TerminalSet.union follow.(nt') accu ) backward.(nt) original in follow.(nt) <- updated; TerminalSet.compare original updated <> 0 ); follow ) (* Define an accessor that triggers the computation of the FOLLOW sets if it has not been performed already. *) let follow nt = (Lazy.force follow).(nt) (* At log level 2, display the FOLLOW sets. *) let () = Error.logG 2 (fun f -> for nt = 0 to Nonterminal.n - 1 do Printf.fprintf f "follow(%s) = %s\n" (Nonterminal.print false nt) (TerminalSet.print (follow nt)) done ) (* Compute FOLLOW sets for the terminal symbols as well. Again, unnecessary for us, but requested by a user. This is done in a single pass over the grammar -- no new fixpoint computation is required. *) let tfollow : TerminalSet.t array Lazy.t = lazy ( let tfollow = Array.make Terminal.n TerminalSet.empty in (* Iterate over all productions. *) Array.iter (fun (nt1, rhs) -> (* Iterate over all terminal symbols [t2] in the right-hand side. *) Array.iteri (fun i symbol -> match symbol with | Symbol.N _ -> () | Symbol.T t2 -> let nullable, first = nullable_first_rhs rhs (i+1) in (* The FIRST set of the remainder of the right-hand side contributes to the FOLLOW set of [t2]. *) tfollow.(t2) <- TerminalSet.union first tfollow.(t2); (* If the remainder of the right-hand side is nullable, FOLLOW(nt1) contributes to FOLLOW(t2). *) if nullable then tfollow.(t2) <- TerminalSet.union (follow nt1) tfollow.(t2) ) rhs ) Production.table; tfollow ) (* Define another accessor. *) let tfollow t = (Lazy.force tfollow).(t) (* At log level 3, display the FOLLOW sets for terminal symbols. *) let () = Error.logG 3 (fun f -> for t = 0 to Terminal.n - 1 do Printf.fprintf f "follow(%s) = %s\n" (Terminal.print t) (TerminalSet.print (tfollow t)) done ) (* ------------------------------------------------------------------------ *) (* Provide explanations about FIRST sets. *) (* The idea is to explain why a certain token appears in the FIRST set for a certain sequence of symbols. Such an explanation involves basic assertions of the form (i) symbol N is nullable and (ii) the token appears in the FIRST set for symbol N. We choose to take these basic facts for granted, instead of recursively explaining them, so as to keep explanations short. *) (* We first produce an explanation in abstract syntax, then convert it to a human-readable string. *) type explanation = | EObvious (* sequence begins with desired token *) | EFirst of Terminal.t * Nonterminal.t (* sequence begins with a nonterminal that produces desired token *) | ENullable of Symbol.t list * explanation (* sequence begins with a list of nullable symbols and ... *) let explain (tok : Terminal.t) (rhs : Symbol.t array) (i : int) = let length = Array.length rhs in let rec loop i = assert (i < length); let symbol = rhs.(i) in match symbol with | Symbol.T tok' -> assert (Terminal.equal tok tok'); EObvious | Symbol.N nt -> if TerminalSet.mem tok first.(nt) then EFirst (tok, nt) else begin assert (NULLABLE.nonterminal nt); match loop (i + 1) with | ENullable (symbols, e) -> ENullable (symbol :: symbols, e) | e -> ENullable ([ symbol ], e) end in loop i let rec convert = function | EObvious -> "" | EFirst (tok, nt) -> Printf.sprintf "%s can begin with %s" (Nonterminal.print false nt) (Terminal.print tok) | ENullable (symbols, e) -> let e = convert e in Printf.sprintf "%scan vanish%s%s" (Symbol.printl symbols) (if e = "" then "" else " and ") e (* ------------------------------------------------------------------------ *) (* Package the analysis results. *) module Analysis = struct let nullable = NULLABLE.nonterminal let first = Array.get first let nullable_first_prod prod i = let rhs = Production.rhs prod in nullable_first_rhs rhs i let explain_first_rhs (tok : Terminal.t) (rhs : Symbol.t array) (i : int) = convert (explain tok rhs i) let follow = follow end (* ------------------------------------------------------------------------ *) (* Conflict resolution via precedences. *) module Precedence = struct type choice = | ChooseShift | ChooseReduce | ChooseNeither | DontKnow type order = Lt | Gt | Eq | Ic let precedence_order p1 p2 = match p1, p2 with | UndefinedPrecedence, _ | _, UndefinedPrecedence -> Ic | PrecedenceLevel (m1, l1, _, _), PrecedenceLevel (m2, l2, _, _) -> if not (Mark.same m1 m2) then Ic else if l1 > l2 then Gt else if l1 < l2 then Lt else Eq let shift_reduce tok prod = let fact1, tokp = Terminal.precedence_level tok and fact2, prodp = Production.shift_precedence prod in match precedence_order tokp prodp with (* Our information is inconclusive. Drop [fact1] and [fact2], that is, do not record that this information was useful. *) | Ic -> DontKnow (* Our information is useful. Record that fact by evaluating [fact1] and [fact2]. *) | (Eq | Lt | Gt) as c -> Lazy.force fact1; Lazy.force fact2; match c with | Ic -> assert false (* already dispatched *) | Eq -> begin match Terminal.associativity tok with | LeftAssoc -> ChooseReduce | RightAssoc -> ChooseShift | NonAssoc -> ChooseNeither | _ -> assert false (* If [tok]'s precedence level is defined, then its associativity must be defined as well. *) end | Lt -> ChooseReduce | Gt -> ChooseShift let reduce_reduce prod1 prod2 = let rp1 = Production.reduce_precedence.(prod1) and rp2 = Production.reduce_precedence.(prod2) in match precedence_order rp1 rp2 with | Lt -> Some prod1 | Gt -> Some prod2 | Eq -> (* the order is strict except in presence of inlining: two branches can have the same precedence level when they come from an inlined one. *) None | Ic -> None end let diagnostics () = TokPrecedence.diagnostics(); Production.diagnostics()